diff options
Diffstat (limited to 'third_party/aom/av1/common/cfl.h')
-rw-r--r-- | third_party/aom/av1/common/cfl.h | 70 |
1 files changed, 37 insertions, 33 deletions
diff --git a/third_party/aom/av1/common/cfl.h b/third_party/aom/av1/common/cfl.h index c6b72a4d83..f2df4b22bd 100644 --- a/third_party/aom/av1/common/cfl.h +++ b/third_party/aom/av1/common/cfl.h @@ -26,62 +26,66 @@ typedef struct macroblockd MACROBLOCKD; typedef struct { // Pixel buffer containing the luma pixels used as prediction for chroma + // TODO(ltrudeau) Convert to uint16 for HBD support uint8_t y_pix[MAX_SB_SQUARE]; + // Pixel buffer containing the downsampled luma pixels used as prediction for + // chroma + // TODO(ltrudeau) Convert to uint16 for HBD support + uint8_t y_down_pix[MAX_SB_SQUARE]; + // Height and width of the luma prediction block currently in the pixel buffer int y_height, y_width; + // Height and width of the chroma prediction block currently associated with + // this context + int uv_height, uv_width; + + // Transform level averages of the luma reconstructed values over the entire + // prediction unit + // Fixed point y_averages is Q12.3: + // * Worst case division is 1/1024 + // * Max error will be 1/16th. + // Note: 3 is chosen so that y_averages fits in 15 bits when 12 bit input is + // used + int y_averages_q3[MAX_NUM_TXB]; + int y_averages_stride; + + int are_parameters_computed; + // Chroma subsampling int subsampling_x, subsampling_y; - // CfL Performs its own block level DC_PRED for each chromatic plane - double dc_pred[CFL_PRED_PLANES]; + // Block level DC_PRED for each chromatic plane + int dc_pred[CFL_PRED_PLANES]; // The rate associated with each alpha codeword int costs[CFL_ALPHABET_SIZE]; - // Count the number of TX blocks in a predicted block to know when you are at - // the last one, so you can check for skips. - // TODO(any) Is there a better way to do this? - int num_tx_blk[CFL_PRED_PLANES]; + int mi_row, mi_col; } CFL_CTX; -static const double cfl_alpha_mags[CFL_MAGS_SIZE] = { - 0., 0.125, -0.125, 0.25, -0.25, 0.5, -0.5 -}; +static const int cfl_alpha_mags_q3[CFL_MAGS_SIZE] = { 0, 1, -1, 2, -2, 4, -4 }; static const int cfl_alpha_codes[CFL_ALPHABET_SIZE][CFL_PRED_PLANES] = { // barrbrain's simple 1D quant ordered by subset 3 likelihood - { 0, 0 }, { 1, 1 }, { 3, 0 }, { 3, 1 }, { 1, 0 }, { 3, 3 }, - { 0, 1 }, { 5, 5 }, { 5, 3 }, { 1, 3 }, { 5, 3 }, { 3, 5 }, + { 0, 0 }, { 1, 1 }, { 3, 0 }, { 3, 3 }, { 1, 0 }, { 3, 1 }, + { 5, 5 }, { 0, 1 }, { 5, 3 }, { 5, 0 }, { 3, 5 }, { 1, 3 }, { 0, 3 }, { 5, 1 }, { 1, 5 }, { 0, 5 } }; -void cfl_init(CFL_CTX *cfl, AV1_COMMON *cm, int subsampling_x, - int subsampling_y); - -void cfl_dc_pred(MACROBLOCKD *xd, BLOCK_SIZE plane_bsize, TX_SIZE tx_size); - -static INLINE double cfl_idx_to_alpha(int alpha_idx, CFL_SIGN_TYPE alpha_sign, - CFL_PRED_TYPE pred_type) { - const int mag_idx = cfl_alpha_codes[alpha_idx][pred_type]; - const double abs_alpha = cfl_alpha_mags[mag_idx]; - if (alpha_sign == CFL_SIGN_POS) { - return abs_alpha; - } else { - assert(abs_alpha != 0.0); - assert(cfl_alpha_mags[mag_idx + 1] == -abs_alpha); - return -abs_alpha; - } +static INLINE int get_scaled_luma_q0(int alpha_q3, int y_pix, int avg_q3) { + return (alpha_q3 * ((y_pix << 3) - avg_q3) + 32) >> 6; } -void cfl_predict_block(const CFL_CTX *cfl, uint8_t *dst, int dst_stride, - int row, int col, TX_SIZE tx_size, double dc_pred, - double alpha); +void cfl_init(CFL_CTX *cfl, AV1_COMMON *cm); + +void cfl_predict_block(MACROBLOCKD *const xd, uint8_t *dst, int dst_stride, + int row, int col, TX_SIZE tx_size, int plane); void cfl_store(CFL_CTX *cfl, const uint8_t *input, int input_stride, int row, - int col, TX_SIZE tx_size); + int col, TX_SIZE tx_size, BLOCK_SIZE bsize); + +void cfl_compute_parameters(MACROBLOCKD *const xd, TX_SIZE tx_size); -double cfl_load(const CFL_CTX *cfl, uint8_t *output, int output_stride, int row, - int col, int width, int height); #endif // AV1_COMMON_CFL_H_ |