summaryrefslogtreecommitdiff
path: root/media/libjpeg/simd/arm/jdsample-neon.c
diff options
context:
space:
mode:
Diffstat (limited to 'media/libjpeg/simd/arm/jdsample-neon.c')
-rw-r--r--media/libjpeg/simd/arm/jdsample-neon.c569
1 files changed, 569 insertions, 0 deletions
diff --git a/media/libjpeg/simd/arm/jdsample-neon.c b/media/libjpeg/simd/arm/jdsample-neon.c
new file mode 100644
index 0000000000..90ec6782c4
--- /dev/null
+++ b/media/libjpeg/simd/arm/jdsample-neon.c
@@ -0,0 +1,569 @@
+/*
+ * jdsample-neon.c - upsampling (Arm Neon)
+ *
+ * Copyright (C) 2020, Arm Limited. All Rights Reserved.
+ * Copyright (C) 2020, D. R. Commander. All Rights Reserved.
+ *
+ * This software is provided 'as-is', without any express or implied
+ * warranty. In no event will the authors be held liable for any damages
+ * arising from the use of this software.
+ *
+ * Permission is granted to anyone to use this software for any purpose,
+ * including commercial applications, and to alter it and redistribute it
+ * freely, subject to the following restrictions:
+ *
+ * 1. The origin of this software must not be misrepresented; you must not
+ * claim that you wrote the original software. If you use this software
+ * in a product, an acknowledgment in the product documentation would be
+ * appreciated but is not required.
+ * 2. Altered source versions must be plainly marked as such, and must not be
+ * misrepresented as being the original software.
+ * 3. This notice may not be removed or altered from any source distribution.
+ */
+
+#define JPEG_INTERNALS
+#include "../../jinclude.h"
+#include "../../jpeglib.h"
+#include "../../jsimd.h"
+#include "../../jdct.h"
+#include "../../jsimddct.h"
+#include "../jsimd.h"
+
+#include <arm_neon.h>
+
+
+/* The diagram below shows a row of samples produced by h2v1 downsampling.
+ *
+ * s0 s1 s2
+ * +---------+---------+---------+
+ * | | | |
+ * | p0 p1 | p2 p3 | p4 p5 |
+ * | | | |
+ * +---------+---------+---------+
+ *
+ * Samples s0-s2 were created by averaging the original pixel component values
+ * centered at positions p0-p5 above. To approximate those original pixel
+ * component values, we proportionally blend the adjacent samples in each row.
+ *
+ * An upsampled pixel component value is computed by blending the sample
+ * containing the pixel center with the nearest neighboring sample, in the
+ * ratio 3:1. For example:
+ * p1(upsampled) = 3/4 * s0 + 1/4 * s1
+ * p2(upsampled) = 3/4 * s1 + 1/4 * s0
+ * When computing the first and last pixel component values in the row, there
+ * is no adjacent sample to blend, so:
+ * p0(upsampled) = s0
+ * p5(upsampled) = s2
+ */
+
+void jsimd_h2v1_fancy_upsample_neon(int max_v_samp_factor,
+ JDIMENSION downsampled_width,
+ JSAMPARRAY input_data,
+ JSAMPARRAY *output_data_ptr)
+{
+ JSAMPARRAY output_data = *output_data_ptr;
+ JSAMPROW inptr, outptr;
+ int inrow;
+ unsigned colctr;
+ /* Set up constants. */
+ const uint16x8_t one_u16 = vdupq_n_u16(1);
+ const uint8x8_t three_u8 = vdup_n_u8(3);
+
+ for (inrow = 0; inrow < max_v_samp_factor; inrow++) {
+ inptr = input_data[inrow];
+ outptr = output_data[inrow];
+ /* First pixel component value in this row of the original image */
+ *outptr = (JSAMPLE)GETJSAMPLE(*inptr);
+
+ /* 3/4 * containing sample + 1/4 * nearest neighboring sample
+ * For p1: containing sample = s0, nearest neighboring sample = s1
+ * For p2: containing sample = s1, nearest neighboring sample = s0
+ */
+ uint8x16_t s0 = vld1q_u8(inptr);
+ uint8x16_t s1 = vld1q_u8(inptr + 1);
+ /* Multiplication makes vectors twice as wide. '_l' and '_h' suffixes
+ * denote low half and high half respectively.
+ */
+ uint16x8_t s1_add_3s0_l =
+ vmlal_u8(vmovl_u8(vget_low_u8(s1)), vget_low_u8(s0), three_u8);
+ uint16x8_t s1_add_3s0_h =
+ vmlal_u8(vmovl_u8(vget_high_u8(s1)), vget_high_u8(s0), three_u8);
+ uint16x8_t s0_add_3s1_l =
+ vmlal_u8(vmovl_u8(vget_low_u8(s0)), vget_low_u8(s1), three_u8);
+ uint16x8_t s0_add_3s1_h =
+ vmlal_u8(vmovl_u8(vget_high_u8(s0)), vget_high_u8(s1), three_u8);
+ /* Add ordered dithering bias to odd pixel values. */
+ s0_add_3s1_l = vaddq_u16(s0_add_3s1_l, one_u16);
+ s0_add_3s1_h = vaddq_u16(s0_add_3s1_h, one_u16);
+
+ /* The offset is initially 1, because the first pixel component has already
+ * been stored. However, in subsequent iterations of the SIMD loop, this
+ * offset is (2 * colctr - 1) to stay within the bounds of the sample
+ * buffers without having to resort to a slow scalar tail case for the last
+ * (downsampled_width % 16) samples. See "Creation of 2-D sample arrays"
+ * in jmemmgr.c for more details.
+ */
+ unsigned outptr_offset = 1;
+ uint8x16x2_t output_pixels;
+
+ /* We use software pipelining to maximise performance. The code indented
+ * an extra two spaces begins the next iteration of the loop.
+ */
+ for (colctr = 16; colctr < downsampled_width; colctr += 16) {
+
+ s0 = vld1q_u8(inptr + colctr - 1);
+ s1 = vld1q_u8(inptr + colctr);
+
+ /* Right-shift by 2 (divide by 4), narrow to 8-bit, and combine. */
+ output_pixels.val[0] = vcombine_u8(vrshrn_n_u16(s1_add_3s0_l, 2),
+ vrshrn_n_u16(s1_add_3s0_h, 2));
+ output_pixels.val[1] = vcombine_u8(vshrn_n_u16(s0_add_3s1_l, 2),
+ vshrn_n_u16(s0_add_3s1_h, 2));
+
+ /* Multiplication makes vectors twice as wide. '_l' and '_h' suffixes
+ * denote low half and high half respectively.
+ */
+ s1_add_3s0_l =
+ vmlal_u8(vmovl_u8(vget_low_u8(s1)), vget_low_u8(s0), three_u8);
+ s1_add_3s0_h =
+ vmlal_u8(vmovl_u8(vget_high_u8(s1)), vget_high_u8(s0), three_u8);
+ s0_add_3s1_l =
+ vmlal_u8(vmovl_u8(vget_low_u8(s0)), vget_low_u8(s1), three_u8);
+ s0_add_3s1_h =
+ vmlal_u8(vmovl_u8(vget_high_u8(s0)), vget_high_u8(s1), three_u8);
+ /* Add ordered dithering bias to odd pixel values. */
+ s0_add_3s1_l = vaddq_u16(s0_add_3s1_l, one_u16);
+ s0_add_3s1_h = vaddq_u16(s0_add_3s1_h, one_u16);
+
+ /* Store pixel component values to memory. */
+ vst2q_u8(outptr + outptr_offset, output_pixels);
+ outptr_offset = 2 * colctr - 1;
+ }
+
+ /* Complete the last iteration of the loop. */
+
+ /* Right-shift by 2 (divide by 4), narrow to 8-bit, and combine. */
+ output_pixels.val[0] = vcombine_u8(vrshrn_n_u16(s1_add_3s0_l, 2),
+ vrshrn_n_u16(s1_add_3s0_h, 2));
+ output_pixels.val[1] = vcombine_u8(vshrn_n_u16(s0_add_3s1_l, 2),
+ vshrn_n_u16(s0_add_3s1_h, 2));
+ /* Store pixel component values to memory. */
+ vst2q_u8(outptr + outptr_offset, output_pixels);
+
+ /* Last pixel component value in this row of the original image */
+ outptr[2 * downsampled_width - 1] =
+ GETJSAMPLE(inptr[downsampled_width - 1]);
+ }
+}
+
+
+/* The diagram below shows an array of samples produced by h2v2 downsampling.
+ *
+ * s0 s1 s2
+ * +---------+---------+---------+
+ * | p0 p1 | p2 p3 | p4 p5 |
+ * sA | | | |
+ * | p6 p7 | p8 p9 | p10 p11|
+ * +---------+---------+---------+
+ * | p12 p13| p14 p15| p16 p17|
+ * sB | | | |
+ * | p18 p19| p20 p21| p22 p23|
+ * +---------+---------+---------+
+ * | p24 p25| p26 p27| p28 p29|
+ * sC | | | |
+ * | p30 p31| p32 p33| p34 p35|
+ * +---------+---------+---------+
+ *
+ * Samples s0A-s2C were created by averaging the original pixel component
+ * values centered at positions p0-p35 above. To approximate one of those
+ * original pixel component values, we proportionally blend the sample
+ * containing the pixel center with the nearest neighboring samples in each
+ * row, column, and diagonal.
+ *
+ * An upsampled pixel component value is computed by first blending the sample
+ * containing the pixel center with the nearest neighboring samples in the
+ * same column, in the ratio 3:1, and then blending each column sum with the
+ * nearest neighboring column sum, in the ratio 3:1. For example:
+ * p14(upsampled) = 3/4 * (3/4 * s1B + 1/4 * s1A) +
+ * 1/4 * (3/4 * s0B + 1/4 * s0A)
+ * = 9/16 * s1B + 3/16 * s1A + 3/16 * s0B + 1/16 * s0A
+ * When computing the first and last pixel component values in the row, there
+ * is no horizontally adjacent sample to blend, so:
+ * p12(upsampled) = 3/4 * s0B + 1/4 * s0A
+ * p23(upsampled) = 3/4 * s2B + 1/4 * s2C
+ * When computing the first and last pixel component values in the column,
+ * there is no vertically adjacent sample to blend, so:
+ * p2(upsampled) = 3/4 * s1A + 1/4 * s0A
+ * p33(upsampled) = 3/4 * s1C + 1/4 * s2C
+ * When computing the corner pixel component values, there is no adjacent
+ * sample to blend, so:
+ * p0(upsampled) = s0A
+ * p35(upsampled) = s2C
+ */
+
+void jsimd_h2v2_fancy_upsample_neon(int max_v_samp_factor,
+ JDIMENSION downsampled_width,
+ JSAMPARRAY input_data,
+ JSAMPARRAY *output_data_ptr)
+{
+ JSAMPARRAY output_data = *output_data_ptr;
+ JSAMPROW inptr0, inptr1, inptr2, outptr0, outptr1;
+ int inrow, outrow;
+ unsigned colctr;
+ /* Set up constants. */
+ const uint16x8_t seven_u16 = vdupq_n_u16(7);
+ const uint8x8_t three_u8 = vdup_n_u8(3);
+ const uint16x8_t three_u16 = vdupq_n_u16(3);
+
+ inrow = outrow = 0;
+ while (outrow < max_v_samp_factor) {
+ inptr0 = input_data[inrow - 1];
+ inptr1 = input_data[inrow];
+ inptr2 = input_data[inrow + 1];
+ /* Suffixes 0 and 1 denote the upper and lower rows of output pixels,
+ * respectively.
+ */
+ outptr0 = output_data[outrow++];
+ outptr1 = output_data[outrow++];
+
+ /* First pixel component value in this row of the original image */
+ int s0colsum0 = GETJSAMPLE(*inptr1) * 3 + GETJSAMPLE(*inptr0);
+ *outptr0 = (JSAMPLE)((s0colsum0 * 4 + 8) >> 4);
+ int s0colsum1 = GETJSAMPLE(*inptr1) * 3 + GETJSAMPLE(*inptr2);
+ *outptr1 = (JSAMPLE)((s0colsum1 * 4 + 8) >> 4);
+
+ /* Step 1: Blend samples vertically in columns s0 and s1.
+ * Leave the divide by 4 until the end, when it can be done for both
+ * dimensions at once, right-shifting by 4.
+ */
+
+ /* Load and compute s0colsum0 and s0colsum1. */
+ uint8x16_t s0A = vld1q_u8(inptr0);
+ uint8x16_t s0B = vld1q_u8(inptr1);
+ uint8x16_t s0C = vld1q_u8(inptr2);
+ /* Multiplication makes vectors twice as wide. '_l' and '_h' suffixes
+ * denote low half and high half respectively.
+ */
+ uint16x8_t s0colsum0_l = vmlal_u8(vmovl_u8(vget_low_u8(s0A)),
+ vget_low_u8(s0B), three_u8);
+ uint16x8_t s0colsum0_h = vmlal_u8(vmovl_u8(vget_high_u8(s0A)),
+ vget_high_u8(s0B), three_u8);
+ uint16x8_t s0colsum1_l = vmlal_u8(vmovl_u8(vget_low_u8(s0C)),
+ vget_low_u8(s0B), three_u8);
+ uint16x8_t s0colsum1_h = vmlal_u8(vmovl_u8(vget_high_u8(s0C)),
+ vget_high_u8(s0B), three_u8);
+ /* Load and compute s1colsum0 and s1colsum1. */
+ uint8x16_t s1A = vld1q_u8(inptr0 + 1);
+ uint8x16_t s1B = vld1q_u8(inptr1 + 1);
+ uint8x16_t s1C = vld1q_u8(inptr2 + 1);
+ uint16x8_t s1colsum0_l = vmlal_u8(vmovl_u8(vget_low_u8(s1A)),
+ vget_low_u8(s1B), three_u8);
+ uint16x8_t s1colsum0_h = vmlal_u8(vmovl_u8(vget_high_u8(s1A)),
+ vget_high_u8(s1B), three_u8);
+ uint16x8_t s1colsum1_l = vmlal_u8(vmovl_u8(vget_low_u8(s1C)),
+ vget_low_u8(s1B), three_u8);
+ uint16x8_t s1colsum1_h = vmlal_u8(vmovl_u8(vget_high_u8(s1C)),
+ vget_high_u8(s1B), three_u8);
+
+ /* Step 2: Blend the already-blended columns. */
+
+ uint16x8_t output0_p1_l = vmlaq_u16(s1colsum0_l, s0colsum0_l, three_u16);
+ uint16x8_t output0_p1_h = vmlaq_u16(s1colsum0_h, s0colsum0_h, three_u16);
+ uint16x8_t output0_p2_l = vmlaq_u16(s0colsum0_l, s1colsum0_l, three_u16);
+ uint16x8_t output0_p2_h = vmlaq_u16(s0colsum0_h, s1colsum0_h, three_u16);
+ uint16x8_t output1_p1_l = vmlaq_u16(s1colsum1_l, s0colsum1_l, three_u16);
+ uint16x8_t output1_p1_h = vmlaq_u16(s1colsum1_h, s0colsum1_h, three_u16);
+ uint16x8_t output1_p2_l = vmlaq_u16(s0colsum1_l, s1colsum1_l, three_u16);
+ uint16x8_t output1_p2_h = vmlaq_u16(s0colsum1_h, s1colsum1_h, three_u16);
+ /* Add ordered dithering bias to odd pixel values. */
+ output0_p1_l = vaddq_u16(output0_p1_l, seven_u16);
+ output0_p1_h = vaddq_u16(output0_p1_h, seven_u16);
+ output1_p1_l = vaddq_u16(output1_p1_l, seven_u16);
+ output1_p1_h = vaddq_u16(output1_p1_h, seven_u16);
+ /* Right-shift by 4 (divide by 16), narrow to 8-bit, and combine. */
+ uint8x16x2_t output_pixels0 = { {
+ vcombine_u8(vshrn_n_u16(output0_p1_l, 4), vshrn_n_u16(output0_p1_h, 4)),
+ vcombine_u8(vrshrn_n_u16(output0_p2_l, 4), vrshrn_n_u16(output0_p2_h, 4))
+ } };
+ uint8x16x2_t output_pixels1 = { {
+ vcombine_u8(vshrn_n_u16(output1_p1_l, 4), vshrn_n_u16(output1_p1_h, 4)),
+ vcombine_u8(vrshrn_n_u16(output1_p2_l, 4), vrshrn_n_u16(output1_p2_h, 4))
+ } };
+
+ /* Store pixel component values to memory.
+ * The minimum size of the output buffer for each row is 64 bytes => no
+ * need to worry about buffer overflow here. See "Creation of 2-D sample
+ * arrays" in jmemmgr.c for more details.
+ */
+ vst2q_u8(outptr0 + 1, output_pixels0);
+ vst2q_u8(outptr1 + 1, output_pixels1);
+
+ /* The first pixel of the image shifted our loads and stores by one byte.
+ * We have to re-align on a 32-byte boundary at some point before the end
+ * of the row (we do it now on the 32/33 pixel boundary) to stay within the
+ * bounds of the sample buffers without having to resort to a slow scalar
+ * tail case for the last (downsampled_width % 16) samples. See "Creation
+ * of 2-D sample arrays" in jmemmgr.c for more details.
+ */
+ for (colctr = 16; colctr < downsampled_width; colctr += 16) {
+ /* Step 1: Blend samples vertically in columns s0 and s1. */
+
+ /* Load and compute s0colsum0 and s0colsum1. */
+ s0A = vld1q_u8(inptr0 + colctr - 1);
+ s0B = vld1q_u8(inptr1 + colctr - 1);
+ s0C = vld1q_u8(inptr2 + colctr - 1);
+ s0colsum0_l = vmlal_u8(vmovl_u8(vget_low_u8(s0A)), vget_low_u8(s0B),
+ three_u8);
+ s0colsum0_h = vmlal_u8(vmovl_u8(vget_high_u8(s0A)), vget_high_u8(s0B),
+ three_u8);
+ s0colsum1_l = vmlal_u8(vmovl_u8(vget_low_u8(s0C)), vget_low_u8(s0B),
+ three_u8);
+ s0colsum1_h = vmlal_u8(vmovl_u8(vget_high_u8(s0C)), vget_high_u8(s0B),
+ three_u8);
+ /* Load and compute s1colsum0 and s1colsum1. */
+ s1A = vld1q_u8(inptr0 + colctr);
+ s1B = vld1q_u8(inptr1 + colctr);
+ s1C = vld1q_u8(inptr2 + colctr);
+ s1colsum0_l = vmlal_u8(vmovl_u8(vget_low_u8(s1A)), vget_low_u8(s1B),
+ three_u8);
+ s1colsum0_h = vmlal_u8(vmovl_u8(vget_high_u8(s1A)), vget_high_u8(s1B),
+ three_u8);
+ s1colsum1_l = vmlal_u8(vmovl_u8(vget_low_u8(s1C)), vget_low_u8(s1B),
+ three_u8);
+ s1colsum1_h = vmlal_u8(vmovl_u8(vget_high_u8(s1C)), vget_high_u8(s1B),
+ three_u8);
+
+ /* Step 2: Blend the already-blended columns. */
+
+ output0_p1_l = vmlaq_u16(s1colsum0_l, s0colsum0_l, three_u16);
+ output0_p1_h = vmlaq_u16(s1colsum0_h, s0colsum0_h, three_u16);
+ output0_p2_l = vmlaq_u16(s0colsum0_l, s1colsum0_l, three_u16);
+ output0_p2_h = vmlaq_u16(s0colsum0_h, s1colsum0_h, three_u16);
+ output1_p1_l = vmlaq_u16(s1colsum1_l, s0colsum1_l, three_u16);
+ output1_p1_h = vmlaq_u16(s1colsum1_h, s0colsum1_h, three_u16);
+ output1_p2_l = vmlaq_u16(s0colsum1_l, s1colsum1_l, three_u16);
+ output1_p2_h = vmlaq_u16(s0colsum1_h, s1colsum1_h, three_u16);
+ /* Add ordered dithering bias to odd pixel values. */
+ output0_p1_l = vaddq_u16(output0_p1_l, seven_u16);
+ output0_p1_h = vaddq_u16(output0_p1_h, seven_u16);
+ output1_p1_l = vaddq_u16(output1_p1_l, seven_u16);
+ output1_p1_h = vaddq_u16(output1_p1_h, seven_u16);
+ /* Right-shift by 4 (divide by 16), narrow to 8-bit, and combine. */
+ output_pixels0.val[0] = vcombine_u8(vshrn_n_u16(output0_p1_l, 4),
+ vshrn_n_u16(output0_p1_h, 4));
+ output_pixels0.val[1] = vcombine_u8(vrshrn_n_u16(output0_p2_l, 4),
+ vrshrn_n_u16(output0_p2_h, 4));
+ output_pixels1.val[0] = vcombine_u8(vshrn_n_u16(output1_p1_l, 4),
+ vshrn_n_u16(output1_p1_h, 4));
+ output_pixels1.val[1] = vcombine_u8(vrshrn_n_u16(output1_p2_l, 4),
+ vrshrn_n_u16(output1_p2_h, 4));
+ /* Store pixel component values to memory. */
+ vst2q_u8(outptr0 + 2 * colctr - 1, output_pixels0);
+ vst2q_u8(outptr1 + 2 * colctr - 1, output_pixels1);
+ }
+
+ /* Last pixel component value in this row of the original image */
+ int s1colsum0 = GETJSAMPLE(inptr1[downsampled_width - 1]) * 3 +
+ GETJSAMPLE(inptr0[downsampled_width - 1]);
+ outptr0[2 * downsampled_width - 1] = (JSAMPLE)((s1colsum0 * 4 + 7) >> 4);
+ int s1colsum1 = GETJSAMPLE(inptr1[downsampled_width - 1]) * 3 +
+ GETJSAMPLE(inptr2[downsampled_width - 1]);
+ outptr1[2 * downsampled_width - 1] = (JSAMPLE)((s1colsum1 * 4 + 7) >> 4);
+ inrow++;
+ }
+}
+
+
+/* The diagram below shows a column of samples produced by h1v2 downsampling
+ * (or by losslessly rotating or transposing an h2v1-downsampled image.)
+ *
+ * +---------+
+ * | p0 |
+ * sA | |
+ * | p1 |
+ * +---------+
+ * | p2 |
+ * sB | |
+ * | p3 |
+ * +---------+
+ * | p4 |
+ * sC | |
+ * | p5 |
+ * +---------+
+ *
+ * Samples sA-sC were created by averaging the original pixel component values
+ * centered at positions p0-p5 above. To approximate those original pixel
+ * component values, we proportionally blend the adjacent samples in each
+ * column.
+ *
+ * An upsampled pixel component value is computed by blending the sample
+ * containing the pixel center with the nearest neighboring sample, in the
+ * ratio 3:1. For example:
+ * p1(upsampled) = 3/4 * sA + 1/4 * sB
+ * p2(upsampled) = 3/4 * sB + 1/4 * sA
+ * When computing the first and last pixel component values in the column,
+ * there is no adjacent sample to blend, so:
+ * p0(upsampled) = sA
+ * p5(upsampled) = sC
+ */
+
+void jsimd_h1v2_fancy_upsample_neon(int max_v_samp_factor,
+ JDIMENSION downsampled_width,
+ JSAMPARRAY input_data,
+ JSAMPARRAY *output_data_ptr)
+{
+ JSAMPARRAY output_data = *output_data_ptr;
+ JSAMPROW inptr0, inptr1, inptr2, outptr0, outptr1;
+ int inrow, outrow;
+ unsigned colctr;
+ /* Set up constants. */
+ const uint16x8_t one_u16 = vdupq_n_u16(1);
+ const uint8x8_t three_u8 = vdup_n_u8(3);
+
+ inrow = outrow = 0;
+ while (outrow < max_v_samp_factor) {
+ inptr0 = input_data[inrow - 1];
+ inptr1 = input_data[inrow];
+ inptr2 = input_data[inrow + 1];
+ /* Suffixes 0 and 1 denote the upper and lower rows of output pixels,
+ * respectively.
+ */
+ outptr0 = output_data[outrow++];
+ outptr1 = output_data[outrow++];
+ inrow++;
+
+ /* The size of the input and output buffers is always a multiple of 32
+ * bytes => no need to worry about buffer overflow when reading/writing
+ * memory. See "Creation of 2-D sample arrays" in jmemmgr.c for more
+ * details.
+ */
+ for (colctr = 0; colctr < downsampled_width; colctr += 16) {
+ /* Load samples. */
+ uint8x16_t sA = vld1q_u8(inptr0 + colctr);
+ uint8x16_t sB = vld1q_u8(inptr1 + colctr);
+ uint8x16_t sC = vld1q_u8(inptr2 + colctr);
+ /* Blend samples vertically. */
+ uint16x8_t colsum0_l = vmlal_u8(vmovl_u8(vget_low_u8(sA)),
+ vget_low_u8(sB), three_u8);
+ uint16x8_t colsum0_h = vmlal_u8(vmovl_u8(vget_high_u8(sA)),
+ vget_high_u8(sB), three_u8);
+ uint16x8_t colsum1_l = vmlal_u8(vmovl_u8(vget_low_u8(sC)),
+ vget_low_u8(sB), three_u8);
+ uint16x8_t colsum1_h = vmlal_u8(vmovl_u8(vget_high_u8(sC)),
+ vget_high_u8(sB), three_u8);
+ /* Add ordered dithering bias to pixel values in even output rows. */
+ colsum0_l = vaddq_u16(colsum0_l, one_u16);
+ colsum0_h = vaddq_u16(colsum0_h, one_u16);
+ /* Right-shift by 2 (divide by 4), narrow to 8-bit, and combine. */
+ uint8x16_t output_pixels0 = vcombine_u8(vshrn_n_u16(colsum0_l, 2),
+ vshrn_n_u16(colsum0_h, 2));
+ uint8x16_t output_pixels1 = vcombine_u8(vrshrn_n_u16(colsum1_l, 2),
+ vrshrn_n_u16(colsum1_h, 2));
+ /* Store pixel component values to memory. */
+ vst1q_u8(outptr0 + colctr, output_pixels0);
+ vst1q_u8(outptr1 + colctr, output_pixels1);
+ }
+ }
+}
+
+
+/* The diagram below shows a row of samples produced by h2v1 downsampling.
+ *
+ * s0 s1
+ * +---------+---------+
+ * | | |
+ * | p0 p1 | p2 p3 |
+ * | | |
+ * +---------+---------+
+ *
+ * Samples s0 and s1 were created by averaging the original pixel component
+ * values centered at positions p0-p3 above. To approximate those original
+ * pixel component values, we duplicate the samples horizontally:
+ * p0(upsampled) = p1(upsampled) = s0
+ * p2(upsampled) = p3(upsampled) = s1
+ */
+
+void jsimd_h2v1_upsample_neon(int max_v_samp_factor, JDIMENSION output_width,
+ JSAMPARRAY input_data,
+ JSAMPARRAY *output_data_ptr)
+{
+ JSAMPARRAY output_data = *output_data_ptr;
+ JSAMPROW inptr, outptr;
+ int inrow;
+ unsigned colctr;
+
+ for (inrow = 0; inrow < max_v_samp_factor; inrow++) {
+ inptr = input_data[inrow];
+ outptr = output_data[inrow];
+ for (colctr = 0; 2 * colctr < output_width; colctr += 16) {
+ uint8x16_t samples = vld1q_u8(inptr + colctr);
+ /* Duplicate the samples. The store operation below interleaves them so
+ * that adjacent pixel component values take on the same sample value,
+ * per above.
+ */
+ uint8x16x2_t output_pixels = { { samples, samples } };
+ /* Store pixel component values to memory.
+ * Due to the way sample buffers are allocated, we don't need to worry
+ * about tail cases when output_width is not a multiple of 32. See
+ * "Creation of 2-D sample arrays" in jmemmgr.c for details.
+ */
+ vst2q_u8(outptr + 2 * colctr, output_pixels);
+ }
+ }
+}
+
+
+/* The diagram below shows an array of samples produced by h2v2 downsampling.
+ *
+ * s0 s1
+ * +---------+---------+
+ * | p0 p1 | p2 p3 |
+ * sA | | |
+ * | p4 p5 | p6 p7 |
+ * +---------+---------+
+ * | p8 p9 | p10 p11|
+ * sB | | |
+ * | p12 p13| p14 p15|
+ * +---------+---------+
+ *
+ * Samples s0A-s1B were created by averaging the original pixel component
+ * values centered at positions p0-p15 above. To approximate those original
+ * pixel component values, we duplicate the samples both horizontally and
+ * vertically:
+ * p0(upsampled) = p1(upsampled) = p4(upsampled) = p5(upsampled) = s0A
+ * p2(upsampled) = p3(upsampled) = p6(upsampled) = p7(upsampled) = s1A
+ * p8(upsampled) = p9(upsampled) = p12(upsampled) = p13(upsampled) = s0B
+ * p10(upsampled) = p11(upsampled) = p14(upsampled) = p15(upsampled) = s1B
+ */
+
+void jsimd_h2v2_upsample_neon(int max_v_samp_factor, JDIMENSION output_width,
+ JSAMPARRAY input_data,
+ JSAMPARRAY *output_data_ptr)
+{
+ JSAMPARRAY output_data = *output_data_ptr;
+ JSAMPROW inptr, outptr0, outptr1;
+ int inrow, outrow;
+ unsigned colctr;
+
+ for (inrow = 0, outrow = 0; outrow < max_v_samp_factor; inrow++) {
+ inptr = input_data[inrow];
+ outptr0 = output_data[outrow++];
+ outptr1 = output_data[outrow++];
+
+ for (colctr = 0; 2 * colctr < output_width; colctr += 16) {
+ uint8x16_t samples = vld1q_u8(inptr + colctr);
+ /* Duplicate the samples. The store operation below interleaves them so
+ * that adjacent pixel component values take on the same sample value,
+ * per above.
+ */
+ uint8x16x2_t output_pixels = { { samples, samples } };
+ /* Store pixel component values for both output rows to memory.
+ * Due to the way sample buffers are allocated, we don't need to worry
+ * about tail cases when output_width is not a multiple of 32. See
+ * "Creation of 2-D sample arrays" in jmemmgr.c for details.
+ */
+ vst2q_u8(outptr0 + 2 * colctr, output_pixels);
+ vst2q_u8(outptr1 + 2 * colctr, output_pixels);
+ }
+ }
+}