summaryrefslogtreecommitdiff
path: root/media/libaom/src/av1/encoder/x86
diff options
context:
space:
mode:
Diffstat (limited to 'media/libaom/src/av1/encoder/x86')
-rw-r--r--media/libaom/src/av1/encoder/x86/av1_fwd_txfm1d_sse4.c598
-rw-r--r--media/libaom/src/av1/encoder/x86/av1_fwd_txfm2d_avx2.c994
-rw-r--r--media/libaom/src/av1/encoder/x86/av1_fwd_txfm2d_sse4.c73
-rw-r--r--media/libaom/src/av1/encoder/x86/av1_fwd_txfm_avx2.h7
-rw-r--r--media/libaom/src/av1/encoder/x86/av1_fwd_txfm_sse2.c110
-rw-r--r--media/libaom/src/av1/encoder/x86/av1_fwd_txfm_sse2.h10
-rw-r--r--media/libaom/src/av1/encoder/x86/av1_quantize_avx2.c115
-rw-r--r--media/libaom/src/av1/encoder/x86/av1_quantize_sse2.c2
-rw-r--r--media/libaom/src/av1/encoder/x86/av1_txfm1d_sse4.h74
-rw-r--r--media/libaom/src/av1/encoder/x86/corner_match_avx2.c81
-rw-r--r--media/libaom/src/av1/encoder/x86/corner_match_sse4.c14
-rw-r--r--media/libaom/src/av1/encoder/x86/encodetxb_avx2.c10
-rw-r--r--media/libaom/src/av1/encoder/x86/encodetxb_sse2.c2
-rw-r--r--media/libaom/src/av1/encoder/x86/encodetxb_sse4.c10
-rw-r--r--media/libaom/src/av1/encoder/x86/error_intrin_avx2.c53
-rw-r--r--media/libaom/src/av1/encoder/x86/error_sse2.asm45
-rw-r--r--media/libaom/src/av1/encoder/x86/highbd_block_error_intrin_avx2.c63
-rw-r--r--media/libaom/src/av1/encoder/x86/highbd_block_error_intrin_sse2.c3
-rw-r--r--media/libaom/src/av1/encoder/x86/highbd_fwd_txfm_avx2.c3167
-rw-r--r--media/libaom/src/av1/encoder/x86/highbd_fwd_txfm_sse4.c1295
-rw-r--r--media/libaom/src/av1/encoder/x86/ml_sse3.c244
-rw-r--r--media/libaom/src/av1/encoder/x86/pickrst_avx2.c819
-rw-r--r--media/libaom/src/av1/encoder/x86/pickrst_sse4.c564
-rw-r--r--media/libaom/src/av1/encoder/x86/rdopt_avx2.c256
-rw-r--r--media/libaom/src/av1/encoder/x86/rdopt_sse4.c275
-rw-r--r--media/libaom/src/av1/encoder/x86/temporal_filter_apply_sse2.asm217
-rw-r--r--media/libaom/src/av1/encoder/x86/temporal_filter_avx2.c284
-rw-r--r--media/libaom/src/av1/encoder/x86/temporal_filter_constants.h407
-rw-r--r--media/libaom/src/av1/encoder/x86/temporal_filter_sse2.c262
-rw-r--r--media/libaom/src/av1/encoder/x86/temporal_filter_sse4.c2044
-rw-r--r--media/libaom/src/av1/encoder/x86/wedge_utils_avx2.c4
-rw-r--r--media/libaom/src/av1/encoder/x86/wedge_utils_sse2.c8
32 files changed, 11015 insertions, 1095 deletions
diff --git a/media/libaom/src/av1/encoder/x86/av1_fwd_txfm1d_sse4.c b/media/libaom/src/av1/encoder/x86/av1_fwd_txfm1d_sse4.c
index 07615543c6..62eaa30747 100644
--- a/media/libaom/src/av1/encoder/x86/av1_fwd_txfm1d_sse4.c
+++ b/media/libaom/src/av1/encoder/x86/av1_fwd_txfm1d_sse4.c
@@ -11,45 +11,78 @@
#include "av1/encoder/x86/av1_txfm1d_sse4.h"
-void av1_fdct32_new_sse4_1(const __m128i *input, __m128i *output,
- int8_t cos_bit) {
+void av1_fdct32_sse4_1(__m128i *input, __m128i *output, int cos_bit,
+ const int stride) {
__m128i buf0[32];
__m128i buf1[32];
const int32_t *cospi;
+
+ int startidx = 0 * stride;
+ int endidx = 31 * stride;
// stage 0
// stage 1
- buf1[0] = _mm_add_epi32(input[0], input[31]);
- buf1[31] = _mm_sub_epi32(input[0], input[31]);
- buf1[1] = _mm_add_epi32(input[1], input[30]);
- buf1[30] = _mm_sub_epi32(input[1], input[30]);
- buf1[2] = _mm_add_epi32(input[2], input[29]);
- buf1[29] = _mm_sub_epi32(input[2], input[29]);
- buf1[3] = _mm_add_epi32(input[3], input[28]);
- buf1[28] = _mm_sub_epi32(input[3], input[28]);
- buf1[4] = _mm_add_epi32(input[4], input[27]);
- buf1[27] = _mm_sub_epi32(input[4], input[27]);
- buf1[5] = _mm_add_epi32(input[5], input[26]);
- buf1[26] = _mm_sub_epi32(input[5], input[26]);
- buf1[6] = _mm_add_epi32(input[6], input[25]);
- buf1[25] = _mm_sub_epi32(input[6], input[25]);
- buf1[7] = _mm_add_epi32(input[7], input[24]);
- buf1[24] = _mm_sub_epi32(input[7], input[24]);
- buf1[8] = _mm_add_epi32(input[8], input[23]);
- buf1[23] = _mm_sub_epi32(input[8], input[23]);
- buf1[9] = _mm_add_epi32(input[9], input[22]);
- buf1[22] = _mm_sub_epi32(input[9], input[22]);
- buf1[10] = _mm_add_epi32(input[10], input[21]);
- buf1[21] = _mm_sub_epi32(input[10], input[21]);
- buf1[11] = _mm_add_epi32(input[11], input[20]);
- buf1[20] = _mm_sub_epi32(input[11], input[20]);
- buf1[12] = _mm_add_epi32(input[12], input[19]);
- buf1[19] = _mm_sub_epi32(input[12], input[19]);
- buf1[13] = _mm_add_epi32(input[13], input[18]);
- buf1[18] = _mm_sub_epi32(input[13], input[18]);
- buf1[14] = _mm_add_epi32(input[14], input[17]);
- buf1[17] = _mm_sub_epi32(input[14], input[17]);
- buf1[15] = _mm_add_epi32(input[15], input[16]);
- buf1[16] = _mm_sub_epi32(input[15], input[16]);
+ buf1[0] = _mm_add_epi32(input[startidx], input[endidx]);
+ buf1[31] = _mm_sub_epi32(input[startidx], input[endidx]);
+ startidx += stride;
+ endidx -= stride;
+ buf1[1] = _mm_add_epi32(input[startidx], input[endidx]);
+ buf1[30] = _mm_sub_epi32(input[startidx], input[endidx]);
+ startidx += stride;
+ endidx -= stride;
+ buf1[2] = _mm_add_epi32(input[startidx], input[endidx]);
+ buf1[29] = _mm_sub_epi32(input[startidx], input[endidx]);
+ startidx += stride;
+ endidx -= stride;
+ buf1[3] = _mm_add_epi32(input[startidx], input[endidx]);
+ buf1[28] = _mm_sub_epi32(input[startidx], input[endidx]);
+ startidx += stride;
+ endidx -= stride;
+ buf1[4] = _mm_add_epi32(input[startidx], input[endidx]);
+ buf1[27] = _mm_sub_epi32(input[startidx], input[endidx]);
+ startidx += stride;
+ endidx -= stride;
+ buf1[5] = _mm_add_epi32(input[startidx], input[endidx]);
+ buf1[26] = _mm_sub_epi32(input[startidx], input[endidx]);
+ startidx += stride;
+ endidx -= stride;
+ buf1[6] = _mm_add_epi32(input[startidx], input[endidx]);
+ buf1[25] = _mm_sub_epi32(input[startidx], input[endidx]);
+ startidx += stride;
+ endidx -= stride;
+ buf1[7] = _mm_add_epi32(input[startidx], input[endidx]);
+ buf1[24] = _mm_sub_epi32(input[startidx], input[endidx]);
+ startidx += stride;
+ endidx -= stride;
+ buf1[8] = _mm_add_epi32(input[startidx], input[endidx]);
+ buf1[23] = _mm_sub_epi32(input[startidx], input[endidx]);
+ startidx += stride;
+ endidx -= stride;
+ buf1[9] = _mm_add_epi32(input[startidx], input[endidx]);
+ buf1[22] = _mm_sub_epi32(input[startidx], input[endidx]);
+ startidx += stride;
+ endidx -= stride;
+ buf1[10] = _mm_add_epi32(input[startidx], input[endidx]);
+ buf1[21] = _mm_sub_epi32(input[startidx], input[endidx]);
+ startidx += stride;
+ endidx -= stride;
+ buf1[11] = _mm_add_epi32(input[startidx], input[endidx]);
+ buf1[20] = _mm_sub_epi32(input[startidx], input[endidx]);
+ startidx += stride;
+ endidx -= stride;
+ buf1[12] = _mm_add_epi32(input[startidx], input[endidx]);
+ buf1[19] = _mm_sub_epi32(input[startidx], input[endidx]);
+ startidx += stride;
+ endidx -= stride;
+ buf1[13] = _mm_add_epi32(input[startidx], input[endidx]);
+ buf1[18] = _mm_sub_epi32(input[startidx], input[endidx]);
+ startidx += stride;
+ endidx -= stride;
+ buf1[14] = _mm_add_epi32(input[startidx], input[endidx]);
+ buf1[17] = _mm_sub_epi32(input[startidx], input[endidx]);
+ startidx += stride;
+ endidx -= stride;
+ buf1[15] = _mm_add_epi32(input[startidx], input[endidx]);
+ buf1[16] = _mm_sub_epi32(input[startidx], input[endidx]);
// stage 2
cospi = cospi_arr(cos_bit);
@@ -296,43 +329,75 @@ void av1_fdct32_new_sse4_1(const __m128i *input, __m128i *output,
btf_32_sse4_1_type1(cospi[6], cospi[58], buf1[23], buf1[24], buf0[23],
buf0[24], cos_bit);
+ startidx = 0 * stride;
+ endidx = 31 * stride;
// stage 9
- output[0] = buf0[0];
- output[1] = buf0[16];
- output[2] = buf0[8];
- output[3] = buf0[24];
- output[4] = buf0[4];
- output[5] = buf0[20];
- output[6] = buf0[12];
- output[7] = buf0[28];
- output[8] = buf0[2];
- output[9] = buf0[18];
- output[10] = buf0[10];
- output[11] = buf0[26];
- output[12] = buf0[6];
- output[13] = buf0[22];
- output[14] = buf0[14];
- output[15] = buf0[30];
- output[16] = buf0[1];
- output[17] = buf0[17];
- output[18] = buf0[9];
- output[19] = buf0[25];
- output[20] = buf0[5];
- output[21] = buf0[21];
- output[22] = buf0[13];
- output[23] = buf0[29];
- output[24] = buf0[3];
- output[25] = buf0[19];
- output[26] = buf0[11];
- output[27] = buf0[27];
- output[28] = buf0[7];
- output[29] = buf0[23];
- output[30] = buf0[15];
- output[31] = buf0[31];
+ output[startidx] = buf0[0];
+ output[endidx] = buf0[31];
+ startidx += stride;
+ endidx -= stride;
+ output[startidx] = buf0[16];
+ output[endidx] = buf0[15];
+ startidx += stride;
+ endidx -= stride;
+ output[startidx] = buf0[8];
+ output[endidx] = buf0[23];
+ startidx += stride;
+ endidx -= stride;
+ output[startidx] = buf0[24];
+ output[endidx] = buf0[7];
+ startidx += stride;
+ endidx -= stride;
+ output[startidx] = buf0[4];
+ output[endidx] = buf0[27];
+ startidx += stride;
+ endidx -= stride;
+ output[startidx] = buf0[20];
+ output[endidx] = buf0[11];
+ startidx += stride;
+ endidx -= stride;
+ output[startidx] = buf0[12];
+ output[endidx] = buf0[19];
+ startidx += stride;
+ endidx -= stride;
+ output[startidx] = buf0[28];
+ output[endidx] = buf0[3];
+ startidx += stride;
+ endidx -= stride;
+ output[startidx] = buf0[2];
+ output[endidx] = buf0[29];
+ startidx += stride;
+ endidx -= stride;
+ output[startidx] = buf0[18];
+ output[endidx] = buf0[13];
+ startidx += stride;
+ endidx -= stride;
+ output[startidx] = buf0[10];
+ output[endidx] = buf0[21];
+ startidx += stride;
+ endidx -= stride;
+ output[startidx] = buf0[26];
+ output[endidx] = buf0[5];
+ startidx += stride;
+ endidx -= stride;
+ output[startidx] = buf0[6];
+ output[endidx] = buf0[25];
+ startidx += stride;
+ endidx -= stride;
+ output[startidx] = buf0[22];
+ output[endidx] = buf0[9];
+ startidx += stride;
+ endidx -= stride;
+ output[startidx] = buf0[14];
+ output[endidx] = buf0[17];
+ startidx += stride;
+ endidx -= stride;
+ output[startidx] = buf0[30];
+ output[endidx] = buf0[1];
}
-void av1_fadst4_new_sse4_1(const __m128i *input, __m128i *output,
- const int8_t cos_bit, const int8_t *stage_range) {
+void av1_fadst4_sse4_1(const __m128i *input, __m128i *output,
+ const int8_t cos_bit, const int8_t *stage_range) {
const int txfm_size = 4;
const int num_per_128 = 4;
const int32_t *cospi;
@@ -394,9 +459,8 @@ void av1_fadst4_new_sse4_1(const __m128i *input, __m128i *output,
}
}
-void av1_fdct64_new_sse4_1(const __m128i *input, __m128i *output,
- int8_t cos_bit, const int instride,
- const int outstride) {
+void av1_fdct64_sse4_1(__m128i *input, __m128i *output, int8_t cos_bit,
+ const int instride, const int outstride) {
const int32_t *cospi = cospi_arr(cos_bit);
const __m128i __rounding = _mm_set1_epi32(1 << (cos_bit - 1));
@@ -479,72 +543,136 @@ void av1_fdct64_new_sse4_1(const __m128i *input, __m128i *output,
__m128i cospi_p03 = _mm_set1_epi32(cospi[3]);
__m128i cospi_p61 = _mm_set1_epi32(cospi[61]);
+ int startidx = 0 * instride;
+ int endidx = 63 * instride;
// stage 1
__m128i x1[64];
- x1[0] = _mm_add_epi32(input[0 * instride], input[63 * instride]);
- x1[63] = _mm_sub_epi32(input[0 * instride], input[63 * instride]);
- x1[1] = _mm_add_epi32(input[1 * instride], input[62 * instride]);
- x1[62] = _mm_sub_epi32(input[1 * instride], input[62 * instride]);
- x1[2] = _mm_add_epi32(input[2 * instride], input[61 * instride]);
- x1[61] = _mm_sub_epi32(input[2 * instride], input[61 * instride]);
- x1[3] = _mm_add_epi32(input[3 * instride], input[60 * instride]);
- x1[60] = _mm_sub_epi32(input[3 * instride], input[60 * instride]);
- x1[4] = _mm_add_epi32(input[4 * instride], input[59 * instride]);
- x1[59] = _mm_sub_epi32(input[4 * instride], input[59 * instride]);
- x1[5] = _mm_add_epi32(input[5 * instride], input[58 * instride]);
- x1[58] = _mm_sub_epi32(input[5 * instride], input[58 * instride]);
- x1[6] = _mm_add_epi32(input[6 * instride], input[57 * instride]);
- x1[57] = _mm_sub_epi32(input[6 * instride], input[57 * instride]);
- x1[7] = _mm_add_epi32(input[7 * instride], input[56 * instride]);
- x1[56] = _mm_sub_epi32(input[7 * instride], input[56 * instride]);
- x1[8] = _mm_add_epi32(input[8 * instride], input[55 * instride]);
- x1[55] = _mm_sub_epi32(input[8 * instride], input[55 * instride]);
- x1[9] = _mm_add_epi32(input[9 * instride], input[54 * instride]);
- x1[54] = _mm_sub_epi32(input[9 * instride], input[54 * instride]);
- x1[10] = _mm_add_epi32(input[10 * instride], input[53 * instride]);
- x1[53] = _mm_sub_epi32(input[10 * instride], input[53 * instride]);
- x1[11] = _mm_add_epi32(input[11 * instride], input[52 * instride]);
- x1[52] = _mm_sub_epi32(input[11 * instride], input[52 * instride]);
- x1[12] = _mm_add_epi32(input[12 * instride], input[51 * instride]);
- x1[51] = _mm_sub_epi32(input[12 * instride], input[51 * instride]);
- x1[13] = _mm_add_epi32(input[13 * instride], input[50 * instride]);
- x1[50] = _mm_sub_epi32(input[13 * instride], input[50 * instride]);
- x1[14] = _mm_add_epi32(input[14 * instride], input[49 * instride]);
- x1[49] = _mm_sub_epi32(input[14 * instride], input[49 * instride]);
- x1[15] = _mm_add_epi32(input[15 * instride], input[48 * instride]);
- x1[48] = _mm_sub_epi32(input[15 * instride], input[48 * instride]);
- x1[16] = _mm_add_epi32(input[16 * instride], input[47 * instride]);
- x1[47] = _mm_sub_epi32(input[16 * instride], input[47 * instride]);
- x1[17] = _mm_add_epi32(input[17 * instride], input[46 * instride]);
- x1[46] = _mm_sub_epi32(input[17 * instride], input[46 * instride]);
- x1[18] = _mm_add_epi32(input[18 * instride], input[45 * instride]);
- x1[45] = _mm_sub_epi32(input[18 * instride], input[45 * instride]);
- x1[19] = _mm_add_epi32(input[19 * instride], input[44 * instride]);
- x1[44] = _mm_sub_epi32(input[19 * instride], input[44 * instride]);
- x1[20] = _mm_add_epi32(input[20 * instride], input[43 * instride]);
- x1[43] = _mm_sub_epi32(input[20 * instride], input[43 * instride]);
- x1[21] = _mm_add_epi32(input[21 * instride], input[42 * instride]);
- x1[42] = _mm_sub_epi32(input[21 * instride], input[42 * instride]);
- x1[22] = _mm_add_epi32(input[22 * instride], input[41 * instride]);
- x1[41] = _mm_sub_epi32(input[22 * instride], input[41 * instride]);
- x1[23] = _mm_add_epi32(input[23 * instride], input[40 * instride]);
- x1[40] = _mm_sub_epi32(input[23 * instride], input[40 * instride]);
- x1[24] = _mm_add_epi32(input[24 * instride], input[39 * instride]);
- x1[39] = _mm_sub_epi32(input[24 * instride], input[39 * instride]);
- x1[25] = _mm_add_epi32(input[25 * instride], input[38 * instride]);
- x1[38] = _mm_sub_epi32(input[25 * instride], input[38 * instride]);
- x1[26] = _mm_add_epi32(input[26 * instride], input[37 * instride]);
- x1[37] = _mm_sub_epi32(input[26 * instride], input[37 * instride]);
- x1[27] = _mm_add_epi32(input[27 * instride], input[36 * instride]);
- x1[36] = _mm_sub_epi32(input[27 * instride], input[36 * instride]);
- x1[28] = _mm_add_epi32(input[28 * instride], input[35 * instride]);
- x1[35] = _mm_sub_epi32(input[28 * instride], input[35 * instride]);
- x1[29] = _mm_add_epi32(input[29 * instride], input[34 * instride]);
- x1[34] = _mm_sub_epi32(input[29 * instride], input[34 * instride]);
- x1[30] = _mm_add_epi32(input[30 * instride], input[33 * instride]);
- x1[33] = _mm_sub_epi32(input[30 * instride], input[33 * instride]);
- x1[31] = _mm_add_epi32(input[31 * instride], input[32 * instride]);
- x1[32] = _mm_sub_epi32(input[31 * instride], input[32 * instride]);
+ x1[0] = _mm_add_epi32(input[startidx], input[endidx]);
+ x1[63] = _mm_sub_epi32(input[startidx], input[endidx]);
+ startidx += instride;
+ endidx -= instride;
+ x1[1] = _mm_add_epi32(input[startidx], input[endidx]);
+ x1[62] = _mm_sub_epi32(input[startidx], input[endidx]);
+ startidx += instride;
+ endidx -= instride;
+ x1[2] = _mm_add_epi32(input[startidx], input[endidx]);
+ x1[61] = _mm_sub_epi32(input[startidx], input[endidx]);
+ startidx += instride;
+ endidx -= instride;
+ x1[3] = _mm_add_epi32(input[startidx], input[endidx]);
+ x1[60] = _mm_sub_epi32(input[startidx], input[endidx]);
+ startidx += instride;
+ endidx -= instride;
+ x1[4] = _mm_add_epi32(input[startidx], input[endidx]);
+ x1[59] = _mm_sub_epi32(input[startidx], input[endidx]);
+ startidx += instride;
+ endidx -= instride;
+ x1[5] = _mm_add_epi32(input[startidx], input[endidx]);
+ x1[58] = _mm_sub_epi32(input[startidx], input[endidx]);
+ startidx += instride;
+ endidx -= instride;
+ x1[6] = _mm_add_epi32(input[startidx], input[endidx]);
+ x1[57] = _mm_sub_epi32(input[startidx], input[endidx]);
+ startidx += instride;
+ endidx -= instride;
+ x1[7] = _mm_add_epi32(input[startidx], input[endidx]);
+ x1[56] = _mm_sub_epi32(input[startidx], input[endidx]);
+ startidx += instride;
+ endidx -= instride;
+ x1[8] = _mm_add_epi32(input[startidx], input[endidx]);
+ x1[55] = _mm_sub_epi32(input[startidx], input[endidx]);
+ startidx += instride;
+ endidx -= instride;
+ x1[9] = _mm_add_epi32(input[startidx], input[endidx]);
+ x1[54] = _mm_sub_epi32(input[startidx], input[endidx]);
+ startidx += instride;
+ endidx -= instride;
+ x1[10] = _mm_add_epi32(input[startidx], input[endidx]);
+ x1[53] = _mm_sub_epi32(input[startidx], input[endidx]);
+ startidx += instride;
+ endidx -= instride;
+ x1[11] = _mm_add_epi32(input[startidx], input[endidx]);
+ x1[52] = _mm_sub_epi32(input[startidx], input[endidx]);
+ startidx += instride;
+ endidx -= instride;
+ x1[12] = _mm_add_epi32(input[startidx], input[endidx]);
+ x1[51] = _mm_sub_epi32(input[startidx], input[endidx]);
+ startidx += instride;
+ endidx -= instride;
+ x1[13] = _mm_add_epi32(input[startidx], input[endidx]);
+ x1[50] = _mm_sub_epi32(input[startidx], input[endidx]);
+ startidx += instride;
+ endidx -= instride;
+ x1[14] = _mm_add_epi32(input[startidx], input[endidx]);
+ x1[49] = _mm_sub_epi32(input[startidx], input[endidx]);
+ startidx += instride;
+ endidx -= instride;
+ x1[15] = _mm_add_epi32(input[startidx], input[endidx]);
+ x1[48] = _mm_sub_epi32(input[startidx], input[endidx]);
+ startidx += instride;
+ endidx -= instride;
+ x1[16] = _mm_add_epi32(input[startidx], input[endidx]);
+ x1[47] = _mm_sub_epi32(input[startidx], input[endidx]);
+ startidx += instride;
+ endidx -= instride;
+ x1[17] = _mm_add_epi32(input[startidx], input[endidx]);
+ x1[46] = _mm_sub_epi32(input[startidx], input[endidx]);
+ startidx += instride;
+ endidx -= instride;
+ x1[18] = _mm_add_epi32(input[startidx], input[endidx]);
+ x1[45] = _mm_sub_epi32(input[startidx], input[endidx]);
+ startidx += instride;
+ endidx -= instride;
+ x1[19] = _mm_add_epi32(input[startidx], input[endidx]);
+ x1[44] = _mm_sub_epi32(input[startidx], input[endidx]);
+ startidx += instride;
+ endidx -= instride;
+ x1[20] = _mm_add_epi32(input[startidx], input[endidx]);
+ x1[43] = _mm_sub_epi32(input[startidx], input[endidx]);
+ startidx += instride;
+ endidx -= instride;
+ x1[21] = _mm_add_epi32(input[startidx], input[endidx]);
+ x1[42] = _mm_sub_epi32(input[startidx], input[endidx]);
+ startidx += instride;
+ endidx -= instride;
+ x1[22] = _mm_add_epi32(input[startidx], input[endidx]);
+ x1[41] = _mm_sub_epi32(input[startidx], input[endidx]);
+ startidx += instride;
+ endidx -= instride;
+ x1[23] = _mm_add_epi32(input[startidx], input[endidx]);
+ x1[40] = _mm_sub_epi32(input[startidx], input[endidx]);
+ startidx += instride;
+ endidx -= instride;
+ x1[24] = _mm_add_epi32(input[startidx], input[endidx]);
+ x1[39] = _mm_sub_epi32(input[startidx], input[endidx]);
+ startidx += instride;
+ endidx -= instride;
+ x1[25] = _mm_add_epi32(input[startidx], input[endidx]);
+ x1[38] = _mm_sub_epi32(input[startidx], input[endidx]);
+ startidx += instride;
+ endidx -= instride;
+ x1[26] = _mm_add_epi32(input[startidx], input[endidx]);
+ x1[37] = _mm_sub_epi32(input[startidx], input[endidx]);
+ startidx += instride;
+ endidx -= instride;
+ x1[27] = _mm_add_epi32(input[startidx], input[endidx]);
+ x1[36] = _mm_sub_epi32(input[startidx], input[endidx]);
+ startidx += instride;
+ endidx -= instride;
+ x1[28] = _mm_add_epi32(input[startidx], input[endidx]);
+ x1[35] = _mm_sub_epi32(input[startidx], input[endidx]);
+ startidx += instride;
+ endidx -= instride;
+ x1[29] = _mm_add_epi32(input[startidx], input[endidx]);
+ x1[34] = _mm_sub_epi32(input[startidx], input[endidx]);
+ startidx += instride;
+ endidx -= instride;
+ x1[30] = _mm_add_epi32(input[startidx], input[endidx]);
+ x1[33] = _mm_sub_epi32(input[startidx], input[endidx]);
+ startidx += instride;
+ endidx -= instride;
+ x1[31] = _mm_add_epi32(input[startidx], input[endidx]);
+ x1[32] = _mm_sub_epi32(input[startidx], input[endidx]);
// stage 2
__m128i x2[64];
@@ -1149,69 +1277,141 @@ void av1_fdct64_new_sse4_1(const __m128i *input, __m128i *output,
btf_32_type1_sse4_1_new(cospi_p03, cospi_p61, x9[47], x9[48], x10[47],
x10[48], __rounding, cos_bit);
+ startidx = 0 * outstride;
+ endidx = 63 * outstride;
// stage 11
- output[0 * outstride] = x10[0];
- output[1 * outstride] = x10[32];
- output[2 * outstride] = x10[16];
- output[3 * outstride] = x10[48];
- output[4 * outstride] = x10[8];
- output[5 * outstride] = x10[40];
- output[6 * outstride] = x10[24];
- output[7 * outstride] = x10[56];
- output[8 * outstride] = x10[4];
- output[9 * outstride] = x10[36];
- output[10 * outstride] = x10[20];
- output[11 * outstride] = x10[52];
- output[12 * outstride] = x10[12];
- output[13 * outstride] = x10[44];
- output[14 * outstride] = x10[28];
- output[15 * outstride] = x10[60];
- output[16 * outstride] = x10[2];
- output[17 * outstride] = x10[34];
- output[18 * outstride] = x10[18];
- output[19 * outstride] = x10[50];
- output[20 * outstride] = x10[10];
- output[21 * outstride] = x10[42];
- output[22 * outstride] = x10[26];
- output[23 * outstride] = x10[58];
- output[24 * outstride] = x10[6];
- output[25 * outstride] = x10[38];
- output[26 * outstride] = x10[22];
- output[27 * outstride] = x10[54];
- output[28 * outstride] = x10[14];
- output[29 * outstride] = x10[46];
- output[30 * outstride] = x10[30];
- output[31 * outstride] = x10[62];
- output[32 * outstride] = x10[1];
- output[33 * outstride] = x10[33];
- output[34 * outstride] = x10[17];
- output[35 * outstride] = x10[49];
- output[36 * outstride] = x10[9];
- output[37 * outstride] = x10[41];
- output[38 * outstride] = x10[25];
- output[39 * outstride] = x10[57];
- output[40 * outstride] = x10[5];
- output[41 * outstride] = x10[37];
- output[42 * outstride] = x10[21];
- output[43 * outstride] = x10[53];
- output[44 * outstride] = x10[13];
- output[45 * outstride] = x10[45];
- output[46 * outstride] = x10[29];
- output[47 * outstride] = x10[61];
- output[48 * outstride] = x10[3];
- output[49 * outstride] = x10[35];
- output[50 * outstride] = x10[19];
- output[51 * outstride] = x10[51];
- output[52 * outstride] = x10[11];
- output[53 * outstride] = x10[43];
- output[54 * outstride] = x10[27];
- output[55 * outstride] = x10[59];
- output[56 * outstride] = x10[7];
- output[57 * outstride] = x10[39];
- output[58 * outstride] = x10[23];
- output[59 * outstride] = x10[55];
- output[60 * outstride] = x10[15];
- output[61 * outstride] = x10[47];
- output[62 * outstride] = x10[31];
- output[63 * outstride] = x10[63];
+ output[startidx] = x10[0];
+ output[endidx] = x10[63];
+ startidx += outstride;
+ endidx -= outstride;
+ output[startidx] = x10[32];
+ output[endidx] = x10[31];
+ startidx += outstride;
+ endidx -= outstride;
+ output[startidx] = x10[16];
+ output[endidx] = x10[47];
+ startidx += outstride;
+ endidx -= outstride;
+ output[startidx] = x10[48];
+ output[endidx] = x10[15];
+ startidx += outstride;
+ endidx -= outstride;
+ output[startidx] = x10[8];
+ output[endidx] = x10[55];
+ startidx += outstride;
+ endidx -= outstride;
+ output[startidx] = x10[40];
+ output[endidx] = x10[23];
+ startidx += outstride;
+ endidx -= outstride;
+ output[startidx] = x10[24];
+ output[endidx] = x10[39];
+ startidx += outstride;
+ endidx -= outstride;
+ output[startidx] = x10[56];
+ output[endidx] = x10[7];
+ startidx += outstride;
+ endidx -= outstride;
+ output[startidx] = x10[4];
+ output[endidx] = x10[59];
+ startidx += outstride;
+ endidx -= outstride;
+ output[startidx] = x10[36];
+ output[endidx] = x10[27];
+ startidx += outstride;
+ endidx -= outstride;
+ output[startidx] = x10[20];
+ output[endidx] = x10[43];
+ startidx += outstride;
+ endidx -= outstride;
+ output[startidx] = x10[52];
+ output[endidx] = x10[11];
+ startidx += outstride;
+ endidx -= outstride;
+ output[startidx] = x10[12];
+ output[endidx] = x10[51];
+ startidx += outstride;
+ endidx -= outstride;
+ output[startidx] = x10[44];
+ output[endidx] = x10[19];
+ startidx += outstride;
+ endidx -= outstride;
+ output[startidx] = x10[28];
+ output[endidx] = x10[35];
+ startidx += outstride;
+ endidx -= outstride;
+ output[startidx] = x10[60];
+ output[endidx] = x10[3];
+ startidx += outstride;
+ endidx -= outstride;
+ output[startidx] = x10[2];
+ output[endidx] = x10[61];
+ startidx += outstride;
+ endidx -= outstride;
+ output[startidx] = x10[34];
+ output[endidx] = x10[29];
+ startidx += outstride;
+ endidx -= outstride;
+ output[startidx] = x10[18];
+ output[endidx] = x10[45];
+ startidx += outstride;
+ endidx -= outstride;
+ output[startidx] = x10[50];
+ output[endidx] = x10[13];
+ startidx += outstride;
+ endidx -= outstride;
+ output[startidx] = x10[10];
+ output[endidx] = x10[53];
+ startidx += outstride;
+ endidx -= outstride;
+ output[startidx] = x10[42];
+ output[endidx] = x10[21];
+ startidx += outstride;
+ endidx -= outstride;
+ output[startidx] = x10[26];
+ output[endidx] = x10[37];
+ startidx += outstride;
+ endidx -= outstride;
+ output[startidx] = x10[58];
+ output[endidx] = x10[5];
+ startidx += outstride;
+ endidx -= outstride;
+ output[startidx] = x10[6];
+ output[endidx] = x10[57];
+ startidx += outstride;
+ endidx -= outstride;
+ output[startidx] = x10[38];
+ output[endidx] = x10[25];
+ startidx += outstride;
+ endidx -= outstride;
+ output[startidx] = x10[22];
+ output[endidx] = x10[41];
+ startidx += outstride;
+ endidx -= outstride;
+ output[startidx] = x10[54];
+ output[endidx] = x10[9];
+ startidx += outstride;
+ endidx -= outstride;
+ output[startidx] = x10[14];
+ output[endidx] = x10[49];
+ startidx += outstride;
+ endidx -= outstride;
+ output[startidx] = x10[46];
+ output[endidx] = x10[17];
+ startidx += outstride;
+ endidx -= outstride;
+ output[startidx] = x10[30];
+ output[endidx] = x10[33];
+ startidx += outstride;
+ endidx -= outstride;
+ output[startidx] = x10[62];
+ output[endidx] = x10[1];
+}
+
+void av1_idtx32_sse4_1(__m128i *input, __m128i *output, int cos_bit,
+ const int col_num) {
+ (void)cos_bit;
+ for (int i = 0; i < 32; i++) {
+ output[i * col_num] = _mm_slli_epi32(input[i * col_num], 2);
+ }
}
diff --git a/media/libaom/src/av1/encoder/x86/av1_fwd_txfm2d_avx2.c b/media/libaom/src/av1/encoder/x86/av1_fwd_txfm2d_avx2.c
index 592462e20d..634d50bb22 100644
--- a/media/libaom/src/av1/encoder/x86/av1_fwd_txfm2d_avx2.c
+++ b/media/libaom/src/av1/encoder/x86/av1_fwd_txfm2d_avx2.c
@@ -113,8 +113,8 @@ static INLINE void fdct16x16_new_avx2(const __m256i *input, __m256i *output,
output[15] = x1[15];
}
-static INLINE void fdct16x32_new_avx2(const __m256i *input, __m256i *output,
- int8_t cos_bit) {
+static INLINE void fdct16x32_avx2(const __m256i *input, __m256i *output,
+ int8_t cos_bit) {
const int32_t *cospi = cospi_arr(cos_bit);
const __m256i _r = _mm256_set1_epi32(1 << (cos_bit - 1));
@@ -711,8 +711,8 @@ static INLINE void fdct16x64_new_avx2(const __m256i *input, __m256i *output,
output[63] = x1[63];
}
-static INLINE void av1_fdct32_new_avx2(const __m256i *input, __m256i *output,
- int8_t cos_bit) {
+static INLINE void fdct32_avx2(const __m256i *input, __m256i *output,
+ int8_t cos_bit) {
__m256i x1[32];
const int32_t *cospi = cospi_arr(cos_bit);
const __m256i _r = _mm256_set1_epi32(1 << (cos_bit - 1));
@@ -865,8 +865,8 @@ static INLINE void av1_fdct32_new_avx2(const __m256i *input, __m256i *output,
output[31] = x1[31];
}
-static INLINE void av1_fdct64_new_avx2(const __m256i *input, __m256i *output,
- int8_t cos_bit) {
+static INLINE void fdct64_new_avx2(const __m256i *input, __m256i *output,
+ int8_t cos_bit) {
const int32_t *cospi = cospi_arr(cos_bit);
const __m256i _r = _mm256_set1_epi32(1 << (cos_bit - 1));
@@ -1408,12 +1408,6 @@ static INLINE void fadst16x16_new_avx2(const __m256i *input, __m256i *output,
output[15] = x1[0];
}
-static INLINE __m256i scale_round_avx2(const __m256i a, const int scale) {
- const __m256i scale__r = pair_set_w16_epi16(scale, 1 << (NewSqrt2Bits - 1));
- const __m256i b = _mm256_madd_epi16(a, scale__r);
- return _mm256_srai_epi32(b, NewSqrt2Bits);
-}
-
static INLINE void fidentity16x16_new_avx2(const __m256i *input,
__m256i *output, int8_t cos_bit) {
(void)cos_bit;
@@ -1428,53 +1422,14 @@ static INLINE void fidentity16x16_new_avx2(const __m256i *input,
}
}
-static INLINE void fidentity16x32_new_avx2(const __m256i *input,
- __m256i *output, int8_t cos_bit) {
+static INLINE void fidentity16x32_avx2(const __m256i *input, __m256i *output,
+ int8_t cos_bit) {
(void)cos_bit;
for (int i = 0; i < 32; ++i) {
output[i] = _mm256_slli_epi16(input[i], 2);
}
}
-static INLINE void av1_round_shift_array_32_avx2(__m256i *input,
- __m256i *output,
- const int size,
- const int bit) {
- if (bit > 0) {
- int i;
- for (i = 0; i < size; i++) {
- output[i] = av1_round_shift_32_avx2(input[i], bit);
- }
- } else {
- int i;
- for (i = 0; i < size; i++) {
- output[i] = _mm256_slli_epi32(input[i], -bit);
- }
- }
-}
-
-static INLINE void av1_round_shift_rect_array_32_avx2(__m256i *input,
- __m256i *output,
- const int size,
- const int bit) {
- const __m256i sqrt2 = _mm256_set1_epi32(NewSqrt2);
- if (bit > 0) {
- int i;
- for (i = 0; i < size; i++) {
- const __m256i r0 = av1_round_shift_32_avx2(input[i], bit);
- const __m256i r1 = _mm256_mullo_epi32(sqrt2, r0);
- output[i] = av1_round_shift_32_avx2(r1, NewSqrt2Bits);
- }
- } else {
- int i;
- for (i = 0; i < size; i++) {
- const __m256i r0 = _mm256_slli_epi32(input[i], -bit);
- const __m256i r1 = _mm256_mullo_epi32(sqrt2, r0);
- output[i] = av1_round_shift_32_avx2(r1, NewSqrt2Bits);
- }
- }
-}
-
static INLINE void transpose_32_8x8_avx2(int stride, const __m256i *inputA,
__m256i *output) {
__m256i temp0 = _mm256_unpacklo_epi32(inputA[0], inputA[2]);
@@ -1540,42 +1495,45 @@ static INLINE void store_rect_buffer_16bit_to_32bit_w16_avx2(
}
}
+typedef void (*transform_1d_avx2)(const __m256i *input, __m256i *output,
+ int8_t cos_bit);
+
static const transform_1d_avx2 col_txfm16x32_arr[TX_TYPES] = {
- fdct16x32_new_avx2, // DCT_DCT
- NULL, // ADST_DCT
- NULL, // DCT_ADST
- NULL, // ADST_ADST
- NULL, // FLIPADST_DCT
- NULL, // DCT_FLIPADST
- NULL, // FLIPADST_FLIPADST
- NULL, // ADST_FLIPADST
- NULL, // FLIPADST_ADST
- fidentity16x32_new_avx2, // IDTX
- fdct16x32_new_avx2, // V_DCT
- fidentity16x32_new_avx2, // H_DCT
- NULL, // V_ADST
- NULL, // H_ADST
- NULL, // V_FLIPADST
- NULL // H_FLIPADST
+ fdct16x32_avx2, // DCT_DCT
+ NULL, // ADST_DCT
+ NULL, // DCT_ADST
+ NULL, // ADST_ADST
+ NULL, // FLIPADST_DCT
+ NULL, // DCT_FLIPADST
+ NULL, // FLIPADST_FLIPADST
+ NULL, // ADST_FLIPADST
+ NULL, // FLIPADST_ADST
+ fidentity16x32_avx2, // IDTX
+ fdct16x32_avx2, // V_DCT
+ fidentity16x32_avx2, // H_DCT
+ NULL, // V_ADST
+ NULL, // H_ADST
+ NULL, // V_FLIPADST
+ NULL // H_FLIPADST
};
static const transform_1d_avx2 row_txfm16x32_arr[TX_TYPES] = {
- fdct16x32_new_avx2, // DCT_DCT
- NULL, // ADST_DCT
- NULL, // DCT_ADST
- NULL, // ADST_ADST
- NULL, // FLIPADST_DCT
- NULL, // DCT_FLIPADST
- NULL, // FLIPADST_FLIPADST
- NULL, // ADST_FLIPADST
- NULL, // FLIPADST_ADST
- fidentity16x32_new_avx2, // IDTX
- fidentity16x32_new_avx2, // V_DCT
- fdct16x32_new_avx2, // H_DCT
- NULL, // V_ADST
- NULL, // H_ADST
- NULL, // V_FLIPADST
- NULL // H_FLIPADST
+ fdct16x32_avx2, // DCT_DCT
+ NULL, // ADST_DCT
+ NULL, // DCT_ADST
+ NULL, // ADST_ADST
+ NULL, // FLIPADST_DCT
+ NULL, // DCT_FLIPADST
+ NULL, // FLIPADST_FLIPADST
+ NULL, // ADST_FLIPADST
+ NULL, // FLIPADST_ADST
+ fidentity16x32_avx2, // IDTX
+ fidentity16x32_avx2, // V_DCT
+ fdct16x32_avx2, // H_DCT
+ NULL, // V_ADST
+ NULL, // H_ADST
+ NULL, // V_FLIPADST
+ NULL // H_FLIPADST
};
static const transform_1d_avx2 col_txfm16x16_arr[TX_TYPES] = {
@@ -1621,11 +1579,11 @@ static void lowbd_fwd_txfm2d_16x16_avx2(const int16_t *input, int32_t *output,
(void)bd;
const TX_SIZE tx_size = TX_16X16;
__m256i buf0[16], buf1[16];
- const int8_t *shift = fwd_txfm_shift_ls[tx_size];
+ const int8_t *shift = av1_fwd_txfm_shift_ls[tx_size];
const int txw_idx = get_txw_idx(tx_size);
const int txh_idx = get_txh_idx(tx_size);
- const int cos_bit_col = fwd_cos_bit_col[txw_idx][txh_idx];
- const int cos_bit_row = fwd_cos_bit_row[txw_idx][txh_idx];
+ const int cos_bit_col = av1_fwd_cos_bit_col[txw_idx][txh_idx];
+ const int cos_bit_row = av1_fwd_cos_bit_row[txw_idx][txh_idx];
const int width = tx_size_wide[tx_size];
const int height = tx_size_high[tx_size];
const transform_1d_avx2 col_txfm = col_txfm16x16_arr[tx_type];
@@ -1662,11 +1620,11 @@ static void lowbd_fwd_txfm2d_32x32_avx2(const int16_t *input, int32_t *output,
(void)bd;
const TX_SIZE tx_size = TX_32X32;
__m256i buf0[32], buf1[128];
- const int8_t *shift = fwd_txfm_shift_ls[tx_size];
+ const int8_t *shift = av1_fwd_txfm_shift_ls[tx_size];
const int txw_idx = get_txw_idx(tx_size);
const int txh_idx = get_txh_idx(tx_size);
- const int cos_bit_col = fwd_cos_bit_col[txw_idx][txh_idx];
- const int cos_bit_row = fwd_cos_bit_row[txw_idx][txh_idx];
+ const int cos_bit_col = av1_fwd_cos_bit_col[txw_idx][txh_idx];
+ const int cos_bit_row = av1_fwd_cos_bit_row[txw_idx][txh_idx];
const int width = tx_size_wide[tx_size];
const int height = tx_size_high[tx_size];
const transform_1d_avx2 col_txfm = col_txfm16x32_arr[tx_type];
@@ -1715,11 +1673,11 @@ static void lowbd_fwd_txfm2d_64x64_avx2(const int16_t *input, int32_t *output,
assert(tx_type == DCT_DCT);
const TX_SIZE tx_size = TX_64X64;
__m256i buf0[64], buf1[256];
- const int8_t *shift = fwd_txfm_shift_ls[tx_size];
+ const int8_t *shift = av1_fwd_txfm_shift_ls[tx_size];
const int txw_idx = get_txw_idx(tx_size);
const int txh_idx = get_txh_idx(tx_size);
- const int cos_bit_col = fwd_cos_bit_col[txw_idx][txh_idx];
- const int cos_bit_row = fwd_cos_bit_row[txw_idx][txh_idx];
+ const int cos_bit_col = av1_fwd_cos_bit_col[txw_idx][txh_idx];
+ const int cos_bit_row = av1_fwd_cos_bit_row[txw_idx][txh_idx];
const int width = tx_size_wide[tx_size];
const int height = tx_size_high[tx_size];
const transform_1d_avx2 col_txfm = fdct16x64_new_avx2;
@@ -1744,8 +1702,8 @@ static void lowbd_fwd_txfm2d_64x64_avx2(const int16_t *input, int32_t *output,
bufA[j] = _mm256_cvtepi16_epi32(buf[j * 2]);
bufB[j] = _mm256_cvtepi16_epi32(buf[j * 2 + 1]);
}
- av1_fdct64_new_avx2(bufA, bufA, cos_bit_row);
- av1_fdct64_new_avx2(bufB, bufB, cos_bit_row);
+ fdct64_new_avx2(bufA, bufA, cos_bit_row);
+ fdct64_new_avx2(bufB, bufB, cos_bit_row);
av1_round_shift_array_32_avx2(bufA, bufA, 32, -shift[2]);
av1_round_shift_array_32_avx2(bufB, bufB, 32, -shift[2]);
@@ -1763,11 +1721,11 @@ static void lowbd_fwd_txfm2d_16x32_avx2(const int16_t *input, int32_t *output,
(void)bd;
const TX_SIZE tx_size = TX_16X32;
__m256i buf0[32], buf1[32];
- const int8_t *shift = fwd_txfm_shift_ls[tx_size];
+ const int8_t *shift = av1_fwd_txfm_shift_ls[tx_size];
const int txw_idx = get_txw_idx(tx_size);
const int txh_idx = get_txh_idx(tx_size);
- const int cos_bit_col = fwd_cos_bit_col[txw_idx][txh_idx];
- const int cos_bit_row = fwd_cos_bit_row[txw_idx][txh_idx];
+ const int cos_bit_col = av1_fwd_cos_bit_col[txw_idx][txh_idx];
+ const int cos_bit_row = av1_fwd_cos_bit_row[txw_idx][txh_idx];
const int width = tx_size_wide[tx_size];
const int height = tx_size_high[tx_size];
const transform_1d_avx2 col_txfm = col_txfm16x32_arr[tx_type];
@@ -1807,11 +1765,11 @@ static void lowbd_fwd_txfm2d_32x16_avx2(const int16_t *input, int32_t *output,
int stride, TX_TYPE tx_type, int bd) {
(void)bd;
__m256i buf0[32], buf1[64];
- const int8_t *shift = fwd_txfm_shift_ls[TX_32X16];
+ const int8_t *shift = av1_fwd_txfm_shift_ls[TX_32X16];
const int txw_idx = get_txw_idx(TX_32X16);
const int txh_idx = get_txh_idx(TX_32X16);
- const int cos_bit_col = fwd_cos_bit_col[txw_idx][txh_idx];
- const int cos_bit_row = fwd_cos_bit_row[txw_idx][txh_idx];
+ const int cos_bit_col = av1_fwd_cos_bit_col[txw_idx][txh_idx];
+ const int cos_bit_row = av1_fwd_cos_bit_row[txw_idx][txh_idx];
const int width = 32;
const int height = 16;
const transform_1d_avx2 col_txfm = col_txfm16x16_arr[tx_type];
@@ -1854,11 +1812,11 @@ static void lowbd_fwd_txfm2d_64x32_avx2(const int16_t *input, int32_t *output,
(void)bd;
const TX_SIZE tx_size = TX_64X32;
__m256i buf0[64], buf1[256];
- const int8_t *shift = fwd_txfm_shift_ls[tx_size];
+ const int8_t *shift = av1_fwd_txfm_shift_ls[tx_size];
const int txw_idx = get_txw_idx(tx_size);
const int txh_idx = get_txh_idx(tx_size);
- const int cos_bit_col = fwd_cos_bit_col[txw_idx][txh_idx];
- const int cos_bit_row = fwd_cos_bit_row[txw_idx][txh_idx];
+ const int cos_bit_col = av1_fwd_cos_bit_col[txw_idx][txh_idx];
+ const int cos_bit_row = av1_fwd_cos_bit_row[txw_idx][txh_idx];
const int width = tx_size_wide[tx_size];
const int height = tx_size_high[tx_size];
const transform_1d_avx2 col_txfm = col_txfm16x32_arr[tx_type];
@@ -1883,10 +1841,10 @@ static void lowbd_fwd_txfm2d_64x32_avx2(const int16_t *input, int32_t *output,
bufA[j] = _mm256_cvtepi16_epi32(buf[j * 2]);
bufB[j] = _mm256_cvtepi16_epi32(buf[j * 2 + 1]);
}
- av1_fdct64_new_avx2(bufA, bufA, cos_bit_row);
- av1_fdct64_new_avx2(bufB, bufB, cos_bit_row);
- av1_round_shift_rect_array_32_avx2(bufA, bufA, 32, -shift[2]);
- av1_round_shift_rect_array_32_avx2(bufB, bufB, 32, -shift[2]);
+ fdct64_new_avx2(bufA, bufA, cos_bit_row);
+ fdct64_new_avx2(bufB, bufB, cos_bit_row);
+ av1_round_shift_rect_array_32_avx2(bufA, bufA, 32, -shift[2], NewSqrt2);
+ av1_round_shift_rect_array_32_avx2(bufB, bufB, 32, -shift[2], NewSqrt2);
int32_t *output8 = output + 16 * 32 * i;
for (int j = 0; j < 4; ++j) {
@@ -1904,11 +1862,11 @@ static void lowbd_fwd_txfm2d_32x64_avx2(const int16_t *input, int32_t *output,
assert(tx_type == DCT_DCT);
const TX_SIZE tx_size = TX_32X64;
__m256i buf0[64], buf1[256];
- const int8_t *shift = fwd_txfm_shift_ls[tx_size];
+ const int8_t *shift = av1_fwd_txfm_shift_ls[tx_size];
const int txw_idx = get_txw_idx(tx_size);
const int txh_idx = get_txh_idx(tx_size);
- const int cos_bit_col = fwd_cos_bit_col[txw_idx][txh_idx];
- const int cos_bit_row = fwd_cos_bit_row[txw_idx][txh_idx];
+ const int cos_bit_col = av1_fwd_cos_bit_col[txw_idx][txh_idx];
+ const int cos_bit_row = av1_fwd_cos_bit_row[txw_idx][txh_idx];
const int width = tx_size_wide[tx_size];
const int height = tx_size_high[tx_size];
const transform_1d_avx2 col_txfm = fdct16x64_new_avx2;
@@ -1933,10 +1891,10 @@ static void lowbd_fwd_txfm2d_32x64_avx2(const int16_t *input, int32_t *output,
bufA[j] = _mm256_cvtepi16_epi32(buf[j * 2]);
bufB[j] = _mm256_cvtepi16_epi32(buf[j * 2 + 1]);
}
- av1_fdct32_new_avx2(bufA, bufA, cos_bit_row);
- av1_fdct32_new_avx2(bufB, bufB, cos_bit_row);
- av1_round_shift_rect_array_32_avx2(bufA, bufA, 32, -shift[2]);
- av1_round_shift_rect_array_32_avx2(bufB, bufB, 32, -shift[2]);
+ fdct32_avx2(bufA, bufA, cos_bit_row);
+ fdct32_avx2(bufB, bufB, cos_bit_row);
+ av1_round_shift_rect_array_32_avx2(bufA, bufA, 32, -shift[2], NewSqrt2);
+ av1_round_shift_rect_array_32_avx2(bufB, bufB, 32, -shift[2], NewSqrt2);
int32_t *output8 = output + 16 * 32 * i;
for (int j = 0; j < 4; ++j) {
@@ -1954,11 +1912,11 @@ static void lowbd_fwd_txfm2d_16x64_avx2(const int16_t *input, int32_t *output,
assert(tx_type == DCT_DCT);
const TX_SIZE tx_size = TX_16X64;
__m256i buf0[64], buf1[64];
- const int8_t *shift = fwd_txfm_shift_ls[tx_size];
+ const int8_t *shift = av1_fwd_txfm_shift_ls[tx_size];
const int txw_idx = get_txw_idx(tx_size);
const int txh_idx = get_txh_idx(tx_size);
- const int cos_bit_col = fwd_cos_bit_col[txw_idx][txh_idx];
- const int cos_bit_row = fwd_cos_bit_row[txw_idx][txh_idx];
+ const int cos_bit_col = av1_fwd_cos_bit_col[txw_idx][txh_idx];
+ const int cos_bit_row = av1_fwd_cos_bit_row[txw_idx][txh_idx];
const int width = tx_size_wide[tx_size];
const int height = tx_size_high[tx_size];
const transform_1d_avx2 col_txfm = fdct16x64_new_avx2;
@@ -1998,11 +1956,11 @@ static void lowbd_fwd_txfm2d_64x16_avx2(const int16_t *input, int32_t *output,
assert(tx_type == DCT_DCT);
const TX_SIZE tx_size = TX_64X16;
__m256i buf0[64], buf1[64];
- const int8_t *shift = fwd_txfm_shift_ls[tx_size];
+ const int8_t *shift = av1_fwd_txfm_shift_ls[tx_size];
const int txw_idx = get_txw_idx(tx_size);
const int txh_idx = get_txh_idx(tx_size);
- const int cos_bit_col = fwd_cos_bit_col[txw_idx][txh_idx];
- const int cos_bit_row = fwd_cos_bit_row[txw_idx][txh_idx];
+ const int cos_bit_col = av1_fwd_cos_bit_col[txw_idx][txh_idx];
+ const int cos_bit_row = av1_fwd_cos_bit_row[txw_idx][txh_idx];
const int width = tx_size_wide[tx_size];
const int height = tx_size_high[tx_size];
const transform_1d_avx2 col_txfm = fdct16x16_new_avx2;
@@ -2033,6 +1991,794 @@ static void lowbd_fwd_txfm2d_64x16_avx2(const int16_t *input, int32_t *output,
}
}
+static INLINE void btf_16_avx2(__m256i *w0, __m256i *w1, __m256i *in0,
+ __m256i *in1, __m128i *out0, __m128i *out1,
+ __m128i *out2, __m128i *out3,
+ const __m256i *__rounding, int8_t *cos_bit) {
+ __m256i t0 = _mm256_unpacklo_epi16(*in0, *in1);
+ __m256i t1 = _mm256_unpackhi_epi16(*in0, *in1);
+ __m256i u0 = _mm256_madd_epi16(t0, *w0);
+ __m256i u1 = _mm256_madd_epi16(t1, *w0);
+ __m256i v0 = _mm256_madd_epi16(t0, *w1);
+ __m256i v1 = _mm256_madd_epi16(t1, *w1);
+
+ __m256i a0 = _mm256_add_epi32(u0, *__rounding);
+ __m256i a1 = _mm256_add_epi32(u1, *__rounding);
+ __m256i b0 = _mm256_add_epi32(v0, *__rounding);
+ __m256i b1 = _mm256_add_epi32(v1, *__rounding);
+
+ __m256i c0 = _mm256_srai_epi32(a0, *cos_bit);
+ __m256i c1 = _mm256_srai_epi32(a1, *cos_bit);
+ __m256i d0 = _mm256_srai_epi32(b0, *cos_bit);
+ __m256i d1 = _mm256_srai_epi32(b1, *cos_bit);
+
+ __m256i temp0 = _mm256_packs_epi32(c0, c1);
+ __m256i temp1 = _mm256_packs_epi32(d0, d1);
+
+ *out0 = _mm256_castsi256_si128(temp0);
+ *out1 = _mm256_castsi256_si128(temp1);
+ *out2 = _mm256_extracti128_si256(temp0, 0x01);
+ *out3 = _mm256_extracti128_si256(temp1, 0x01);
+}
+
+static INLINE void fdct8x8_new_avx2(const __m256i *input, __m256i *output,
+ int8_t cos_bit) {
+ const int32_t *cospi = cospi_arr(cos_bit);
+ const __m256i __rounding = _mm256_set1_epi32(1 << (cos_bit - 1));
+
+ __m256i cospi_m32_p32 = pair_set_w16_epi16(-cospi[32], cospi[32]);
+ __m256i cospi_p32_p32 = pair_set_w16_epi16(cospi[32], cospi[32]);
+ __m256i cospi_p32_m32 = pair_set_w16_epi16(cospi[32], -cospi[32]);
+ __m256i cospi_p48_p16 = pair_set_w16_epi16(cospi[48], cospi[16]);
+ __m256i cospi_m16_p48 = pair_set_w16_epi16(-cospi[16], cospi[48]);
+ __m256i cospi_p56_p08 = pair_set_w16_epi16(cospi[56], cospi[8]);
+ __m256i cospi_m08_p56 = pair_set_w16_epi16(-cospi[8], cospi[56]);
+ __m256i cospi_p24_p40 = pair_set_w16_epi16(cospi[24], cospi[40]);
+ __m256i cospi_m40_p24 = pair_set_w16_epi16(-cospi[40], cospi[24]);
+
+ // stage 1
+ __m256i x1[8];
+ x1[0] = _mm256_adds_epi16(input[0], input[7]);
+ x1[7] = _mm256_subs_epi16(input[0], input[7]);
+ x1[1] = _mm256_adds_epi16(input[1], input[6]);
+ x1[6] = _mm256_subs_epi16(input[1], input[6]);
+ x1[2] = _mm256_adds_epi16(input[2], input[5]);
+ x1[5] = _mm256_subs_epi16(input[2], input[5]);
+ x1[3] = _mm256_adds_epi16(input[3], input[4]);
+ x1[4] = _mm256_subs_epi16(input[3], input[4]);
+
+ // stage 2
+ __m256i x2[8];
+ x2[0] = _mm256_adds_epi16(x1[0], x1[3]);
+ x2[3] = _mm256_subs_epi16(x1[0], x1[3]);
+ x2[1] = _mm256_adds_epi16(x1[1], x1[2]);
+ x2[2] = _mm256_subs_epi16(x1[1], x1[2]);
+ x2[4] = x1[4];
+ btf_16_w16_avx2(cospi_m32_p32, cospi_p32_p32, &x1[5], &x1[6], __rounding,
+ cos_bit);
+ x2[5] = x1[5];
+ x2[6] = x1[6];
+ x2[7] = x1[7];
+
+ // stage 3
+ __m256i x3[8];
+ btf_16_w16_avx2(cospi_p32_p32, cospi_p32_m32, &x2[0], &x2[1], __rounding,
+ cos_bit);
+ x3[0] = x2[0];
+ x3[1] = x2[1];
+ btf_16_w16_avx2(cospi_p48_p16, cospi_m16_p48, &x2[2], &x2[3], __rounding,
+ cos_bit);
+ x3[2] = x2[2];
+ x3[3] = x2[3];
+ x3[4] = _mm256_adds_epi16(x2[4], x2[5]);
+ x3[5] = _mm256_subs_epi16(x2[4], x2[5]);
+ x3[6] = _mm256_subs_epi16(x2[7], x2[6]);
+ x3[7] = _mm256_adds_epi16(x2[7], x2[6]);
+
+ // stage 4
+ __m256i x4[8];
+ x4[0] = x3[0];
+ x4[1] = x3[1];
+ x4[2] = x3[2];
+ x4[3] = x3[3];
+ btf_16_w16_avx2(cospi_p56_p08, cospi_m08_p56, &x3[4], &x3[7], __rounding,
+ cos_bit);
+ x4[4] = x3[4];
+ x4[7] = x3[7];
+ btf_16_w16_avx2(cospi_p24_p40, cospi_m40_p24, &x3[5], &x3[6], __rounding,
+ cos_bit);
+ x4[5] = x3[5];
+ x4[6] = x3[6];
+ // stage 5
+ output[0] = x4[0];
+ output[1] = x4[4];
+ output[2] = x4[2];
+ output[3] = x4[6];
+ output[4] = x4[1];
+ output[5] = x4[5];
+ output[6] = x4[3];
+ output[7] = x4[7];
+}
+
+static INLINE void fadst8x8_new_avx2(const __m256i *input, __m256i *output,
+ int8_t cos_bit) {
+ const int32_t *cospi = cospi_arr(cos_bit);
+ const __m256i __zero = _mm256_setzero_si256();
+ const __m256i __rounding = _mm256_set1_epi32(1 << (cos_bit - 1));
+
+ __m256i cospi_p32_p32 = pair_set_w16_epi16(cospi[32], cospi[32]);
+ __m256i cospi_p32_m32 = pair_set_w16_epi16(cospi[32], -cospi[32]);
+ __m256i cospi_p16_p48 = pair_set_w16_epi16(cospi[16], cospi[48]);
+ __m256i cospi_p48_m16 = pair_set_w16_epi16(cospi[48], -cospi[16]);
+ __m256i cospi_m48_p16 = pair_set_w16_epi16(-cospi[48], cospi[16]);
+ __m256i cospi_p04_p60 = pair_set_w16_epi16(cospi[4], cospi[60]);
+ __m256i cospi_p60_m04 = pair_set_w16_epi16(cospi[60], -cospi[4]);
+ __m256i cospi_p20_p44 = pair_set_w16_epi16(cospi[20], cospi[44]);
+ __m256i cospi_p44_m20 = pair_set_w16_epi16(cospi[44], -cospi[20]);
+ __m256i cospi_p36_p28 = pair_set_w16_epi16(cospi[36], cospi[28]);
+ __m256i cospi_p28_m36 = pair_set_w16_epi16(cospi[28], -cospi[36]);
+ __m256i cospi_p52_p12 = pair_set_w16_epi16(cospi[52], cospi[12]);
+ __m256i cospi_p12_m52 = pair_set_w16_epi16(cospi[12], -cospi[52]);
+
+ // stage 1
+ __m256i x1[8];
+ x1[0] = input[0];
+ x1[1] = _mm256_subs_epi16(__zero, input[7]);
+ x1[2] = _mm256_subs_epi16(__zero, input[3]);
+ x1[3] = input[4];
+ x1[4] = _mm256_subs_epi16(__zero, input[1]);
+ x1[5] = input[6];
+ x1[6] = input[2];
+ x1[7] = _mm256_subs_epi16(__zero, input[5]);
+
+ // stage 2
+ __m256i x2[8];
+ x2[0] = x1[0];
+ x2[1] = x1[1];
+ btf_16_w16_avx2(cospi_p32_p32, cospi_p32_m32, &x1[2], &x1[3], __rounding,
+ cos_bit);
+ x2[2] = x1[2];
+ x2[3] = x1[3];
+ x2[4] = x1[4];
+ x2[5] = x1[5];
+ btf_16_w16_avx2(cospi_p32_p32, cospi_p32_m32, &x1[6], &x1[7], __rounding,
+ cos_bit);
+ x2[6] = x1[6];
+ x2[7] = x1[7];
+
+ // stage 3
+ __m256i x3[8];
+ x3[0] = _mm256_adds_epi16(x2[0], x2[2]);
+ x3[2] = _mm256_subs_epi16(x2[0], x2[2]);
+ x3[1] = _mm256_adds_epi16(x2[1], x2[3]);
+ x3[3] = _mm256_subs_epi16(x2[1], x2[3]);
+ x3[4] = _mm256_adds_epi16(x2[4], x2[6]);
+ x3[6] = _mm256_subs_epi16(x2[4], x2[6]);
+ x3[5] = _mm256_adds_epi16(x2[5], x2[7]);
+ x3[7] = _mm256_subs_epi16(x2[5], x2[7]);
+
+ // stage 4
+ __m256i x4[8];
+ x4[0] = x3[0];
+ x4[1] = x3[1];
+ x4[2] = x3[2];
+ x4[3] = x3[3];
+ btf_16_w16_avx2(cospi_p16_p48, cospi_p48_m16, &x3[4], &x3[5], __rounding,
+ cos_bit);
+ x4[4] = x3[4];
+ x4[5] = x3[5];
+ btf_16_w16_avx2(cospi_m48_p16, cospi_p16_p48, &x3[6], &x3[7], __rounding,
+ cos_bit);
+ x4[6] = x3[6];
+ x4[7] = x3[7];
+
+ // stage 5
+ __m256i x5[8];
+ x5[0] = _mm256_adds_epi16(x4[0], x4[4]);
+ x5[4] = _mm256_subs_epi16(x4[0], x4[4]);
+ x5[1] = _mm256_adds_epi16(x4[1], x4[5]);
+ x5[5] = _mm256_subs_epi16(x4[1], x4[5]);
+ x5[2] = _mm256_adds_epi16(x4[2], x4[6]);
+ x5[6] = _mm256_subs_epi16(x4[2], x4[6]);
+ x5[3] = _mm256_adds_epi16(x4[3], x4[7]);
+ x5[7] = _mm256_subs_epi16(x4[3], x4[7]);
+
+ // stage 6
+ __m256i x6[8];
+ btf_16_w16_avx2(cospi_p04_p60, cospi_p60_m04, &x5[0], &x5[1], __rounding,
+ cos_bit);
+ x6[0] = x5[0];
+ x6[1] = x5[1];
+ btf_16_w16_avx2(cospi_p20_p44, cospi_p44_m20, &x5[2], &x5[3], __rounding,
+ cos_bit);
+ x6[2] = x5[2];
+ x6[3] = x5[3];
+ btf_16_w16_avx2(cospi_p36_p28, cospi_p28_m36, &x5[4], &x5[5], __rounding,
+ cos_bit);
+ x6[4] = x5[4];
+ x6[5] = x5[5];
+ btf_16_w16_avx2(cospi_p52_p12, cospi_p12_m52, &x5[6], &x5[7], __rounding,
+ cos_bit);
+ x6[6] = x5[6];
+ x6[7] = x5[7];
+
+ // stage 7
+ output[0] = x6[1];
+ output[1] = x6[6];
+ output[2] = x6[3];
+ output[3] = x6[4];
+ output[4] = x6[5];
+ output[5] = x6[2];
+ output[6] = x6[7];
+ output[7] = x6[0];
+}
+
+static INLINE void fidentity8x8_new_avx2(const __m256i *input, __m256i *output,
+ int8_t cos_bit) {
+ (void)cos_bit;
+
+ output[0] = _mm256_adds_epi16(input[0], input[0]);
+ output[1] = _mm256_adds_epi16(input[1], input[1]);
+ output[2] = _mm256_adds_epi16(input[2], input[2]);
+ output[3] = _mm256_adds_epi16(input[3], input[3]);
+ output[4] = _mm256_adds_epi16(input[4], input[4]);
+ output[5] = _mm256_adds_epi16(input[5], input[5]);
+ output[6] = _mm256_adds_epi16(input[6], input[6]);
+ output[7] = _mm256_adds_epi16(input[7], input[7]);
+}
+
+static INLINE void fdct8x16_new_avx2(const __m128i *input, __m128i *output,
+ int8_t cos_bit) {
+ const int32_t *cospi = cospi_arr(cos_bit);
+ const __m256i __rounding_256 = _mm256_set1_epi32(1 << (cos_bit - 1));
+ const __m128i __rounding = _mm_set1_epi32(1 << (cos_bit - 1));
+ __m128i temp0, temp1, temp2, temp3;
+ __m256i in0, in1;
+ __m128i cospi_m32_p32 = pair_set_epi16(-cospi[32], cospi[32]);
+ __m128i cospi_p32_p32 = pair_set_epi16(cospi[32], cospi[32]);
+ __m128i cospi_p32_m32 = pair_set_epi16(cospi[32], -cospi[32]);
+ __m128i cospi_p48_p16 = pair_set_epi16(cospi[48], cospi[16]);
+ __m128i cospi_m16_p48 = pair_set_epi16(-cospi[16], cospi[48]);
+ __m128i cospi_m48_m16 = pair_set_epi16(-cospi[48], -cospi[16]);
+ __m128i cospi_p56_p08 = pair_set_epi16(cospi[56], cospi[8]);
+ __m128i cospi_m08_p56 = pair_set_epi16(-cospi[8], cospi[56]);
+ __m128i cospi_p24_p40 = pair_set_epi16(cospi[24], cospi[40]);
+ __m128i cospi_m40_p24 = pair_set_epi16(-cospi[40], cospi[24]);
+ __m128i cospi_p60_p04 = pair_set_epi16(cospi[60], cospi[4]);
+ __m128i cospi_m04_p60 = pair_set_epi16(-cospi[4], cospi[60]);
+ __m128i cospi_p28_p36 = pair_set_epi16(cospi[28], cospi[36]);
+ __m128i cospi_m36_p28 = pair_set_epi16(-cospi[36], cospi[28]);
+ __m128i cospi_p44_p20 = pair_set_epi16(cospi[44], cospi[20]);
+ __m128i cospi_m20_p44 = pair_set_epi16(-cospi[20], cospi[44]);
+ __m128i cospi_p12_p52 = pair_set_epi16(cospi[12], cospi[52]);
+ __m128i cospi_m52_p12 = pair_set_epi16(-cospi[52], cospi[12]);
+
+ __m256i cospi_arr[12];
+
+ cospi_arr[0] = _mm256_insertf128_si256(_mm256_castsi128_si256(cospi_m32_p32),
+ cospi_m32_p32, 0x1);
+ cospi_arr[1] = _mm256_insertf128_si256(_mm256_castsi128_si256(cospi_p32_p32),
+ cospi_p32_p32, 0x1);
+ cospi_arr[2] = _mm256_insertf128_si256(_mm256_castsi128_si256(cospi_p32_p32),
+ cospi_p48_p16, 0x1);
+ cospi_arr[3] = _mm256_insertf128_si256(_mm256_castsi128_si256(cospi_p32_m32),
+ cospi_m16_p48, 0x1);
+ cospi_arr[4] = _mm256_insertf128_si256(_mm256_castsi128_si256(cospi_m16_p48),
+ cospi_m48_m16, 0x1);
+ cospi_arr[5] = _mm256_insertf128_si256(_mm256_castsi128_si256(cospi_p48_p16),
+ cospi_m16_p48, 0x1);
+ cospi_arr[6] = _mm256_insertf128_si256(_mm256_castsi128_si256(cospi_p56_p08),
+ cospi_p24_p40, 0x1);
+ cospi_arr[7] = _mm256_insertf128_si256(_mm256_castsi128_si256(cospi_m08_p56),
+ cospi_m40_p24, 0x1);
+ cospi_arr[8] = _mm256_insertf128_si256(_mm256_castsi128_si256(cospi_p60_p04),
+ cospi_p28_p36, 0x1);
+ cospi_arr[9] = _mm256_insertf128_si256(_mm256_castsi128_si256(cospi_m04_p60),
+ cospi_m36_p28, 0x1);
+ cospi_arr[10] = _mm256_insertf128_si256(_mm256_castsi128_si256(cospi_p44_p20),
+ cospi_p12_p52, 0x1);
+ cospi_arr[11] = _mm256_insertf128_si256(_mm256_castsi128_si256(cospi_m20_p44),
+ cospi_m52_p12, 0x1);
+
+ __m256i x[8];
+ x[0] =
+ _mm256_insertf128_si256(_mm256_castsi128_si256(input[0]), input[1], 0x1);
+ x[1] = _mm256_insertf128_si256(_mm256_castsi128_si256(input[15]), input[14],
+ 0x1);
+ x[2] =
+ _mm256_insertf128_si256(_mm256_castsi128_si256(input[2]), input[3], 0x1);
+ x[3] = _mm256_insertf128_si256(_mm256_castsi128_si256(input[13]), input[12],
+ 0x1);
+ x[4] =
+ _mm256_insertf128_si256(_mm256_castsi128_si256(input[5]), input[4], 0x1);
+ x[5] = _mm256_insertf128_si256(_mm256_castsi128_si256(input[10]), input[11],
+ 0x1);
+ x[6] =
+ _mm256_insertf128_si256(_mm256_castsi128_si256(input[7]), input[6], 0x1);
+ x[7] =
+ _mm256_insertf128_si256(_mm256_castsi128_si256(input[8]), input[9], 0x1);
+
+ // stage 1
+ __m256i x1[8];
+ x1[0] = _mm256_adds_epi16(x[0], x[1]);
+ x1[7] = _mm256_subs_epi16(x[0], x[1]);
+ x1[1] = _mm256_adds_epi16(x[2], x[3]);
+ x1[6] = _mm256_subs_epi16(x[2], x[3]);
+ x1[2] = _mm256_adds_epi16(x[4], x[5]);
+ x1[5] = _mm256_subs_epi16(x[4], x[5]);
+ x1[3] = _mm256_adds_epi16(x[6], x[7]);
+ x1[4] = _mm256_subs_epi16(x[6], x[7]);
+
+ // stage 2
+ __m256i x2[8];
+ x2[0] = _mm256_adds_epi16(x1[0], x1[3]);
+ x2[7] = _mm256_subs_epi16(x1[0], x1[3]);
+ x2[1] = _mm256_adds_epi16(x1[1], x1[2]);
+ x2[6] = _mm256_subs_epi16(x1[1], x1[2]);
+ x2[2] = x1[4];
+ x2[3] = x1[7];
+ btf_16_avx2(&cospi_arr[0], &cospi_arr[1], &x1[5], &x1[6], &temp0, &temp1,
+ &temp2, &temp3, &__rounding_256, &cos_bit);
+ x2[4] = _mm256_insertf128_si256(_mm256_castsi128_si256(temp2), temp0, 0x1);
+ x2[5] = _mm256_insertf128_si256(_mm256_castsi128_si256(temp3), temp1, 0x1);
+
+ // stage 3
+ __m256i x3[8];
+ x2[1] = _mm256_permute4x64_epi64(x2[1], 0x4e);
+ x3[0] = _mm256_adds_epi16(x2[0], x2[1]);
+ x3[1] = _mm256_subs_epi16(x2[0], x2[1]);
+ x3[2] = _mm256_blend_epi32(x2[7], x2[6], 0xf0);
+ btf_16_sse2(cospi_m32_p32, cospi_p32_p32, _mm256_castsi256_si128(x2[6]),
+ _mm256_extractf128_si256(x2[7], 0x01), temp0, temp1);
+ x3[7] = _mm256_insertf128_si256(_mm256_castsi128_si256(temp1), temp0, 0x1);
+ x3[3] = _mm256_adds_epi16(x2[2], x2[4]);
+ x3[4] = _mm256_subs_epi16(x2[2], x2[4]);
+ x3[5] = _mm256_adds_epi16(x2[3], x2[5]);
+ x3[6] = _mm256_subs_epi16(x2[3], x2[5]);
+
+ // stage 4
+ __m256i x4[8];
+ x4[0] = _mm256_blend_epi32(x3[0], x3[1], 0xf0);
+ x4[1] = _mm256_permute2f128_si256(x3[0], x3[1], 0x21);
+ btf_16_avx2(&cospi_arr[2], &cospi_arr[3], &x4[0], &x4[1], &output[0],
+ &output[8], &output[4], &output[12], &__rounding_256, &cos_bit);
+ x4[2] = _mm256_adds_epi16(x3[2], x3[7]);
+ x4[3] = _mm256_subs_epi16(x3[2], x3[7]);
+ x4[4] = _mm256_permute2f128_si256(x3[3], x3[4], 0x20);
+ x4[5] = _mm256_permute2f128_si256(x3[6], x3[5], 0x20);
+ in0 = _mm256_permute2f128_si256(x3[3], x3[4], 0x31);
+ in1 = _mm256_permute2f128_si256(x3[5], x3[6], 0x31);
+ btf_16_avx2(&cospi_arr[4], &cospi_arr[5], &in0, &in1, &temp0, &temp1, &temp2,
+ &temp3, &__rounding_256, &cos_bit);
+
+ x4[6] = _mm256_insertf128_si256(_mm256_castsi128_si256(temp0), temp2, 0x1);
+ x4[7] = _mm256_insertf128_si256(_mm256_castsi128_si256(temp3), temp1, 0x1);
+
+ // stage 5
+ __m256i x5[4];
+ in0 = _mm256_permute2f128_si256(x4[2], x4[3], 0x31);
+ in1 = _mm256_permute2f128_si256(x4[2], x4[3], 0x20);
+ btf_16_avx2(&cospi_arr[6], &cospi_arr[7], &in0, &in1, &output[2], &output[14],
+ &output[10], &output[6], &__rounding_256, &cos_bit);
+ x5[0] = _mm256_adds_epi16(x4[4], x4[6]);
+ x5[1] = _mm256_subs_epi16(x4[4], x4[6]);
+ x5[2] = _mm256_adds_epi16(x4[5], x4[7]);
+ x5[3] = _mm256_subs_epi16(x4[5], x4[7]);
+
+ // stage 6
+ in0 = _mm256_permute2f128_si256(x5[0], x5[1], 0x20);
+ in1 = _mm256_permute2f128_si256(x5[2], x5[3], 0x31);
+ btf_16_avx2(&cospi_arr[8], &cospi_arr[9], &in0, &in1, &output[1], &output[15],
+ &output[9], &output[7], &__rounding_256, &cos_bit);
+ in0 = _mm256_permute2f128_si256(x5[1], x5[0], 0x31);
+ in1 = _mm256_permute2f128_si256(x5[3], x5[2], 0x20);
+ btf_16_avx2(&cospi_arr[10], &cospi_arr[11], &in0, &in1, &output[5],
+ &output[11], &output[13], &output[3], &__rounding_256, &cos_bit);
+}
+
+static INLINE void fadst8x16_new_avx2(const __m128i *input, __m128i *output,
+ int8_t cos_bit) {
+ const int32_t *cospi = cospi_arr(cos_bit);
+ const __m256i __zero = _mm256_setzero_si256();
+ const __m256i __rounding_256 = _mm256_set1_epi32(1 << (cos_bit - 1));
+ __m256i in0, in1;
+ __m128i temp0, temp1, temp2, temp3;
+
+ __m128i cospi_p32_p32 = pair_set_epi16(cospi[32], cospi[32]);
+ __m128i cospi_p32_m32 = pair_set_epi16(cospi[32], -cospi[32]);
+ __m128i cospi_p16_p48 = pair_set_epi16(cospi[16], cospi[48]);
+ __m128i cospi_p48_m16 = pair_set_epi16(cospi[48], -cospi[16]);
+ __m128i cospi_m48_p16 = pair_set_epi16(-cospi[48], cospi[16]);
+ __m128i cospi_p08_p56 = pair_set_epi16(cospi[8], cospi[56]);
+ __m128i cospi_p56_m08 = pair_set_epi16(cospi[56], -cospi[8]);
+ __m128i cospi_p40_p24 = pair_set_epi16(cospi[40], cospi[24]);
+ __m128i cospi_p24_m40 = pair_set_epi16(cospi[24], -cospi[40]);
+ __m128i cospi_m56_p08 = pair_set_epi16(-cospi[56], cospi[8]);
+ __m128i cospi_m24_p40 = pair_set_epi16(-cospi[24], cospi[40]);
+ __m128i cospi_p02_p62 = pair_set_epi16(cospi[2], cospi[62]);
+ __m128i cospi_p62_m02 = pair_set_epi16(cospi[62], -cospi[2]);
+ __m128i cospi_p10_p54 = pair_set_epi16(cospi[10], cospi[54]);
+ __m128i cospi_p54_m10 = pair_set_epi16(cospi[54], -cospi[10]);
+ __m128i cospi_p18_p46 = pair_set_epi16(cospi[18], cospi[46]);
+ __m128i cospi_p46_m18 = pair_set_epi16(cospi[46], -cospi[18]);
+ __m128i cospi_p26_p38 = pair_set_epi16(cospi[26], cospi[38]);
+ __m128i cospi_p38_m26 = pair_set_epi16(cospi[38], -cospi[26]);
+ __m128i cospi_p34_p30 = pair_set_epi16(cospi[34], cospi[30]);
+ __m128i cospi_p30_m34 = pair_set_epi16(cospi[30], -cospi[34]);
+ __m128i cospi_p42_p22 = pair_set_epi16(cospi[42], cospi[22]);
+ __m128i cospi_p22_m42 = pair_set_epi16(cospi[22], -cospi[42]);
+ __m128i cospi_p50_p14 = pair_set_epi16(cospi[50], cospi[14]);
+ __m128i cospi_p14_m50 = pair_set_epi16(cospi[14], -cospi[50]);
+ __m128i cospi_p58_p06 = pair_set_epi16(cospi[58], cospi[6]);
+ __m128i cospi_p06_m58 = pair_set_epi16(cospi[6], -cospi[58]);
+
+ __m256i cospi_arr[20];
+
+ cospi_arr[0] = _mm256_insertf128_si256(_mm256_castsi128_si256(cospi_p32_p32),
+ cospi_p32_p32, 0x1);
+ cospi_arr[1] = _mm256_insertf128_si256(_mm256_castsi128_si256(cospi_p32_m32),
+ cospi_p32_m32, 0x1);
+ cospi_arr[2] = _mm256_insertf128_si256(_mm256_castsi128_si256(cospi_p32_p32),
+ cospi_p32_p32, 0x1);
+ cospi_arr[3] = _mm256_insertf128_si256(_mm256_castsi128_si256(cospi_p32_m32),
+ cospi_p32_m32, 0x1);
+ cospi_arr[4] = _mm256_insertf128_si256(_mm256_castsi128_si256(cospi_p16_p48),
+ cospi_m48_p16, 0x1);
+ cospi_arr[5] = _mm256_insertf128_si256(_mm256_castsi128_si256(cospi_p48_m16),
+ cospi_p16_p48, 0x1);
+ cospi_arr[6] = _mm256_insertf128_si256(_mm256_castsi128_si256(cospi_p16_p48),
+ cospi_m48_p16, 0x1);
+ cospi_arr[7] = _mm256_insertf128_si256(_mm256_castsi128_si256(cospi_p48_m16),
+ cospi_p16_p48, 0x1);
+ cospi_arr[8] = _mm256_insertf128_si256(_mm256_castsi128_si256(cospi_p08_p56),
+ cospi_p40_p24, 0x1);
+ cospi_arr[9] = _mm256_insertf128_si256(_mm256_castsi128_si256(cospi_p56_m08),
+ cospi_p24_m40, 0x1);
+ cospi_arr[10] = _mm256_insertf128_si256(_mm256_castsi128_si256(cospi_m56_p08),
+ cospi_m24_p40, 0x1);
+ cospi_arr[11] = _mm256_insertf128_si256(_mm256_castsi128_si256(cospi_p08_p56),
+ cospi_p40_p24, 0x1);
+ cospi_arr[12] = _mm256_insertf128_si256(_mm256_castsi128_si256(cospi_p02_p62),
+ cospi_p10_p54, 0x1);
+ cospi_arr[13] = _mm256_insertf128_si256(_mm256_castsi128_si256(cospi_p62_m02),
+ cospi_p54_m10, 0x1);
+ cospi_arr[14] = _mm256_insertf128_si256(_mm256_castsi128_si256(cospi_p18_p46),
+ cospi_p26_p38, 0x1);
+ cospi_arr[15] = _mm256_insertf128_si256(_mm256_castsi128_si256(cospi_p46_m18),
+ cospi_p38_m26, 0x1);
+ cospi_arr[16] = _mm256_insertf128_si256(_mm256_castsi128_si256(cospi_p34_p30),
+ cospi_p42_p22, 0x1);
+ cospi_arr[17] = _mm256_insertf128_si256(_mm256_castsi128_si256(cospi_p30_m34),
+ cospi_p22_m42, 0x1);
+ cospi_arr[18] = _mm256_insertf128_si256(_mm256_castsi128_si256(cospi_p50_p14),
+ cospi_p58_p06, 0x1);
+ cospi_arr[19] = _mm256_insertf128_si256(_mm256_castsi128_si256(cospi_p14_m50),
+ cospi_p06_m58, 0x1);
+
+ __m256i x[8];
+ x[0] =
+ _mm256_insertf128_si256(_mm256_castsi128_si256(input[0]), input[4], 0x1);
+ x[1] =
+ _mm256_insertf128_si256(_mm256_castsi128_si256(input[2]), input[6], 0x1);
+ x[2] =
+ _mm256_insertf128_si256(_mm256_castsi128_si256(input[8]), input[12], 0x1);
+ x[3] = _mm256_insertf128_si256(_mm256_castsi128_si256(input[10]), input[14],
+ 0x1);
+ x[4] =
+ _mm256_insertf128_si256(_mm256_castsi128_si256(input[1]), input[9], 0x1);
+ x[5] =
+ _mm256_insertf128_si256(_mm256_castsi128_si256(input[3]), input[11], 0x1);
+ x[6] =
+ _mm256_insertf128_si256(_mm256_castsi128_si256(input[5]), input[13], 0x1);
+ x[7] =
+ _mm256_insertf128_si256(_mm256_castsi128_si256(input[7]), input[15], 0x1);
+
+ // stage 1
+ __m256i x1[8];
+ x1[0] = x[0];
+ x1[1] = _mm256_subs_epi16(__zero, x[7]);
+ x1[2] = x[2];
+ x1[3] = _mm256_subs_epi16(__zero, x[5]);
+ x1[4] = _mm256_subs_epi16(__zero, x[4]);
+ x1[5] = x[3];
+ x1[6] = _mm256_subs_epi16(__zero, x[6]);
+ x1[7] = x[1];
+
+ // stage 2
+ __m256i x2[8];
+ x2[0] = _mm256_blend_epi32(x1[0], x1[1], 0xf0);
+ x2[3] = _mm256_blend_epi32(x1[3], x1[2], 0xf0);
+ x2[4] = _mm256_blend_epi32(x1[4], x1[5], 0xf0);
+ x2[7] = _mm256_blend_epi32(x1[7], x1[6], 0xf0);
+ in0 = _mm256_blend_epi32(x1[1], x1[0], 0xf0);
+ in1 = _mm256_blend_epi32(x1[2], x1[3], 0xf0);
+ btf_16_avx2(&cospi_arr[0], &cospi_arr[1], &in0, &in1, &temp0, &temp1, &temp2,
+ &temp3, &__rounding_256, &cos_bit);
+ x2[1] = _mm256_insertf128_si256(_mm256_castsi128_si256(temp0), temp1, 0x1);
+ x2[2] = _mm256_insertf128_si256(_mm256_castsi128_si256(temp2), temp3, 0x1);
+ in0 = _mm256_permute2f128_si256(x1[7], x1[6], 0x21);
+ in1 = _mm256_permute2f128_si256(x1[4], x1[5], 0x21);
+ btf_16_avx2(&cospi_arr[2], &cospi_arr[3], &in0, &in1, &temp0, &temp1, &temp2,
+ &temp3, &__rounding_256, &cos_bit);
+ x2[5] = _mm256_insertf128_si256(_mm256_castsi128_si256(temp0), temp1, 0x1);
+ x2[6] = _mm256_insertf128_si256(_mm256_castsi128_si256(temp2), temp3, 0x1);
+
+ // stage 3
+ __m256i x3[8];
+ x3[0] = _mm256_adds_epi16(x2[0], x2[1]);
+ x3[1] = _mm256_subs_epi16(x2[0], x2[1]);
+ x3[2] = _mm256_adds_epi16(x2[3], x2[2]);
+ x3[3] = _mm256_subs_epi16(x2[3], x2[2]);
+ x3[4] = _mm256_adds_epi16(x2[4], x2[5]);
+ x3[5] = _mm256_subs_epi16(x2[4], x2[5]);
+ x3[6] = _mm256_adds_epi16(x2[7], x2[6]);
+ x3[7] = _mm256_subs_epi16(x2[7], x2[6]);
+
+ // stage 4
+ __m256i x4[8];
+ x4[0] = x3[0];
+ x4[1] = x3[1];
+ x4[4] = x3[4];
+ x4[5] = x3[5];
+ in0 = _mm256_permute2f128_si256(x3[2], x3[3], 0x20);
+ in1 = _mm256_permute2f128_si256(x3[2], x3[3], 0x31);
+ btf_16_avx2(&cospi_arr[4], &cospi_arr[5], &in0, &in1, &temp0, &temp1, &temp2,
+ &temp3, &__rounding_256, &cos_bit);
+ x4[2] = _mm256_insertf128_si256(_mm256_castsi128_si256(temp0), temp1, 0x1);
+ x4[3] = _mm256_insertf128_si256(_mm256_castsi128_si256(temp2), temp3, 0x1);
+ in0 = _mm256_permute2f128_si256(x3[6], x3[7], 0x20);
+ in1 = _mm256_permute2f128_si256(x3[6], x3[7], 0x31);
+ btf_16_avx2(&cospi_arr[6], &cospi_arr[7], &in0, &in1, &temp0, &temp1, &temp2,
+ &temp3, &__rounding_256, &cos_bit);
+ x4[6] = _mm256_insertf128_si256(_mm256_castsi128_si256(temp0), temp1, 0x1);
+ x4[7] = _mm256_insertf128_si256(_mm256_castsi128_si256(temp2), temp3, 0x1);
+
+ // stage 5
+ __m256i x5[8];
+ x5[0] = _mm256_adds_epi16(x4[0], x4[2]);
+ x5[1] = _mm256_subs_epi16(x4[0], x4[2]);
+ x5[2] = _mm256_adds_epi16(x4[1], x4[3]);
+ x5[3] = _mm256_subs_epi16(x4[1], x4[3]);
+ x5[4] = _mm256_adds_epi16(x4[4], x4[6]);
+ x5[5] = _mm256_subs_epi16(x4[4], x4[6]);
+ x5[6] = _mm256_adds_epi16(x4[5], x4[7]);
+ x5[7] = _mm256_subs_epi16(x4[5], x4[7]);
+
+ // stage 6
+ __m256i x6[8];
+ x6[0] = x5[0];
+ x6[1] = x5[2];
+ x6[2] = x5[1];
+ x6[3] = x5[3];
+ in0 = _mm256_permute2f128_si256(x5[4], x5[6], 0x20);
+ in1 = _mm256_permute2f128_si256(x5[4], x5[6], 0x31);
+ btf_16_avx2(&cospi_arr[8], &cospi_arr[9], &in0, &in1, &temp0, &temp1, &temp2,
+ &temp3, &__rounding_256, &cos_bit);
+ x6[4] = _mm256_insertf128_si256(_mm256_castsi128_si256(temp0), temp1, 0x1);
+ x6[5] = _mm256_insertf128_si256(_mm256_castsi128_si256(temp2), temp3, 0x1);
+ in0 = _mm256_permute2f128_si256(x5[5], x5[7], 0x20);
+ in1 = _mm256_permute2f128_si256(x5[5], x5[7], 0x31);
+ btf_16_avx2(&cospi_arr[10], &cospi_arr[11], &in0, &in1, &temp0, &temp1,
+ &temp2, &temp3, &__rounding_256, &cos_bit);
+ x6[6] = _mm256_insertf128_si256(_mm256_castsi128_si256(temp0), temp1, 0x1);
+ x6[7] = _mm256_insertf128_si256(_mm256_castsi128_si256(temp2), temp3, 0x1);
+
+ // stage 7
+ __m256i x7[8];
+ x7[0] = _mm256_adds_epi16(x6[0], x6[4]);
+ x7[1] = _mm256_subs_epi16(x6[0], x6[4]);
+ x7[2] = _mm256_adds_epi16(x6[1], x6[5]);
+ x7[3] = _mm256_subs_epi16(x6[1], x6[5]);
+ x7[4] = _mm256_adds_epi16(x6[2], x6[6]);
+ x7[5] = _mm256_subs_epi16(x6[2], x6[6]);
+ x7[6] = _mm256_adds_epi16(x6[3], x6[7]);
+ x7[7] = _mm256_subs_epi16(x6[3], x6[7]);
+
+ // stage 8
+ in0 = _mm256_permute2f128_si256(x7[0], x7[2], 0x20);
+ in1 = _mm256_permute2f128_si256(x7[0], x7[2], 0x31);
+ btf_16_avx2(&cospi_arr[12], &cospi_arr[13], &in0, &in1, &output[15],
+ &output[0], &output[13], &output[2], &__rounding_256, &cos_bit);
+ in0 = _mm256_permute2f128_si256(x7[4], x7[6], 0x20);
+ in1 = _mm256_permute2f128_si256(x7[4], x7[6], 0x31);
+ btf_16_avx2(&cospi_arr[14], &cospi_arr[15], &in0, &in1, &output[11],
+ &output[4], &output[9], &output[6], &__rounding_256, &cos_bit);
+ in0 = _mm256_permute2f128_si256(x7[1], x7[3], 0x20);
+ in1 = _mm256_permute2f128_si256(x7[1], x7[3], 0x31);
+ btf_16_avx2(&cospi_arr[16], &cospi_arr[17], &in0, &in1, &output[7],
+ &output[8], &output[5], &output[10], &__rounding_256, &cos_bit);
+ in0 = _mm256_permute2f128_si256(x7[5], x7[7], 0x20);
+ in1 = _mm256_permute2f128_si256(x7[5], x7[7], 0x31);
+ btf_16_avx2(&cospi_arr[18], &cospi_arr[19], &in0, &in1, &output[3],
+ &output[12], &output[1], &output[14], &__rounding_256, &cos_bit);
+}
+
+static INLINE void fidentity8x16_new_avx2(const __m128i *input, __m128i *output,
+ int8_t cos_bit) {
+ (void)cos_bit;
+ const __m256i one = _mm256_set1_epi16(1);
+ __m256i temp;
+ for (int i = 0; i < 16; i += 2) {
+ temp = _mm256_insertf128_si256(_mm256_castsi128_si256(input[i]),
+ input[i + 1], 0x1);
+ const __m256i a_lo = _mm256_unpacklo_epi16(temp, one);
+ const __m256i a_hi = _mm256_unpackhi_epi16(temp, one);
+ const __m256i b_lo = scale_round_avx2(a_lo, 2 * NewSqrt2);
+ const __m256i b_hi = scale_round_avx2(a_hi, 2 * NewSqrt2);
+ temp = _mm256_packs_epi32(b_lo, b_hi);
+ output[i] = _mm256_castsi256_si128(temp);
+ output[i + 1] = _mm256_extractf128_si256(temp, 0x1);
+ }
+}
+
+static const transform_1d_avx2 row_txfm8x16_arr[TX_TYPES] = {
+ fdct8x8_new_avx2, // DCT_DCT
+ fdct8x8_new_avx2, // ADST_DCT
+ fadst8x8_new_avx2, // DCT_ADST
+ fadst8x8_new_avx2, // ADST_ADST
+ fdct8x8_new_avx2, // FLIPADST_DCT
+ fadst8x8_new_avx2, // DCT_FLIPADST
+ fadst8x8_new_avx2, // FLIPADST_FLIPADST
+ fadst8x8_new_avx2, // ADST_FLIPADST
+ fadst8x8_new_avx2, // FLIPADST_ADST
+ fidentity8x8_new_avx2, // IDTX
+ fidentity8x8_new_avx2, // V_DCT
+ fdct8x8_new_avx2, // H_DCT
+ fidentity8x8_new_avx2, // V_ADST
+ fadst8x8_new_avx2, // H_ADST
+ fidentity8x8_new_avx2, // V_FLIPADST
+ fadst8x8_new_avx2 // H_FLIPADST
+};
+
+static const transform_1d_sse2 col_txfm8x16_arr[TX_TYPES] = {
+ fdct8x16_new_avx2, // DCT_DCT
+ fadst8x16_new_avx2, // ADST_DCT
+ fdct8x16_new_avx2, // DCT_ADST
+ fadst8x16_new_avx2, // ADST_ADST
+ fadst8x16_new_avx2, // FLIPADST_DCT
+ fdct8x16_new_avx2, // DCT_FLIPADST
+ fadst8x16_new_avx2, // FLIPADST_FLIPADST
+ fadst8x16_new_avx2, // ADST_FLIPADST
+ fadst8x16_new_avx2, // FLIPADST_ADST
+ fidentity8x16_new_avx2, // IDTX
+ fdct8x16_new_avx2, // V_DCT
+ fidentity8x16_new_avx2, // H_DCT
+ fadst8x16_new_avx2, // V_ADST
+ fidentity8x16_new_avx2, // H_ADST
+ fadst8x16_new_avx2, // V_FLIPADST
+ fidentity8x16_new_avx2 // H_FLIPADST
+};
+
+static const transform_1d_avx2 col_txfm16x8_arr[TX_TYPES] = {
+ fdct8x8_new_avx2, // DCT_DCT
+ fadst8x8_new_avx2, // ADST_DCT
+ fdct8x8_new_avx2, // DCT_ADST
+ fadst8x8_new_avx2, // ADST_ADST
+ fadst8x8_new_avx2, // FLIPADST_DCT
+ fdct8x8_new_avx2, // DCT_FLIPADST
+ fadst8x8_new_avx2, // FLIPADST_FLIPADST
+ fadst8x8_new_avx2, // ADST_FLIPADST
+ fadst8x8_new_avx2, // FLIPADST_ADST
+ fidentity8x8_new_avx2, // IDTX
+ fdct8x8_new_avx2, // V_DCT
+ fidentity8x8_new_avx2, // H_DCT
+ fadst8x8_new_avx2, // V_ADST
+ fidentity8x8_new_avx2, // H_ADST
+ fadst8x8_new_avx2, // V_FLIPADST
+ fidentity8x8_new_avx2, // H_FLIPADST
+};
+
+static const transform_1d_sse2 row_txfm16x8_arr[TX_TYPES] = {
+ fdct8x16_new_avx2, // DCT_DCT
+ fdct8x16_new_avx2, // ADST_DCT
+ fadst8x16_new_avx2, // DCT_ADST
+ fadst8x16_new_avx2, // ADST_ADST
+ fdct8x16_new_avx2, // FLIPADST_DCT
+ fadst8x16_new_avx2, // DCT_FLIPADST
+ fadst8x16_new_avx2, // FLIPADST_FLIPADST
+ fadst8x16_new_avx2, // ADST_FLIPADST
+ fadst8x16_new_avx2, // FLIPADST_ADST
+ fidentity8x16_new_avx2, // IDTX
+ fidentity8x16_new_avx2, // V_DCT
+ fdct8x16_new_avx2, // H_DCT
+ fidentity8x16_new_avx2, // V_ADST
+ fadst8x16_new_avx2, // H_ADST
+ fidentity8x16_new_avx2, // V_FLIPADST
+ fadst8x16_new_avx2 // H_FLIPADST
+};
+
+static void lowbd_fwd_txfm2d_8x16_avx2(const int16_t *input, int32_t *output,
+ int stride, TX_TYPE tx_type, int bd) {
+ (void)bd;
+ __m128i buf0[16], buf1[16];
+ __m256i buf2[8];
+ const int8_t *shift = av1_fwd_txfm_shift_ls[TX_8X16];
+ const int txw_idx = get_txw_idx(TX_8X16);
+ const int txh_idx = get_txh_idx(TX_8X16);
+ const int cos_bit_col = av1_fwd_cos_bit_col[txw_idx][txh_idx];
+ const int cos_bit_row = av1_fwd_cos_bit_row[txw_idx][txh_idx];
+ const int width = 8;
+ const int height = 16;
+ const transform_1d_sse2 col_txfm = col_txfm8x16_arr[tx_type];
+ const transform_1d_avx2 row_txfm = row_txfm8x16_arr[tx_type];
+ int ud_flip, lr_flip;
+
+ get_flip_cfg(tx_type, &ud_flip, &lr_flip);
+ if (ud_flip) {
+ load_buffer_16bit_to_16bit_flip(input, stride, buf0, height);
+ } else {
+ load_buffer_16bit_to_16bit(input, stride, buf0, height);
+ }
+ round_shift_16bit(buf0, height, shift[0]);
+ col_txfm(buf0, buf0, cos_bit_col);
+ round_shift_16bit(buf0, height, shift[1]);
+ transpose_16bit_8x8(buf0, buf1);
+ transpose_16bit_8x8(buf0 + 8, buf1 + 8);
+
+ __m128i *bufl, *bufu;
+ if (lr_flip) {
+ bufl = buf0;
+ bufu = buf0 + 8;
+ flip_buf_sse2(buf1 + width * 0, bufl, width);
+ flip_buf_sse2(buf1 + width * 1, bufu, width);
+ } else {
+ bufl = buf1 + width * 0;
+ bufu = buf1 + width * 1;
+ }
+ pack_reg(bufl, bufu, buf2);
+ row_txfm(buf2, buf2, cos_bit_row);
+ round_shift_16bit_w16_avx2(buf2, width, shift[2]);
+ transpose_16bit_16x8_avx2(buf2, buf2);
+ store_rect_buffer_16bit_to_32bit_w8_avx2(buf2, output, width, 8);
+}
+
+static void lowbd_fwd_txfm2d_16x8_avx2(const int16_t *input, int32_t *output,
+ int stride, TX_TYPE tx_type, int bd) {
+ (void)bd;
+ __m128i buf0[16], buf1[16];
+ __m256i buf2[8];
+ const int8_t *shift = av1_fwd_txfm_shift_ls[TX_16X8];
+ const int txw_idx = get_txw_idx(TX_16X8);
+ const int txh_idx = get_txh_idx(TX_16X8);
+ const int cos_bit_col = av1_fwd_cos_bit_col[txw_idx][txh_idx];
+ const int cos_bit_row = av1_fwd_cos_bit_row[txw_idx][txh_idx];
+ const int width = 16;
+ const int height = 8;
+ const transform_1d_avx2 col_txfm = col_txfm16x8_arr[tx_type];
+ const transform_1d_sse2 row_txfm = row_txfm16x8_arr[tx_type];
+ __m128i *buf;
+ int ud_flip, lr_flip;
+
+ get_flip_cfg(tx_type, &ud_flip, &lr_flip);
+
+ if (ud_flip) {
+ load_buffer_16bit_to_16bit_flip(input + 8 * 0, stride, buf0, height);
+ load_buffer_16bit_to_16bit_flip(input + 8 * 1, stride, &buf0[8], height);
+ } else {
+ load_buffer_16bit_to_16bit(input + 8 * 0, stride, buf0, height);
+ load_buffer_16bit_to_16bit(input + 8 * 1, stride, &buf0[8], height);
+ }
+ pack_reg(buf0, &buf0[8], buf2);
+ round_shift_16bit_w16_avx2(buf2, height, shift[0]);
+ col_txfm(buf2, buf2, cos_bit_col);
+ round_shift_16bit_w16_avx2(buf2, height, shift[1]);
+ transpose_16bit_16x8_avx2(buf2, buf2);
+ extract_reg(buf2, buf1);
+
+ if (lr_flip) {
+ buf = buf0;
+ flip_buf_sse2(buf1, buf, width);
+ } else {
+ buf = buf1;
+ }
+ row_txfm(buf, buf, cos_bit_row);
+ round_shift_16bit(buf, width, shift[2]);
+ transpose_16bit_8x8(buf, buf);
+ store_rect_buffer_16bit_to_32bit_w8(buf, output, width, height);
+ transpose_16bit_8x8(buf + 8, buf + 8);
+ store_rect_buffer_16bit_to_32bit_w8(buf + 8, output + 8, width, height);
+}
+
static FwdTxfm2dFunc fwd_txfm2d_func_ls[TX_SIZES_ALL] = {
av1_lowbd_fwd_txfm2d_4x4_sse2, // 4x4 transform
av1_lowbd_fwd_txfm2d_8x8_sse2, // 8x8 transform
@@ -2041,8 +2787,8 @@ static FwdTxfm2dFunc fwd_txfm2d_func_ls[TX_SIZES_ALL] = {
lowbd_fwd_txfm2d_64x64_avx2, // 64x64 transform
av1_lowbd_fwd_txfm2d_4x8_sse2, // 4x8 transform
av1_lowbd_fwd_txfm2d_8x4_sse2, // 8x4 transform
- av1_lowbd_fwd_txfm2d_8x16_sse2, // 8x16 transform
- av1_lowbd_fwd_txfm2d_16x8_sse2, // 16x8 transform
+ lowbd_fwd_txfm2d_8x16_avx2, // 8x16 transform
+ lowbd_fwd_txfm2d_16x8_avx2, // 16x8 transform
lowbd_fwd_txfm2d_16x32_avx2, // 16x32 transform
lowbd_fwd_txfm2d_32x16_avx2, // 32x16 transform
lowbd_fwd_txfm2d_32x64_avx2, // 32x64 transform
diff --git a/media/libaom/src/av1/encoder/x86/av1_fwd_txfm2d_sse4.c b/media/libaom/src/av1/encoder/x86/av1_fwd_txfm2d_sse4.c
index 8ec0256eb8..0bc3fbc2d6 100644
--- a/media/libaom/src/av1/encoder/x86/av1_fwd_txfm2d_sse4.c
+++ b/media/libaom/src/av1/encoder/x86/av1_fwd_txfm2d_sse4.c
@@ -29,46 +29,45 @@ static INLINE void int16_array_with_stride_to_int32_array_without_stride(
}
}
-typedef void (*TxfmFuncSSE2)(const __m128i *input, __m128i *output,
+typedef void (*TxfmFuncSSE2)(__m128i *input, __m128i *output,
const int8_t cos_bit, const int8_t *stage_range);
-static void fdct32_new_sse4_1(const __m128i *input, __m128i *output,
- const int8_t cos_bit, const int8_t *stage_range) {
+static void fdct32_sse4_1(__m128i *input, __m128i *output, const int8_t cos_bit,
+ const int8_t *stage_range) {
const int txfm_size = 32;
const int num_per_128 = 4;
- __m128i buf0[32];
- __m128i buf1[32];
int col_num = txfm_size / num_per_128;
int col;
(void)stage_range;
for (col = 0; col < col_num; col++) {
- int j;
- for (j = 0; j < 32; ++j) {
- buf0[j] = input[j * col_num + col];
- }
- av1_fdct32_new_sse4_1(buf0, buf1, cos_bit);
- for (j = 0; j < 32; ++j) {
- output[j * col_num + col] = buf1[j];
- }
+ av1_fdct32_sse4_1((input + col), (output + col), cos_bit, col_num);
}
}
-static void fdct64_new_sse4_1(const __m128i *input, __m128i *output,
+static void fdct64_new_sse4_1(__m128i *input, __m128i *output,
const int8_t cos_bit, const int8_t *stage_range) {
const int txfm_size = 64;
const int num_per_128 = 4;
int col_num = txfm_size / num_per_128;
(void)stage_range;
for (int col = 0; col < col_num; col++) {
- av1_fdct64_new_sse4_1((input + col), (output + col), cos_bit, col_num,
- col_num);
+ av1_fdct64_sse4_1((input + col), (output + col), cos_bit, col_num, col_num);
+ }
+}
+static void idtx32x32_sse4_1(__m128i *input, __m128i *output,
+ const int8_t cos_bit, const int8_t *stage_range) {
+ (void)stage_range;
+
+ for (int i = 0; i < 8; i++) {
+ av1_idtx32_sse4_1(&input[i * 32], &output[i * 32], cos_bit, 1);
}
}
static INLINE TxfmFuncSSE2 fwd_txfm_type_to_func(TXFM_TYPE txfm_type) {
switch (txfm_type) {
- case TXFM_TYPE_DCT32: return fdct32_new_sse4_1; break;
+ case TXFM_TYPE_DCT32: return fdct32_sse4_1; break;
case TXFM_TYPE_DCT64: return fdct64_new_sse4_1; break;
+ case TXFM_TYPE_IDENTITY32: return idtx32x32_sse4_1; break;
default: assert(0);
}
return NULL;
@@ -136,13 +135,13 @@ static INLINE void fwd_txfm2d_64x64_sse4_1(const int16_t *input,
/*row wise transform*/
for (int col = 0; col < (col_num >> 1); col++) {
- av1_fdct64_new_sse4_1((buf_128 + col), (out_128 + col), cos_bit_row,
- col_num, (col_num >> 1));
+ av1_fdct64_sse4_1((buf_128 + col), (out_128 + col), cos_bit_row, col_num,
+ (col_num >> 1));
}
txfm2d_size_128 = (col_num >> 1) * (txfm_size >> 1);
av1_round_shift_array_32_sse4_1(out_128, buf_128, txfm2d_size_128, -shift[2]);
- transpose_32x32(buf_128, out_128);
+ transpose_8nx8n(buf_128, out_128, 32, 32);
}
void av1_fwd_txfm2d_32x32_sse4_1(const int16_t *input, int32_t *output,
@@ -193,14 +192,14 @@ static void lowbd_fwd_txfm2d_64x64_sse4_1(const int16_t *input, int32_t *output,
assert(tx_type == DCT_DCT);
const TX_SIZE tx_size = TX_64X64;
__m128i buf0[64], buf1[512];
- const int8_t *shift = fwd_txfm_shift_ls[tx_size];
+ const int8_t *shift = av1_fwd_txfm_shift_ls[tx_size];
const int txw_idx = get_txw_idx(tx_size);
const int txh_idx = get_txh_idx(tx_size);
- const int cos_bit_col = fwd_cos_bit_col[txw_idx][txh_idx];
- const int cos_bit_row = fwd_cos_bit_row[txw_idx][txh_idx];
+ const int cos_bit_col = av1_fwd_cos_bit_col[txw_idx][txh_idx];
+ const int cos_bit_row = av1_fwd_cos_bit_row[txw_idx][txh_idx];
const int width = tx_size_wide[tx_size];
const int height = tx_size_high[tx_size];
- const transform_1d_sse2 col_txfm = fdct8x64_new_sse2;
+ const transform_1d_sse2 col_txfm = av1_fdct8x64_new_sse2;
const int width_div8 = (width >> 3);
const int height_div8 = (height >> 3);
@@ -221,8 +220,8 @@ static void lowbd_fwd_txfm2d_64x64_sse4_1(const int16_t *input, int32_t *output,
bufA[j] = _mm_cvtepi16_epi32(buf[j]);
bufB[j] = _mm_cvtepi16_epi32(_mm_unpackhi_epi64(buf[j], buf[j]));
}
- av1_fdct64_new_sse4_1(bufA, bufA, cos_bit_row, 1, 1);
- av1_fdct64_new_sse4_1(bufB, bufB, cos_bit_row, 1, 1);
+ av1_fdct64_sse4_1(bufA, bufA, cos_bit_row, 1, 1);
+ av1_fdct64_sse4_1(bufB, bufB, cos_bit_row, 1, 1);
av1_round_shift_array_32_sse4_1(bufA, bufA, 32, -shift[2]);
av1_round_shift_array_32_sse4_1(bufB, bufB, 32, -shift[2]);
@@ -239,11 +238,11 @@ static void lowbd_fwd_txfm2d_64x32_sse4_1(const int16_t *input, int32_t *output,
(void)bd;
const TX_SIZE tx_size = TX_64X32;
__m128i buf0[64], buf1[256];
- const int8_t *shift = fwd_txfm_shift_ls[tx_size];
+ const int8_t *shift = av1_fwd_txfm_shift_ls[tx_size];
const int txw_idx = get_txw_idx(tx_size);
const int txh_idx = get_txh_idx(tx_size);
- const int cos_bit_col = fwd_cos_bit_col[txw_idx][txh_idx];
- const int cos_bit_row = fwd_cos_bit_row[txw_idx][txh_idx];
+ const int cos_bit_col = av1_fwd_cos_bit_col[txw_idx][txh_idx];
+ const int cos_bit_row = av1_fwd_cos_bit_row[txw_idx][txh_idx];
const int width = tx_size_wide[tx_size];
const int height = tx_size_high[tx_size];
const transform_1d_sse2 col_txfm = col_txfm8x32_arr[tx_type];
@@ -268,8 +267,8 @@ static void lowbd_fwd_txfm2d_64x32_sse4_1(const int16_t *input, int32_t *output,
bufA[j] = _mm_cvtepi16_epi32(buf[j]);
bufB[j] = _mm_cvtepi16_epi32(_mm_unpackhi_epi64(buf[j], buf[j]));
}
- av1_fdct64_new_sse4_1(bufA, bufA, cos_bit_row, 1, 1);
- av1_fdct64_new_sse4_1(bufB, bufB, cos_bit_row, 1, 1);
+ av1_fdct64_sse4_1(bufA, bufA, cos_bit_row, 1, 1);
+ av1_fdct64_sse4_1(bufB, bufB, cos_bit_row, 1, 1);
av1_round_shift_rect_array_32_sse4_1(bufA, bufA, 32, -shift[2], NewSqrt2);
av1_round_shift_rect_array_32_sse4_1(bufB, bufB, 32, -shift[2], NewSqrt2);
@@ -288,14 +287,14 @@ static void lowbd_fwd_txfm2d_32x64_sse4_1(const int16_t *input, int32_t *output,
assert(tx_type == DCT_DCT);
const TX_SIZE tx_size = TX_32X64;
__m128i buf0[64], buf1[256];
- const int8_t *shift = fwd_txfm_shift_ls[tx_size];
+ const int8_t *shift = av1_fwd_txfm_shift_ls[tx_size];
const int txw_idx = get_txw_idx(tx_size);
const int txh_idx = get_txh_idx(tx_size);
- const int cos_bit_col = fwd_cos_bit_col[txw_idx][txh_idx];
- const int cos_bit_row = fwd_cos_bit_row[txw_idx][txh_idx];
+ const int cos_bit_col = av1_fwd_cos_bit_col[txw_idx][txh_idx];
+ const int cos_bit_row = av1_fwd_cos_bit_row[txw_idx][txh_idx];
const int width = tx_size_wide[tx_size];
const int height = tx_size_high[tx_size];
- const transform_1d_sse2 col_txfm = fdct8x64_new_sse2;
+ const transform_1d_sse2 col_txfm = av1_fdct8x64_new_sse2;
const int width_div8 = (width >> 3);
const int height_div8 = (height >> 3);
@@ -317,8 +316,8 @@ static void lowbd_fwd_txfm2d_32x64_sse4_1(const int16_t *input, int32_t *output,
bufA[j] = _mm_cvtepi16_epi32(buf[j]);
bufB[j] = _mm_cvtepi16_epi32(_mm_unpackhi_epi64(buf[j], buf[j]));
}
- av1_fdct32_new_sse4_1(bufA, bufA, cos_bit_row);
- av1_fdct32_new_sse4_1(bufB, bufB, cos_bit_row);
+ av1_fdct32_sse4_1(bufA, bufA, cos_bit_row, 1);
+ av1_fdct32_sse4_1(bufB, bufB, cos_bit_row, 1);
av1_round_shift_rect_array_32_sse4_1(bufA, bufA, 32, -shift[2], NewSqrt2);
av1_round_shift_rect_array_32_sse4_1(bufB, bufB, 32, -shift[2], NewSqrt2);
diff --git a/media/libaom/src/av1/encoder/x86/av1_fwd_txfm_avx2.h b/media/libaom/src/av1/encoder/x86/av1_fwd_txfm_avx2.h
index 38707137c4..aaad76e5ae 100644
--- a/media/libaom/src/av1/encoder/x86/av1_fwd_txfm_avx2.h
+++ b/media/libaom/src/av1/encoder/x86/av1_fwd_txfm_avx2.h
@@ -13,13 +13,6 @@
#define AOM_AV1_ENCODER_X86_AV1_FWD_TXFM_AVX2_H_
#include <immintrin.h>
-static INLINE __m256i av1_round_shift_32_avx2(__m256i vec, int bit) {
- __m256i tmp, round;
- round = _mm256_set1_epi32(1 << (bit - 1));
- tmp = _mm256_add_epi32(vec, round);
- return _mm256_srai_epi32(tmp, bit);
-}
-
// out0 = in0*w0 + in1*w1
// out1 = -in1*w0 + in0*w1
static INLINE void btf_32_avx2_type0(const int32_t w0, const int32_t w1,
diff --git a/media/libaom/src/av1/encoder/x86/av1_fwd_txfm_sse2.c b/media/libaom/src/av1/encoder/x86/av1_fwd_txfm_sse2.c
index 6aae7ce1e4..694e6131c2 100644
--- a/media/libaom/src/av1/encoder/x86/av1_fwd_txfm_sse2.c
+++ b/media/libaom/src/av1/encoder/x86/av1_fwd_txfm_sse2.c
@@ -359,7 +359,8 @@ static void fdct8x16_new_sse2(const __m128i *input, __m128i *output,
output[15] = x6[15];
}
-void fdct8x32_new_sse2(const __m128i *input, __m128i *output, int8_t cos_bit) {
+void av1_fdct8x32_new_sse2(const __m128i *input, __m128i *output,
+ int8_t cos_bit) {
const int32_t *cospi = cospi_arr(cos_bit);
const __m128i __rounding = _mm_set1_epi32(1 << (cos_bit - 1));
@@ -682,7 +683,8 @@ void fdct8x32_new_sse2(const __m128i *input, __m128i *output, int8_t cos_bit) {
output[31] = x8[31];
}
-void fdct8x64_new_sse2(const __m128i *input, __m128i *output, int8_t cos_bit) {
+void av1_fdct8x64_new_sse2(const __m128i *input, __m128i *output,
+ int8_t cos_bit) {
const int32_t *cospi = cospi_arr(cos_bit);
const __m128i __rounding = _mm_set1_epi32(1 << (cos_bit - 1));
@@ -2106,7 +2108,7 @@ static const transform_1d_sse2 row_txfm8x16_arr[TX_TYPES] = {
};
static const transform_1d_sse2 row_txfm8x32_arr[TX_TYPES] = {
- fdct8x32_new_sse2, // DCT_DCT
+ av1_fdct8x32_new_sse2, // DCT_DCT
NULL, // ADST_DCT
NULL, // DCT_ADST
NULL, // ADST_ADST
@@ -2117,7 +2119,7 @@ static const transform_1d_sse2 row_txfm8x32_arr[TX_TYPES] = {
NULL, // FLIPADST_ADST
fidentity8x32_new_sse2, // IDTX
fidentity8x32_new_sse2, // V_DCT
- fdct8x32_new_sse2, // H_DCT
+ av1_fdct8x32_new_sse2, // H_DCT
NULL, // V_ADST
NULL, // H_ADST
NULL, // V_FLIPADST
@@ -2128,11 +2130,11 @@ void av1_lowbd_fwd_txfm2d_4x4_sse2(const int16_t *input, int32_t *output,
int stride, TX_TYPE tx_type, int bd) {
(void)bd;
__m128i buf0[4], buf1[4], *buf;
- const int8_t *shift = fwd_txfm_shift_ls[TX_4X4];
+ const int8_t *shift = av1_fwd_txfm_shift_ls[TX_4X4];
const int txw_idx = get_txw_idx(TX_4X4);
const int txh_idx = get_txh_idx(TX_4X4);
- const int cos_bit_col = fwd_cos_bit_col[txw_idx][txh_idx];
- const int cos_bit_row = fwd_cos_bit_row[txw_idx][txh_idx];
+ const int cos_bit_col = av1_fwd_cos_bit_col[txw_idx][txh_idx];
+ const int cos_bit_row = av1_fwd_cos_bit_row[txw_idx][txh_idx];
const int width = 4;
const int height = 4;
const transform_1d_sse2 col_txfm = col_txfm4x4_arr[tx_type];
@@ -2167,11 +2169,11 @@ void av1_lowbd_fwd_txfm2d_4x8_sse2(const int16_t *input, int32_t *output,
(void)stride;
(void)bd;
__m128i buf0[8], buf1[8], *buf;
- const int8_t *shift = fwd_txfm_shift_ls[TX_4X8];
+ const int8_t *shift = av1_fwd_txfm_shift_ls[TX_4X8];
const int txw_idx = get_txw_idx(TX_4X8);
const int txh_idx = get_txh_idx(TX_4X8);
- const int cos_bit_col = fwd_cos_bit_col[txw_idx][txh_idx];
- const int cos_bit_row = fwd_cos_bit_row[txw_idx][txh_idx];
+ const int cos_bit_col = av1_fwd_cos_bit_col[txw_idx][txh_idx];
+ const int cos_bit_row = av1_fwd_cos_bit_row[txw_idx][txh_idx];
const int width = 4;
const int height = 8;
const transform_1d_sse2 col_txfm = col_txfm4x8_arr[tx_type];
@@ -2205,11 +2207,11 @@ void av1_lowbd_fwd_txfm2d_4x16_sse2(const int16_t *input, int32_t *output,
int stride, TX_TYPE tx_type, int bd) {
(void)bd;
__m128i buf0[16], buf1[16];
- const int8_t *shift = fwd_txfm_shift_ls[TX_4X16];
+ const int8_t *shift = av1_fwd_txfm_shift_ls[TX_4X16];
const int txw_idx = get_txw_idx(TX_4X16);
const int txh_idx = get_txh_idx(TX_4X16);
- const int cos_bit_col = fwd_cos_bit_col[txw_idx][txh_idx];
- const int cos_bit_row = fwd_cos_bit_row[txw_idx][txh_idx];
+ const int cos_bit_col = av1_fwd_cos_bit_col[txw_idx][txh_idx];
+ const int cos_bit_row = av1_fwd_cos_bit_row[txw_idx][txh_idx];
const int width = 4;
const int height = 16;
const transform_1d_sse2 col_txfm = col_txfm8x16_arr[tx_type];
@@ -2247,11 +2249,11 @@ void av1_lowbd_fwd_txfm2d_8x4_sse2(const int16_t *input, int32_t *output,
int stride, TX_TYPE tx_type, int bd) {
(void)bd;
__m128i buf0[8], buf1[8], *buf;
- const int8_t *shift = fwd_txfm_shift_ls[TX_8X4];
+ const int8_t *shift = av1_fwd_txfm_shift_ls[TX_8X4];
const int txw_idx = get_txw_idx(TX_8X4);
const int txh_idx = get_txh_idx(TX_8X4);
- const int cos_bit_col = fwd_cos_bit_col[txw_idx][txh_idx];
- const int cos_bit_row = fwd_cos_bit_row[txw_idx][txh_idx];
+ const int cos_bit_col = av1_fwd_cos_bit_col[txw_idx][txh_idx];
+ const int cos_bit_row = av1_fwd_cos_bit_row[txw_idx][txh_idx];
const int width = 8;
const int height = 4;
const transform_1d_sse2 col_txfm = col_txfm8x4_arr[tx_type];
@@ -2284,11 +2286,11 @@ void av1_lowbd_fwd_txfm2d_8x8_sse2(const int16_t *input, int32_t *output,
int stride, TX_TYPE tx_type, int bd) {
(void)bd;
__m128i buf0[8], buf1[8], *buf;
- const int8_t *shift = fwd_txfm_shift_ls[TX_8X8];
+ const int8_t *shift = av1_fwd_txfm_shift_ls[TX_8X8];
const int txw_idx = get_txw_idx(TX_8X8);
const int txh_idx = get_txh_idx(TX_8X8);
- const int cos_bit_col = fwd_cos_bit_col[txw_idx][txh_idx];
- const int cos_bit_row = fwd_cos_bit_row[txw_idx][txh_idx];
+ const int cos_bit_col = av1_fwd_cos_bit_col[txw_idx][txh_idx];
+ const int cos_bit_row = av1_fwd_cos_bit_row[txw_idx][txh_idx];
const int width = 8;
const int height = 8;
const transform_1d_sse2 col_txfm = col_txfm8x8_arr[tx_type];
@@ -2321,11 +2323,11 @@ void av1_lowbd_fwd_txfm2d_8x16_sse2(const int16_t *input, int32_t *output,
int stride, TX_TYPE tx_type, int bd) {
(void)bd;
__m128i buf0[16], buf1[16];
- const int8_t *shift = fwd_txfm_shift_ls[TX_8X16];
+ const int8_t *shift = av1_fwd_txfm_shift_ls[TX_8X16];
const int txw_idx = get_txw_idx(TX_8X16);
const int txh_idx = get_txh_idx(TX_8X16);
- const int cos_bit_col = fwd_cos_bit_col[txw_idx][txh_idx];
- const int cos_bit_row = fwd_cos_bit_row[txw_idx][txh_idx];
+ const int cos_bit_col = av1_fwd_cos_bit_col[txw_idx][txh_idx];
+ const int cos_bit_row = av1_fwd_cos_bit_row[txw_idx][txh_idx];
const int width = 8;
const int height = 16;
const transform_1d_sse2 col_txfm = col_txfm8x16_arr[tx_type];
@@ -2363,11 +2365,11 @@ void av1_lowbd_fwd_txfm2d_8x32_sse2(const int16_t *input, int32_t *output,
int stride, TX_TYPE tx_type, int bd) {
(void)bd;
__m128i buf0[32], buf1[32];
- const int8_t *shift = fwd_txfm_shift_ls[TX_8X32];
+ const int8_t *shift = av1_fwd_txfm_shift_ls[TX_8X32];
const int txw_idx = get_txw_idx(TX_8X32);
const int txh_idx = get_txh_idx(TX_8X32);
- const int cos_bit_col = fwd_cos_bit_col[txw_idx][txh_idx];
- const int cos_bit_row = fwd_cos_bit_row[txw_idx][txh_idx];
+ const int cos_bit_col = av1_fwd_cos_bit_col[txw_idx][txh_idx];
+ const int cos_bit_row = av1_fwd_cos_bit_row[txw_idx][txh_idx];
const int width = 8;
const int height = 32;
const transform_1d_sse2 col_txfm = col_txfm8x32_arr[tx_type];
@@ -2407,11 +2409,11 @@ void av1_lowbd_fwd_txfm2d_16x4_sse2(const int16_t *input, int32_t *output,
int stride, TX_TYPE tx_type, int bd) {
(void)bd;
__m128i buf0[16], buf1[16];
- const int8_t *shift = fwd_txfm_shift_ls[TX_16X4];
+ const int8_t *shift = av1_fwd_txfm_shift_ls[TX_16X4];
const int txw_idx = get_txw_idx(TX_16X4);
const int txh_idx = get_txh_idx(TX_16X4);
- const int cos_bit_col = fwd_cos_bit_col[txw_idx][txh_idx];
- const int cos_bit_row = fwd_cos_bit_row[txw_idx][txh_idx];
+ const int cos_bit_col = av1_fwd_cos_bit_col[txw_idx][txh_idx];
+ const int cos_bit_row = av1_fwd_cos_bit_row[txw_idx][txh_idx];
const int width = 16;
const int height = 4;
const transform_1d_sse2 col_txfm = col_txfm8x4_arr[tx_type];
@@ -2450,11 +2452,11 @@ void av1_lowbd_fwd_txfm2d_16x8_sse2(const int16_t *input, int32_t *output,
int stride, TX_TYPE tx_type, int bd) {
(void)bd;
__m128i buf0[16], buf1[16];
- const int8_t *shift = fwd_txfm_shift_ls[TX_16X8];
+ const int8_t *shift = av1_fwd_txfm_shift_ls[TX_16X8];
const int txw_idx = get_txw_idx(TX_16X8);
const int txh_idx = get_txh_idx(TX_16X8);
- const int cos_bit_col = fwd_cos_bit_col[txw_idx][txh_idx];
- const int cos_bit_row = fwd_cos_bit_row[txw_idx][txh_idx];
+ const int cos_bit_col = av1_fwd_cos_bit_col[txw_idx][txh_idx];
+ const int cos_bit_row = av1_fwd_cos_bit_row[txw_idx][txh_idx];
const int width = 16;
const int height = 8;
const transform_1d_sse2 col_txfm = col_txfm8x8_arr[tx_type];
@@ -2493,11 +2495,11 @@ void av1_lowbd_fwd_txfm2d_16x16_sse2(const int16_t *input, int32_t *output,
int stride, TX_TYPE tx_type, int bd) {
(void)bd;
__m128i buf0[16], buf1[32];
- const int8_t *shift = fwd_txfm_shift_ls[TX_16X16];
+ const int8_t *shift = av1_fwd_txfm_shift_ls[TX_16X16];
const int txw_idx = get_txw_idx(TX_16X16);
const int txh_idx = get_txh_idx(TX_16X16);
- const int cos_bit_col = fwd_cos_bit_col[txw_idx][txh_idx];
- const int cos_bit_row = fwd_cos_bit_row[txw_idx][txh_idx];
+ const int cos_bit_col = av1_fwd_cos_bit_col[txw_idx][txh_idx];
+ const int cos_bit_row = av1_fwd_cos_bit_row[txw_idx][txh_idx];
const int width = 16;
const int height = 16;
const transform_1d_sse2 col_txfm = col_txfm8x16_arr[tx_type];
@@ -2540,11 +2542,11 @@ void av1_lowbd_fwd_txfm2d_16x32_sse2(const int16_t *input, int32_t *output,
int stride, TX_TYPE tx_type, int bd) {
(void)bd;
__m128i buf0[32], buf1[64];
- const int8_t *shift = fwd_txfm_shift_ls[TX_16X32];
+ const int8_t *shift = av1_fwd_txfm_shift_ls[TX_16X32];
const int txw_idx = get_txw_idx(TX_16X32);
const int txh_idx = get_txh_idx(TX_16X32);
- const int cos_bit_col = fwd_cos_bit_col[txw_idx][txh_idx];
- const int cos_bit_row = fwd_cos_bit_row[txw_idx][txh_idx];
+ const int cos_bit_col = av1_fwd_cos_bit_col[txw_idx][txh_idx];
+ const int cos_bit_row = av1_fwd_cos_bit_row[txw_idx][txh_idx];
const int width = 16;
const int height = 32;
const transform_1d_sse2 col_txfm = col_txfm8x32_arr[tx_type];
@@ -2595,11 +2597,11 @@ void av1_lowbd_fwd_txfm2d_32x8_sse2(const int16_t *input, int32_t *output,
int stride, TX_TYPE tx_type, int bd) {
(void)bd;
__m128i buf0[32], buf1[32];
- const int8_t *shift = fwd_txfm_shift_ls[TX_32X8];
+ const int8_t *shift = av1_fwd_txfm_shift_ls[TX_32X8];
const int txw_idx = get_txw_idx(TX_32X8);
const int txh_idx = get_txh_idx(TX_32X8);
- const int cos_bit_col = fwd_cos_bit_col[txw_idx][txh_idx];
- const int cos_bit_row = fwd_cos_bit_row[txw_idx][txh_idx];
+ const int cos_bit_col = av1_fwd_cos_bit_col[txw_idx][txh_idx];
+ const int cos_bit_row = av1_fwd_cos_bit_row[txw_idx][txh_idx];
const int width = 32;
const int height = 8;
const transform_1d_sse2 col_txfm = col_txfm8x8_arr[tx_type];
@@ -2653,11 +2655,11 @@ void av1_lowbd_fwd_txfm2d_32x16_sse2(const int16_t *input, int32_t *output,
int stride, TX_TYPE tx_type, int bd) {
(void)bd;
__m128i buf0[32], buf1[64];
- const int8_t *shift = fwd_txfm_shift_ls[TX_32X16];
+ const int8_t *shift = av1_fwd_txfm_shift_ls[TX_32X16];
const int txw_idx = get_txw_idx(TX_32X16);
const int txh_idx = get_txh_idx(TX_32X16);
- const int cos_bit_col = fwd_cos_bit_col[txw_idx][txh_idx];
- const int cos_bit_row = fwd_cos_bit_row[txw_idx][txh_idx];
+ const int cos_bit_col = av1_fwd_cos_bit_col[txw_idx][txh_idx];
+ const int cos_bit_row = av1_fwd_cos_bit_row[txw_idx][txh_idx];
const int width = 32;
const int height = 16;
const transform_1d_sse2 col_txfm = col_txfm8x16_arr[tx_type];
@@ -2712,11 +2714,11 @@ void av1_lowbd_fwd_txfm2d_32x32_sse2(const int16_t *input, int32_t *output,
int stride, TX_TYPE tx_type, int bd) {
(void)bd;
__m128i buf0[32], buf1[128];
- const int8_t *shift = fwd_txfm_shift_ls[TX_32X32];
+ const int8_t *shift = av1_fwd_txfm_shift_ls[TX_32X32];
const int txw_idx = get_txw_idx(TX_32X32);
const int txh_idx = get_txh_idx(TX_32X32);
- const int cos_bit_col = fwd_cos_bit_col[txw_idx][txh_idx];
- const int cos_bit_row = fwd_cos_bit_row[txw_idx][txh_idx];
+ const int cos_bit_col = av1_fwd_cos_bit_col[txw_idx][txh_idx];
+ const int cos_bit_row = av1_fwd_cos_bit_row[txw_idx][txh_idx];
const int width = 32;
const int height = 32;
const transform_1d_sse2 col_txfm = col_txfm8x32_arr[tx_type];
@@ -2775,15 +2777,15 @@ void av1_lowbd_fwd_txfm2d_64x16_sse2(const int16_t *input, int32_t *output,
assert(tx_type == DCT_DCT);
const TX_SIZE tx_size = TX_64X16;
__m128i buf0[64], buf1[128];
- const int8_t *shift = fwd_txfm_shift_ls[tx_size];
+ const int8_t *shift = av1_fwd_txfm_shift_ls[tx_size];
const int txw_idx = get_txw_idx(tx_size);
const int txh_idx = get_txh_idx(tx_size);
- const int cos_bit_col = fwd_cos_bit_col[txw_idx][txh_idx];
- const int cos_bit_row = fwd_cos_bit_row[txw_idx][txh_idx];
+ const int cos_bit_col = av1_fwd_cos_bit_col[txw_idx][txh_idx];
+ const int cos_bit_row = av1_fwd_cos_bit_row[txw_idx][txh_idx];
const int width = tx_size_wide[tx_size];
const int height = tx_size_high[tx_size];
const transform_1d_sse2 col_txfm = fdct8x16_new_sse2;
- const transform_1d_sse2 row_txfm = fdct8x64_new_sse2;
+ const transform_1d_sse2 row_txfm = av1_fdct8x64_new_sse2;
const int width_div8 = (width >> 3);
const int height_div8 = (height >> 3);
@@ -2817,14 +2819,14 @@ void av1_lowbd_fwd_txfm2d_16x64_sse2(const int16_t *input, int32_t *output,
assert(tx_type == DCT_DCT);
const TX_SIZE tx_size = TX_16X64;
__m128i buf0[64], buf1[128];
- const int8_t *shift = fwd_txfm_shift_ls[tx_size];
+ const int8_t *shift = av1_fwd_txfm_shift_ls[tx_size];
const int txw_idx = get_txw_idx(tx_size);
const int txh_idx = get_txh_idx(tx_size);
- const int cos_bit_col = fwd_cos_bit_col[txw_idx][txh_idx];
- const int cos_bit_row = fwd_cos_bit_row[txw_idx][txh_idx];
+ const int cos_bit_col = av1_fwd_cos_bit_col[txw_idx][txh_idx];
+ const int cos_bit_row = av1_fwd_cos_bit_row[txw_idx][txh_idx];
const int width = tx_size_wide[tx_size];
const int height = tx_size_high[tx_size];
- const transform_1d_sse2 col_txfm = fdct8x64_new_sse2;
+ const transform_1d_sse2 col_txfm = av1_fdct8x64_new_sse2;
const transform_1d_sse2 row_txfm = fdct8x16_new_sse2;
const int width_div8 = (width >> 3);
const int height_div8 = (height >> 3);
diff --git a/media/libaom/src/av1/encoder/x86/av1_fwd_txfm_sse2.h b/media/libaom/src/av1/encoder/x86/av1_fwd_txfm_sse2.h
index 99a6b90829..a0e32f5380 100644
--- a/media/libaom/src/av1/encoder/x86/av1_fwd_txfm_sse2.h
+++ b/media/libaom/src/av1/encoder/x86/av1_fwd_txfm_sse2.h
@@ -24,8 +24,10 @@
extern "C" {
#endif
-void fdct8x32_new_sse2(const __m128i *input, __m128i *output, int8_t cos_bit);
-void fdct8x64_new_sse2(const __m128i *input, __m128i *output, int8_t cos_bit);
+void av1_fdct8x32_new_sse2(const __m128i *input, __m128i *output,
+ int8_t cos_bit);
+void av1_fdct8x64_new_sse2(const __m128i *input, __m128i *output,
+ int8_t cos_bit);
static INLINE void fidentity4x4_new_sse2(const __m128i *const input,
__m128i *const output,
@@ -92,7 +94,7 @@ static INLINE void fidentity8x32_new_sse2(const __m128i *input, __m128i *output,
}
static const transform_1d_sse2 col_txfm8x32_arr[TX_TYPES] = {
- fdct8x32_new_sse2, // DCT_DCT
+ av1_fdct8x32_new_sse2, // DCT_DCT
NULL, // ADST_DCT
NULL, // DCT_ADST
NULL, // ADST_ADST
@@ -102,7 +104,7 @@ static const transform_1d_sse2 col_txfm8x32_arr[TX_TYPES] = {
NULL, // ADST_FLIPADST
NULL, // FLIPADST_ADST
fidentity8x32_new_sse2, // IDTX
- fdct8x32_new_sse2, // V_DCT
+ av1_fdct8x32_new_sse2, // V_DCT
fidentity8x32_new_sse2, // H_DCT
NULL, // V_ADST
NULL, // H_ADST
diff --git a/media/libaom/src/av1/encoder/x86/av1_quantize_avx2.c b/media/libaom/src/av1/encoder/x86/av1_quantize_avx2.c
index df22aaba7c..f5f7ee115d 100644
--- a/media/libaom/src/av1/encoder/x86/av1_quantize_avx2.c
+++ b/media/libaom/src/av1/encoder/x86/av1_quantize_avx2.c
@@ -132,6 +132,121 @@ static INLINE void quantize(const __m256i *thr, const __m256i *qp, __m256i *c,
}
}
+static INLINE __m256i scan_eob_256(const __m256i *iscan_ptr,
+ __m256i *coeff256) {
+ const __m256i iscan = _mm256_loadu_si256(iscan_ptr);
+ const __m256i zero256 = _mm256_setzero_si256();
+ const __m256i zero_coeff0 = _mm256_cmpeq_epi16(*coeff256, zero256);
+ const __m256i nzero_coeff0 = _mm256_cmpeq_epi16(zero_coeff0, zero256);
+ // Add one to convert from indices to counts
+ const __m256i iscan_plus_one = _mm256_sub_epi16(iscan, nzero_coeff0);
+ return _mm256_and_si256(iscan_plus_one, nzero_coeff0);
+}
+
+static INLINE int16_t accumulate_eob(__m128i eob) {
+ __m128i eob_shuffled;
+ eob_shuffled = _mm_shuffle_epi32(eob, 0xe);
+ eob = _mm_max_epi16(eob, eob_shuffled);
+ eob_shuffled = _mm_shufflelo_epi16(eob, 0xe);
+ eob = _mm_max_epi16(eob, eob_shuffled);
+ eob_shuffled = _mm_shufflelo_epi16(eob, 0x1);
+ eob = _mm_max_epi16(eob, eob_shuffled);
+ return _mm_extract_epi16(eob, 1);
+}
+
+static INLINE void store_zero_tran_low(int16_t *a) {
+ const __m256i zero = _mm256_setzero_si256();
+ _mm256_storeu_si256((__m256i *)(a), zero);
+}
+
+void av1_quantize_lp_avx2(const int16_t *coeff_ptr, intptr_t n_coeffs,
+ const int16_t *round_ptr, const int16_t *quant_ptr,
+ int16_t *qcoeff_ptr, int16_t *dqcoeff_ptr,
+ const int16_t *dequant_ptr, uint16_t *eob_ptr,
+ const int16_t *scan) {
+ __m128i eob;
+ __m256i round256, quant256, dequant256;
+ __m256i eob256, thr256;
+
+ coeff_ptr += n_coeffs;
+ scan += n_coeffs;
+ qcoeff_ptr += n_coeffs;
+ dqcoeff_ptr += n_coeffs;
+ n_coeffs = -n_coeffs;
+
+ {
+ __m256i coeff256;
+
+ // Setup global values
+ {
+ const __m128i round = _mm_load_si128((const __m128i *)round_ptr);
+ const __m128i quant = _mm_load_si128((const __m128i *)quant_ptr);
+ const __m128i dequant = _mm_load_si128((const __m128i *)dequant_ptr);
+ round256 = _mm256_castsi128_si256(round);
+ round256 = _mm256_permute4x64_epi64(round256, 0x54);
+
+ quant256 = _mm256_castsi128_si256(quant);
+ quant256 = _mm256_permute4x64_epi64(quant256, 0x54);
+
+ dequant256 = _mm256_castsi128_si256(dequant);
+ dequant256 = _mm256_permute4x64_epi64(dequant256, 0x54);
+ }
+
+ {
+ __m256i qcoeff256;
+ __m256i qtmp256;
+ coeff256 = _mm256_loadu_si256((const __m256i *)(coeff_ptr + n_coeffs));
+ qcoeff256 = _mm256_abs_epi16(coeff256);
+ qcoeff256 = _mm256_adds_epi16(qcoeff256, round256);
+ qtmp256 = _mm256_mulhi_epi16(qcoeff256, quant256);
+ qcoeff256 = _mm256_sign_epi16(qtmp256, coeff256);
+ _mm256_storeu_si256((__m256i *)(qcoeff_ptr + n_coeffs), qcoeff256);
+ coeff256 = _mm256_mullo_epi16(qcoeff256, dequant256);
+ _mm256_storeu_si256((__m256i *)(dqcoeff_ptr + n_coeffs), coeff256);
+ }
+
+ eob256 = scan_eob_256((const __m256i *)(scan + n_coeffs), &coeff256);
+ n_coeffs += 8 * 2;
+ }
+
+ // remove dc constants
+ dequant256 = _mm256_permute2x128_si256(dequant256, dequant256, 0x31);
+ quant256 = _mm256_permute2x128_si256(quant256, quant256, 0x31);
+ round256 = _mm256_permute2x128_si256(round256, round256, 0x31);
+
+ thr256 = _mm256_srai_epi16(dequant256, 1);
+
+ // AC only loop
+ while (n_coeffs < 0) {
+ __m256i coeff256 =
+ _mm256_loadu_si256((const __m256i *)(coeff_ptr + n_coeffs));
+ __m256i qcoeff256 = _mm256_abs_epi16(coeff256);
+ int32_t nzflag =
+ _mm256_movemask_epi8(_mm256_cmpgt_epi16(qcoeff256, thr256));
+
+ if (nzflag) {
+ __m256i qtmp256;
+ qcoeff256 = _mm256_adds_epi16(qcoeff256, round256);
+ qtmp256 = _mm256_mulhi_epi16(qcoeff256, quant256);
+ qcoeff256 = _mm256_sign_epi16(qtmp256, coeff256);
+ _mm256_storeu_si256((__m256i *)(qcoeff_ptr + n_coeffs), qcoeff256);
+ coeff256 = _mm256_mullo_epi16(qcoeff256, dequant256);
+ _mm256_storeu_si256((__m256i *)(dqcoeff_ptr + n_coeffs), coeff256);
+ eob256 = _mm256_max_epi16(
+ eob256, scan_eob_256((const __m256i *)(scan + n_coeffs), &coeff256));
+ } else {
+ store_zero_tran_low(qcoeff_ptr + n_coeffs);
+ store_zero_tran_low(dqcoeff_ptr + n_coeffs);
+ }
+ n_coeffs += 8 * 2;
+ }
+
+ eob = _mm_max_epi16(_mm256_castsi256_si128(eob256),
+ _mm256_extracti128_si256(eob256, 1));
+
+ *eob_ptr = accumulate_eob(eob);
+}
+
void av1_quantize_fp_avx2(const tran_low_t *coeff_ptr, intptr_t n_coeffs,
const int16_t *zbin_ptr, const int16_t *round_ptr,
const int16_t *quant_ptr,
diff --git a/media/libaom/src/av1/encoder/x86/av1_quantize_sse2.c b/media/libaom/src/av1/encoder/x86/av1_quantize_sse2.c
index b07e7717f3..5497c7eb78 100644
--- a/media/libaom/src/av1/encoder/x86/av1_quantize_sse2.c
+++ b/media/libaom/src/av1/encoder/x86/av1_quantize_sse2.c
@@ -91,7 +91,7 @@ static INLINE void quantize(const int16_t *iscan_ptr,
_mm_cmpeq_epi16(qcoeff0, *thr0));
const __m128i mask1 = _mm_or_si128(_mm_cmpgt_epi16(qcoeff1, *thr1),
_mm_cmpeq_epi16(qcoeff1, *thr1));
- const int16_t nzflag = _mm_movemask_epi8(mask0) | _mm_movemask_epi8(mask1);
+ const int nzflag = _mm_movemask_epi8(mask0) | _mm_movemask_epi8(mask1);
if (nzflag) {
qcoeff0 = _mm_adds_epi16(qcoeff0, *round0);
diff --git a/media/libaom/src/av1/encoder/x86/av1_txfm1d_sse4.h b/media/libaom/src/av1/encoder/x86/av1_txfm1d_sse4.h
index 6df2a8bdbb..7a0f32898b 100644
--- a/media/libaom/src/av1/encoder/x86/av1_txfm1d_sse4.h
+++ b/media/libaom/src/av1/encoder/x86/av1_txfm1d_sse4.h
@@ -20,42 +20,44 @@
extern "C" {
#endif
-void av1_fdct4_new_sse4_1(const __m128i *input, __m128i *output,
- const int8_t cos_bit, const int8_t *stage_range);
-void av1_fdct8_new_sse4_1(const __m128i *input, __m128i *output,
- const int8_t cos_bit, const int8_t *stage_range);
-void av1_fdct16_new_sse4_1(const __m128i *input, __m128i *output,
- const int8_t cos_bit, const int8_t *stage_range);
-void av1_fdct32_new_sse4_1(const __m128i *input, __m128i *output,
- int8_t cos_bit);
-void av1_fdct64_new_sse4_1(const __m128i *input, __m128i *output,
- int8_t cos_bit, const int instride,
- const int outstride);
-
-void av1_fadst4_new_sse4_1(const __m128i *input, __m128i *output,
- const int8_t cos_bit, const int8_t *stage_range);
-void av1_fadst8_new_sse4_1(const __m128i *input, __m128i *output,
- const int8_t cos_bit, const int8_t *stage_range);
-void av1_fadst16_new_sse4_1(const __m128i *input, __m128i *output,
- const int8_t cos_bit, const int8_t *stage_range);
-
-void av1_idct4_new_sse4_1(const __m128i *input, __m128i *output,
- const int8_t cos_bit, const int8_t *stage_range);
-void av1_idct8_new_sse4_1(const __m128i *input, __m128i *output,
- const int8_t cos_bit, const int8_t *stage_range);
-void av1_idct16_new_sse4_1(const __m128i *input, __m128i *output,
- const int8_t cos_bit, const int8_t *stage_range);
-void av1_idct32_new_sse4_1(const __m128i *input, __m128i *output,
- const int8_t cos_bit, const int8_t *stage_range);
-void av1_idct64_new_sse4_1(const __m128i *input, __m128i *output,
- const int8_t cos_bit, const int8_t *stage_range);
-
-void av1_iadst4_new_sse4_1(const __m128i *input, __m128i *output,
- const int8_t cos_bit, const int8_t *stage_range);
-void av1_iadst8_new_sse4_1(const __m128i *input, __m128i *output,
- const int8_t cos_bit, const int8_t *stage_range);
-void av1_iadst16_new_sse4_1(const __m128i *input, __m128i *output,
- const int8_t cos_bit, const int8_t *stage_range);
+void av1_fdct4_sse4_1(const __m128i *input, __m128i *output,
+ const int8_t cos_bit, const int8_t *stage_range);
+void av1_fdct8_sse4_1(const __m128i *input, __m128i *output,
+ const int8_t cos_bit, const int8_t *stage_range);
+void av1_fdct16_sse4_1(const __m128i *input, __m128i *output,
+ const int8_t cos_bit, const int8_t *stage_range);
+void av1_fdct32_sse4_1(__m128i *input, __m128i *output, int cos_bit,
+ const int stride);
+void av1_fdct64_sse4_1(__m128i *input, __m128i *output, int8_t cos_bit,
+ const int instride, const int outstride);
+void av1_fadst4_sse4_1(const __m128i *input, __m128i *output,
+ const int8_t cos_bit, const int8_t *stage_range);
+void av1_fadst8_sse4_1(const __m128i *input, __m128i *output,
+ const int8_t cos_bit, const int8_t *stage_range);
+void av1_fadst16_sse4_1(const __m128i *input, __m128i *output,
+ const int8_t cos_bit, const int8_t *stage_range);
+
+void av1_idct4_sse4_1(const __m128i *input, __m128i *output,
+ const int8_t cos_bit, const int8_t *stage_range);
+void av1_idct8_sse4_1(const __m128i *input, __m128i *output,
+ const int8_t cos_bit, const int8_t *stage_range);
+void av1_idct16_sse4_1(const __m128i *input, __m128i *output,
+ const int8_t cos_bit, const int8_t *stage_range);
+void av1_idct32_sse4_1(const __m128i *input, __m128i *output,
+ const int8_t cos_bit, const int8_t *stage_range);
+void av1_idct64_sse4_1(const __m128i *input, __m128i *output,
+ const int8_t cos_bit, const int8_t *stage_range);
+
+void av1_iadst4_sse4_1(const __m128i *input, __m128i *output,
+ const int8_t cos_bit, const int8_t *stage_range);
+void av1_iadst8_sse4_1(const __m128i *input, __m128i *output,
+ const int8_t cos_bit, const int8_t *stage_range);
+void av1_iadst16_sse4_1(const __m128i *input, __m128i *output,
+ const int8_t cos_bit, const int8_t *stage_range);
+
+void av1_idtx32_sse4_1(__m128i *input, __m128i *output, int cos_bit,
+ const int col_num);
+
static INLINE void transpose_32_4x4(int stride, const __m128i *input,
__m128i *output) {
__m128i temp0 = _mm_unpacklo_epi32(input[0 * stride], input[2 * stride]);
diff --git a/media/libaom/src/av1/encoder/x86/corner_match_avx2.c b/media/libaom/src/av1/encoder/x86/corner_match_avx2.c
new file mode 100644
index 0000000000..8d7eb3f038
--- /dev/null
+++ b/media/libaom/src/av1/encoder/x86/corner_match_avx2.c
@@ -0,0 +1,81 @@
+/*
+ * Copyright (c) 2018, Alliance for Open Media. All rights reserved
+ *
+ * This source code is subject to the terms of the BSD 2 Clause License and
+ * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
+ * was not distributed with this source code in the LICENSE file, you can
+ * obtain it at www.aomedia.org/license/software. If the Alliance for Open
+ * Media Patent License 1.0 was not distributed with this source code in the
+ * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
+ */
+
+#include <math.h>
+
+#include <immintrin.h>
+#include "config/av1_rtcd.h"
+
+#include "aom_ports/mem.h"
+#include "aom_ports/system_state.h"
+#include "av1/encoder/corner_match.h"
+
+DECLARE_ALIGNED(16, static const uint8_t,
+ byte_mask[16]) = { 255, 255, 255, 255, 255, 255, 255, 255,
+ 255, 255, 255, 255, 255, 0, 0, 0 };
+#if MATCH_SZ != 13
+#error "Need to change byte_mask in corner_match_sse4.c if MATCH_SZ != 13"
+#endif
+
+/* Compute corr(im1, im2) * MATCH_SZ * stddev(im1), where the
+correlation/standard deviation are taken over MATCH_SZ by MATCH_SZ windows
+of each image, centered at (x1, y1) and (x2, y2) respectively.
+*/
+double av1_compute_cross_correlation_avx2(unsigned char *im1, int stride1,
+ int x1, int y1, unsigned char *im2,
+ int stride2, int x2, int y2) {
+ int i, stride1_i = 0, stride2_i = 0;
+ __m256i temp1, sum_vec, sumsq2_vec, cross_vec, v, v1_1, v2_1;
+ const __m128i mask = _mm_load_si128((__m128i *)byte_mask);
+ const __m256i zero = _mm256_setzero_si256();
+ __m128i v1, v2;
+
+ sum_vec = zero;
+ sumsq2_vec = zero;
+ cross_vec = zero;
+
+ im1 += (y1 - MATCH_SZ_BY2) * stride1 + (x1 - MATCH_SZ_BY2);
+ im2 += (y2 - MATCH_SZ_BY2) * stride2 + (x2 - MATCH_SZ_BY2);
+
+ for (i = 0; i < MATCH_SZ; ++i) {
+ v1 = _mm_and_si128(_mm_loadu_si128((__m128i *)&im1[stride1_i]), mask);
+ v1_1 = _mm256_cvtepu8_epi16(v1);
+ v2 = _mm_and_si128(_mm_loadu_si128((__m128i *)&im2[stride2_i]), mask);
+ v2_1 = _mm256_cvtepu8_epi16(v2);
+
+ v = _mm256_insertf128_si256(_mm256_castsi128_si256(v1), v2, 1);
+ sumsq2_vec = _mm256_add_epi32(sumsq2_vec, _mm256_madd_epi16(v2_1, v2_1));
+
+ sum_vec = _mm256_add_epi16(sum_vec, _mm256_sad_epu8(v, zero));
+ cross_vec = _mm256_add_epi32(cross_vec, _mm256_madd_epi16(v1_1, v2_1));
+ stride1_i += stride1;
+ stride2_i += stride2;
+ }
+ __m256i sum_vec1 = _mm256_srli_si256(sum_vec, 8);
+ sum_vec = _mm256_add_epi32(sum_vec, sum_vec1);
+ int sum1_acc = _mm_cvtsi128_si32(_mm256_castsi256_si128(sum_vec));
+ int sum2_acc = _mm256_extract_epi32(sum_vec, 4);
+
+ __m256i unp_low = _mm256_unpacklo_epi64(sumsq2_vec, cross_vec);
+ __m256i unp_hig = _mm256_unpackhi_epi64(sumsq2_vec, cross_vec);
+ temp1 = _mm256_add_epi32(unp_low, unp_hig);
+
+ __m128i low_sumsq = _mm256_castsi256_si128(temp1);
+ low_sumsq = _mm_add_epi32(low_sumsq, _mm256_extractf128_si256(temp1, 1));
+ low_sumsq = _mm_add_epi32(low_sumsq, _mm_srli_epi64(low_sumsq, 32));
+ int sumsq2_acc = _mm_cvtsi128_si32(low_sumsq);
+ int cross_acc = _mm_extract_epi32(low_sumsq, 2);
+
+ int var2 = sumsq2_acc * MATCH_SZ_SQ - sum2_acc * sum2_acc;
+ int cov = cross_acc * MATCH_SZ_SQ - sum1_acc * sum2_acc;
+ aom_clear_system_state();
+ return cov / sqrt((double)var2);
+}
diff --git a/media/libaom/src/av1/encoder/x86/corner_match_sse4.c b/media/libaom/src/av1/encoder/x86/corner_match_sse4.c
index 93f37b71d3..5c9ca207e3 100644
--- a/media/libaom/src/av1/encoder/x86/corner_match_sse4.c
+++ b/media/libaom/src/av1/encoder/x86/corner_match_sse4.c
@@ -19,11 +19,12 @@
#include "config/av1_rtcd.h"
#include "aom_ports/mem.h"
+#include "aom_ports/system_state.h"
#include "av1/encoder/corner_match.h"
-DECLARE_ALIGNED(16, static const uint8_t, byte_mask[16]) = {
- 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 0, 0, 0
-};
+DECLARE_ALIGNED(16, static const uint8_t,
+ byte_mask[16]) = { 255, 255, 255, 255, 255, 255, 255, 255,
+ 255, 255, 255, 255, 255, 0, 0, 0 };
#if MATCH_SZ != 13
#error "Need to change byte_mask in corner_match_sse4.c if MATCH_SZ != 13"
#endif
@@ -32,9 +33,9 @@ DECLARE_ALIGNED(16, static const uint8_t, byte_mask[16]) = {
correlation/standard deviation are taken over MATCH_SZ by MATCH_SZ windows
of each image, centered at (x1, y1) and (x2, y2) respectively.
*/
-double compute_cross_correlation_sse4_1(unsigned char *im1, int stride1, int x1,
- int y1, unsigned char *im2, int stride2,
- int x2, int y2) {
+double av1_compute_cross_correlation_sse4_1(unsigned char *im1, int stride1,
+ int x1, int y1, unsigned char *im2,
+ int stride2, int x2, int y2) {
int i;
// 2 16-bit partial sums in lanes 0, 4 (== 2 32-bit partial sums in lanes 0,
// 2)
@@ -99,5 +100,6 @@ double compute_cross_correlation_sse4_1(unsigned char *im1, int stride1, int x1,
int var2 = sumsq2 * MATCH_SZ_SQ - sum2 * sum2;
int cov = cross * MATCH_SZ_SQ - sum1 * sum2;
+ aom_clear_system_state();
return cov / sqrt((double)var2);
}
diff --git a/media/libaom/src/av1/encoder/x86/encodetxb_avx2.c b/media/libaom/src/av1/encoder/x86/encodetxb_avx2.c
index 7642f57d18..30a4129091 100644
--- a/media/libaom/src/av1/encoder/x86/encodetxb_avx2.c
+++ b/media/libaom/src/av1/encoder/x86/encodetxb_avx2.c
@@ -16,7 +16,7 @@
#include "aom/aom_integer.h"
#include "aom_dsp/x86/mem_sse2.h"
-#include "av1/common/onyxc_int.h"
+#include "av1/common/av1_common_int.h"
#include "av1/common/txb_common.h"
#include "aom_dsp/x86/synonyms.h"
#include "aom_dsp/x86/synonyms_avx2.h"
@@ -26,14 +26,6 @@ void av1_txb_init_levels_avx2(const tran_low_t *const coeff, const int width,
const int stride = width + TX_PAD_HOR;
const __m256i y_zeros = _mm256_setzero_si256();
- const int32_t pre_len = sizeof(*levels) * TX_PAD_TOP * stride;
- uint8_t *pre_buf = levels - TX_PAD_TOP * stride;
- uint8_t *pre_buf_end = pre_buf + pre_len;
- do {
- yy_storeu_256(pre_buf, y_zeros);
- pre_buf += 32;
- } while (pre_buf < pre_buf_end);
-
const int32_t bottom_len = sizeof(*levels) * (TX_PAD_BOTTOM * stride);
uint8_t *bottom_buf_end = levels + (height + TX_PAD_BOTTOM) * stride;
uint8_t *bottom_buf = bottom_buf_end - ((bottom_len + 31) & (~31));
diff --git a/media/libaom/src/av1/encoder/x86/encodetxb_sse2.c b/media/libaom/src/av1/encoder/x86/encodetxb_sse2.c
index dedb4d02f6..394befb7b1 100644
--- a/media/libaom/src/av1/encoder/x86/encodetxb_sse2.c
+++ b/media/libaom/src/av1/encoder/x86/encodetxb_sse2.c
@@ -14,7 +14,7 @@
#include "aom/aom_integer.h"
#include "aom_dsp/x86/mem_sse2.h"
-#include "av1/common/onyxc_int.h"
+#include "av1/common/av1_common_int.h"
#include "av1/common/txb_common.h"
static INLINE void load_levels_4x4x5_sse2(const uint8_t *const src,
diff --git a/media/libaom/src/av1/encoder/x86/encodetxb_sse4.c b/media/libaom/src/av1/encoder/x86/encodetxb_sse4.c
index 5e0687cd38..aeb57f2cd3 100644
--- a/media/libaom/src/av1/encoder/x86/encodetxb_sse4.c
+++ b/media/libaom/src/av1/encoder/x86/encodetxb_sse4.c
@@ -14,7 +14,7 @@
#include <smmintrin.h> /* SSE4.1 */
#include "aom/aom_integer.h"
-#include "av1/common/onyxc_int.h"
+#include "av1/common/av1_common_int.h"
#include "av1/common/txb_common.h"
#include "aom_dsp/x86/synonyms.h"
@@ -23,14 +23,6 @@ void av1_txb_init_levels_sse4_1(const tran_low_t *const coeff, const int width,
const int stride = width + TX_PAD_HOR;
const __m128i zeros = _mm_setzero_si128();
- const int32_t pre_len = sizeof(*levels) * TX_PAD_TOP * stride;
- uint8_t *pre_buf = levels - TX_PAD_TOP * stride;
- uint8_t *pre_buf_end = pre_buf + pre_len;
- do {
- _mm_storeu_si128((__m128i *)(pre_buf), zeros);
- pre_buf += 16;
- } while (pre_buf < pre_buf_end);
-
const int32_t bottom_len = sizeof(*levels) * (TX_PAD_BOTTOM * stride);
uint8_t *bottom_buf = levels + stride * height;
uint8_t *bottom_buf_end = bottom_buf + bottom_len;
diff --git a/media/libaom/src/av1/encoder/x86/error_intrin_avx2.c b/media/libaom/src/av1/encoder/x86/error_intrin_avx2.c
index 7d4f695854..12dda3ad01 100644
--- a/media/libaom/src/av1/encoder/x86/error_intrin_avx2.c
+++ b/media/libaom/src/av1/encoder/x86/error_intrin_avx2.c
@@ -29,6 +29,59 @@ static INLINE void read_coeff(const tran_low_t *coeff, intptr_t offset,
}
}
+int64_t av1_block_error_lp_avx2(const int16_t *coeff, const int16_t *dqcoeff,
+ intptr_t block_size) {
+ const __m256i zero = _mm256_setzero_si256();
+ __m256i sse_256 = zero;
+ __m256i sse_hi;
+ __m128i sse_128;
+ int64_t sse;
+
+ if (block_size == 16) {
+ // Load 16 elements for coeff and dqcoeff.
+ const __m256i _coeff = _mm256_loadu_si256((const __m256i *)coeff);
+ const __m256i _dqcoeff = _mm256_loadu_si256((const __m256i *)dqcoeff);
+ // dqcoeff - coeff
+ const __m256i diff = _mm256_sub_epi16(_dqcoeff, _coeff);
+ // madd (dqcoeff - coeff)
+ const __m256i error_lo = _mm256_madd_epi16(diff, diff);
+ // Save the higher 64 bit of each 128 bit lane.
+ const __m256i error_hi = _mm256_srli_si256(error_lo, 8);
+ // Add the higher 64 bit to the low 64 bit.
+ const __m256i error = _mm256_add_epi32(error_lo, error_hi);
+ // Expand each double word in the lower 64 bits to quad word.
+ sse_256 = _mm256_unpacklo_epi32(error, zero);
+ } else {
+ for (int i = 0; i < block_size; i += 16) {
+ // Load 16 elements for coeff and dqcoeff.
+ const __m256i _coeff = _mm256_loadu_si256((const __m256i *)coeff);
+ const __m256i _dqcoeff = _mm256_loadu_si256((const __m256i *)dqcoeff);
+ const __m256i diff = _mm256_sub_epi16(_dqcoeff, _coeff);
+ const __m256i error = _mm256_madd_epi16(diff, diff);
+ // Expand each double word of madd (dqcoeff - coeff) to quad word.
+ const __m256i exp_error_lo = _mm256_unpacklo_epi32(error, zero);
+ const __m256i exp_error_hi = _mm256_unpackhi_epi32(error, zero);
+ // Add each quad word of madd (dqcoeff - coeff).
+ sse_256 = _mm256_add_epi64(sse_256, exp_error_lo);
+ sse_256 = _mm256_add_epi64(sse_256, exp_error_hi);
+ coeff += 16;
+ dqcoeff += 16;
+ }
+ }
+ // Save the higher 64 bit of each 128 bit lane.
+ sse_hi = _mm256_srli_si256(sse_256, 8);
+ // Add the higher 64 bit to the low 64 bit.
+ sse_256 = _mm256_add_epi64(sse_256, sse_hi);
+
+ // Add each 64 bit from each of the 128 bit lane of the 256 bit.
+ sse_128 = _mm_add_epi64(_mm256_castsi256_si128(sse_256),
+ _mm256_extractf128_si256(sse_256, 1));
+
+ // Store the results.
+ _mm_storel_epi64((__m128i *)&sse, sse_128);
+ return sse;
+}
+
int64_t av1_block_error_avx2(const tran_low_t *coeff, const tran_low_t *dqcoeff,
intptr_t block_size, int64_t *ssz) {
__m256i sse_reg, ssz_reg, coeff_reg, dqcoeff_reg;
diff --git a/media/libaom/src/av1/encoder/x86/error_sse2.asm b/media/libaom/src/av1/encoder/x86/error_sse2.asm
index 72e9e22b18..f4b496897a 100644
--- a/media/libaom/src/av1/encoder/x86/error_sse2.asm
+++ b/media/libaom/src/av1/encoder/x86/error_sse2.asm
@@ -11,6 +11,21 @@
;
+; Increment %1 by sizeof() tran_low_t * %2.
+%macro INCREMENT_ELEMENTS_TRAN_LOW 2
+ lea %1, [%1 + %2 * 4]
+%endmacro
+
+; Load %2 + %3 into m%1.
+; %3 is the offset in elements, not bytes.
+; If tran_low_t is 16 bits (low bit depth configuration) then load the value
+; directly. If tran_low_t is 32 bits (high bit depth configuration) then pack
+; the values down to 16 bits.
+%macro LOAD_TRAN_LOW 3
+ mova m%1, [%2 + (%3) * 4]
+ packssdw m%1, [%2 + (%3) * 4 + 16]
+%endmacro
+
%define private_prefix av1
%include "third_party/x86inc/x86inc.asm"
@@ -25,14 +40,14 @@ cglobal block_error, 3, 3, 8, uqc, dqc, size, ssz
pxor m4, m4 ; sse accumulator
pxor m6, m6 ; ssz accumulator
pxor m5, m5 ; dedicated zero register
- lea uqcq, [uqcq+sizeq*2]
- lea dqcq, [dqcq+sizeq*2]
- neg sizeq
.loop:
- mova m2, [uqcq+sizeq*2]
- mova m0, [dqcq+sizeq*2]
- mova m3, [uqcq+sizeq*2+mmsize]
- mova m1, [dqcq+sizeq*2+mmsize]
+ LOAD_TRAN_LOW 2, uqcq, 0
+ LOAD_TRAN_LOW 0, dqcq, 0
+ LOAD_TRAN_LOW 3, uqcq, 8
+ LOAD_TRAN_LOW 1, dqcq, 8
+ INCREMENT_ELEMENTS_TRAN_LOW uqcq, 16
+ INCREMENT_ELEMENTS_TRAN_LOW dqcq, 16
+ sub sizeq, 16
psubw m0, m2
psubw m1, m3
; individual errors are max. 15bit+sign, so squares are 30bit, and
@@ -41,25 +56,19 @@ cglobal block_error, 3, 3, 8, uqc, dqc, size, ssz
pmaddwd m1, m1
pmaddwd m2, m2
pmaddwd m3, m3
+ ; the sum of 2 31bit integers will fit in a 32bit unsigned integer
+ paddd m0, m1
+ paddd m2, m3
; accumulate in 64bit
punpckldq m7, m0, m5
punpckhdq m0, m5
paddq m4, m7
- punpckldq m7, m1, m5
- paddq m4, m0
- punpckhdq m1, m5
- paddq m4, m7
punpckldq m7, m2, m5
- paddq m4, m1
+ paddq m4, m0
punpckhdq m2, m5
paddq m6, m7
- punpckldq m7, m3, m5
paddq m6, m2
- punpckhdq m3, m5
- paddq m6, m7
- paddq m6, m3
- add sizeq, mmsize
- jl .loop
+ jg .loop
; accumulate horizontally and store in return value
movhlps m5, m4
diff --git a/media/libaom/src/av1/encoder/x86/highbd_block_error_intrin_avx2.c b/media/libaom/src/av1/encoder/x86/highbd_block_error_intrin_avx2.c
new file mode 100644
index 0000000000..ee3714d8ad
--- /dev/null
+++ b/media/libaom/src/av1/encoder/x86/highbd_block_error_intrin_avx2.c
@@ -0,0 +1,63 @@
+/*
+ * Copyright (c) 2019, Alliance for Open Media. All rights reserved
+ *
+ * This source code is subject to the terms of the BSD 2 Clause License and
+ * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
+ * was not distributed with this source code in the LICENSE file, you can
+ * obtain it at www.aomedia.org/license/software. If the Alliance for Open
+ * Media Patent License 1.0 was not distributed with this source code in the
+ * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
+ */
+
+#include <immintrin.h>
+#include <stdio.h>
+#include "aom/aom_integer.h"
+#include "av1/common/common.h"
+
+int64_t av1_highbd_block_error_avx2(const tran_low_t *coeff,
+ const tran_low_t *dqcoeff,
+ intptr_t block_size, int64_t *ssz,
+ int bps) {
+ int i;
+ int64_t temp1[8];
+ int64_t error = 0, sqcoeff = 0;
+ const int shift = 2 * (bps - 8);
+ const int rounding = shift > 0 ? 1 << (shift - 1) : 0;
+
+ for (i = 0; i < block_size; i += 16) {
+ __m256i mm256_coeff = _mm256_loadu_si256((__m256i *)(coeff + i));
+ __m256i mm256_coeff2 = _mm256_loadu_si256((__m256i *)(coeff + i + 8));
+ __m256i mm256_dqcoeff = _mm256_loadu_si256((__m256i *)(dqcoeff + i));
+ __m256i mm256_dqcoeff2 = _mm256_loadu_si256((__m256i *)(dqcoeff + i + 8));
+
+ __m256i diff1 = _mm256_sub_epi32(mm256_coeff, mm256_dqcoeff);
+ __m256i diff2 = _mm256_sub_epi32(mm256_coeff2, mm256_dqcoeff2);
+ __m256i diff1h = _mm256_srli_epi64(diff1, 32);
+ __m256i diff2h = _mm256_srli_epi64(diff2, 32);
+ __m256i res = _mm256_mul_epi32(diff1, diff1);
+ __m256i res1 = _mm256_mul_epi32(diff1h, diff1h);
+ __m256i res2 = _mm256_mul_epi32(diff2, diff2);
+ __m256i res3 = _mm256_mul_epi32(diff2h, diff2h);
+ __m256i res_diff = _mm256_add_epi64(_mm256_add_epi64(res, res1),
+ _mm256_add_epi64(res2, res3));
+ __m256i mm256_coeffh = _mm256_srli_epi64(mm256_coeff, 32);
+ __m256i mm256_coeffh2 = _mm256_srli_epi64(mm256_coeff2, 32);
+ res = _mm256_mul_epi32(mm256_coeff, mm256_coeff);
+ res1 = _mm256_mul_epi32(mm256_coeffh, mm256_coeffh);
+ res2 = _mm256_mul_epi32(mm256_coeff2, mm256_coeff2);
+ res3 = _mm256_mul_epi32(mm256_coeffh2, mm256_coeffh2);
+ __m256i res_sqcoeff = _mm256_add_epi64(_mm256_add_epi64(res, res1),
+ _mm256_add_epi64(res2, res3));
+ _mm256_storeu_si256((__m256i *)temp1, res_diff);
+ _mm256_storeu_si256((__m256i *)temp1 + 1, res_sqcoeff);
+
+ error += temp1[0] + temp1[1] + temp1[2] + temp1[3];
+ sqcoeff += temp1[4] + temp1[5] + temp1[6] + temp1[7];
+ }
+ assert(error >= 0 && sqcoeff >= 0);
+ error = (error + rounding) >> shift;
+ sqcoeff = (sqcoeff + rounding) >> shift;
+
+ *ssz = sqcoeff;
+ return error;
+}
diff --git a/media/libaom/src/av1/encoder/x86/highbd_block_error_intrin_sse2.c b/media/libaom/src/av1/encoder/x86/highbd_block_error_intrin_sse2.c
index 777304ace7..4579e4e4a7 100644
--- a/media/libaom/src/av1/encoder/x86/highbd_block_error_intrin_sse2.c
+++ b/media/libaom/src/av1/encoder/x86/highbd_block_error_intrin_sse2.c
@@ -14,7 +14,8 @@
#include "av1/common/common.h"
-int64_t av1_highbd_block_error_sse2(tran_low_t *coeff, tran_low_t *dqcoeff,
+int64_t av1_highbd_block_error_sse2(const tran_low_t *coeff,
+ const tran_low_t *dqcoeff,
intptr_t block_size, int64_t *ssz,
int bps) {
int i, j, test;
diff --git a/media/libaom/src/av1/encoder/x86/highbd_fwd_txfm_avx2.c b/media/libaom/src/av1/encoder/x86/highbd_fwd_txfm_avx2.c
new file mode 100644
index 0000000000..a81378cfe3
--- /dev/null
+++ b/media/libaom/src/av1/encoder/x86/highbd_fwd_txfm_avx2.c
@@ -0,0 +1,3167 @@
+/*
+ * Copyright (c) 2018, Alliance for Open Media. All rights reserved
+ *
+ * This source code is subject to the terms of the BSD 2 Clause License and
+ * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
+ * was not distributed with this source code in the LICENSE file, you can
+ * obtain it at www.aomedia.org/license/software. If the Alliance for Open
+ * Media Patent License 1.0 was not distributed with this source code in the
+ * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
+ */
+#include <assert.h>
+#include <immintrin.h> /*AVX2*/
+
+#include "config/aom_config.h"
+#include "config/av1_rtcd.h"
+#include "av1/common/av1_txfm.h"
+#include "av1/encoder/av1_fwd_txfm1d_cfg.h"
+#include "aom_dsp/txfm_common.h"
+#include "aom_ports/mem.h"
+#include "aom_dsp/x86/txfm_common_sse2.h"
+#include "aom_dsp/x86/txfm_common_avx2.h"
+
+static INLINE void load_buffer_8x8_avx2(const int16_t *input, __m256i *out,
+ int stride, int flipud, int fliplr,
+ int shift) {
+ __m128i out1[8];
+ if (!flipud) {
+ out1[0] = _mm_load_si128((const __m128i *)(input + 0 * stride));
+ out1[1] = _mm_load_si128((const __m128i *)(input + 1 * stride));
+ out1[2] = _mm_load_si128((const __m128i *)(input + 2 * stride));
+ out1[3] = _mm_load_si128((const __m128i *)(input + 3 * stride));
+ out1[4] = _mm_load_si128((const __m128i *)(input + 4 * stride));
+ out1[5] = _mm_load_si128((const __m128i *)(input + 5 * stride));
+ out1[6] = _mm_load_si128((const __m128i *)(input + 6 * stride));
+ out1[7] = _mm_load_si128((const __m128i *)(input + 7 * stride));
+
+ } else {
+ out1[7] = _mm_load_si128((const __m128i *)(input + 0 * stride));
+ out1[6] = _mm_load_si128((const __m128i *)(input + 1 * stride));
+ out1[5] = _mm_load_si128((const __m128i *)(input + 2 * stride));
+ out1[4] = _mm_load_si128((const __m128i *)(input + 3 * stride));
+ out1[3] = _mm_load_si128((const __m128i *)(input + 4 * stride));
+ out1[2] = _mm_load_si128((const __m128i *)(input + 5 * stride));
+ out1[1] = _mm_load_si128((const __m128i *)(input + 6 * stride));
+ out1[0] = _mm_load_si128((const __m128i *)(input + 7 * stride));
+ }
+ if (!fliplr) {
+ out[0] = _mm256_cvtepi16_epi32(out1[0]);
+ out[1] = _mm256_cvtepi16_epi32(out1[1]);
+ out[2] = _mm256_cvtepi16_epi32(out1[2]);
+ out[3] = _mm256_cvtepi16_epi32(out1[3]);
+ out[4] = _mm256_cvtepi16_epi32(out1[4]);
+ out[5] = _mm256_cvtepi16_epi32(out1[5]);
+ out[6] = _mm256_cvtepi16_epi32(out1[6]);
+ out[7] = _mm256_cvtepi16_epi32(out1[7]);
+
+ } else {
+ out[0] = _mm256_cvtepi16_epi32(mm_reverse_epi16(out1[0]));
+ out[1] = _mm256_cvtepi16_epi32(mm_reverse_epi16(out1[1]));
+ out[2] = _mm256_cvtepi16_epi32(mm_reverse_epi16(out1[2]));
+ out[3] = _mm256_cvtepi16_epi32(mm_reverse_epi16(out1[3]));
+ out[4] = _mm256_cvtepi16_epi32(mm_reverse_epi16(out1[4]));
+ out[5] = _mm256_cvtepi16_epi32(mm_reverse_epi16(out1[5]));
+ out[6] = _mm256_cvtepi16_epi32(mm_reverse_epi16(out1[6]));
+ out[7] = _mm256_cvtepi16_epi32(mm_reverse_epi16(out1[7]));
+ }
+ out[0] = _mm256_slli_epi32(out[0], shift);
+ out[1] = _mm256_slli_epi32(out[1], shift);
+ out[2] = _mm256_slli_epi32(out[2], shift);
+ out[3] = _mm256_slli_epi32(out[3], shift);
+ out[4] = _mm256_slli_epi32(out[4], shift);
+ out[5] = _mm256_slli_epi32(out[5], shift);
+ out[6] = _mm256_slli_epi32(out[6], shift);
+ out[7] = _mm256_slli_epi32(out[7], shift);
+}
+static INLINE void col_txfm_8x8_rounding(__m256i *in, int shift) {
+ const __m256i rounding = _mm256_set1_epi32(1 << (shift - 1));
+
+ in[0] = _mm256_add_epi32(in[0], rounding);
+ in[1] = _mm256_add_epi32(in[1], rounding);
+ in[2] = _mm256_add_epi32(in[2], rounding);
+ in[3] = _mm256_add_epi32(in[3], rounding);
+ in[4] = _mm256_add_epi32(in[4], rounding);
+ in[5] = _mm256_add_epi32(in[5], rounding);
+ in[6] = _mm256_add_epi32(in[6], rounding);
+ in[7] = _mm256_add_epi32(in[7], rounding);
+
+ in[0] = _mm256_srai_epi32(in[0], shift);
+ in[1] = _mm256_srai_epi32(in[1], shift);
+ in[2] = _mm256_srai_epi32(in[2], shift);
+ in[3] = _mm256_srai_epi32(in[3], shift);
+ in[4] = _mm256_srai_epi32(in[4], shift);
+ in[5] = _mm256_srai_epi32(in[5], shift);
+ in[6] = _mm256_srai_epi32(in[6], shift);
+ in[7] = _mm256_srai_epi32(in[7], shift);
+}
+static INLINE void load_buffer_8x16_avx2(const int16_t *input, __m256i *out,
+ int stride, int flipud, int fliplr,
+ int shift) {
+ const int16_t *topL = input;
+ const int16_t *botL = input + 8 * stride;
+
+ const int16_t *tmp;
+
+ if (flipud) {
+ tmp = topL;
+ topL = botL;
+ botL = tmp;
+ }
+ load_buffer_8x8_avx2(topL, out, stride, flipud, fliplr, shift);
+ load_buffer_8x8_avx2(botL, out + 8, stride, flipud, fliplr, shift);
+}
+static INLINE void load_buffer_16xn_avx2(const int16_t *input, __m256i *out,
+ int stride, int height, int outstride,
+ int flipud, int fliplr) {
+ __m256i out1[64];
+ if (!flipud) {
+ for (int i = 0; i < height; i++) {
+ out1[i] = _mm256_loadu_si256((const __m256i *)(input + i * stride));
+ }
+ } else {
+ for (int i = 0; i < height; i++) {
+ out1[(height - 1) - i] =
+ _mm256_loadu_si256((const __m256i *)(input + i * stride));
+ }
+ }
+ if (!fliplr) {
+ for (int i = 0; i < height; i++) {
+ out[i * outstride] =
+ _mm256_cvtepi16_epi32(_mm256_castsi256_si128(out1[i]));
+ out[i * outstride + 1] =
+ _mm256_cvtepi16_epi32(_mm256_extractf128_si256(out1[i], 1));
+ }
+ } else {
+ for (int i = 0; i < height; i++) {
+ out[i * outstride + 1] = _mm256_cvtepi16_epi32(
+ mm_reverse_epi16(_mm256_castsi256_si128(out1[i])));
+ out[i * outstride + 0] = _mm256_cvtepi16_epi32(
+ mm_reverse_epi16(_mm256_extractf128_si256(out1[i], 1)));
+ }
+ }
+}
+
+static void fwd_txfm_transpose_8x8_avx2(const __m256i *in, __m256i *out,
+ const int instride,
+ const int outstride) {
+ __m256i u0, u1, u2, u3, u4, u5, u6, u7;
+ __m256i x0, x1;
+
+ u0 = _mm256_unpacklo_epi32(in[0 * instride], in[1 * instride]);
+ u1 = _mm256_unpackhi_epi32(in[0 * instride], in[1 * instride]);
+
+ u2 = _mm256_unpacklo_epi32(in[2 * instride], in[3 * instride]);
+ u3 = _mm256_unpackhi_epi32(in[2 * instride], in[3 * instride]);
+
+ u4 = _mm256_unpacklo_epi32(in[4 * instride], in[5 * instride]);
+ u5 = _mm256_unpackhi_epi32(in[4 * instride], in[5 * instride]);
+
+ u6 = _mm256_unpacklo_epi32(in[6 * instride], in[7 * instride]);
+ u7 = _mm256_unpackhi_epi32(in[6 * instride], in[7 * instride]);
+
+ x0 = _mm256_unpacklo_epi64(u0, u2);
+ x1 = _mm256_unpacklo_epi64(u4, u6);
+ out[0 * outstride] = _mm256_permute2f128_si256(x0, x1, 0x20);
+ out[4 * outstride] = _mm256_permute2f128_si256(x0, x1, 0x31);
+
+ x0 = _mm256_unpackhi_epi64(u0, u2);
+ x1 = _mm256_unpackhi_epi64(u4, u6);
+ out[1 * outstride] = _mm256_permute2f128_si256(x0, x1, 0x20);
+ out[5 * outstride] = _mm256_permute2f128_si256(x0, x1, 0x31);
+
+ x0 = _mm256_unpacklo_epi64(u1, u3);
+ x1 = _mm256_unpacklo_epi64(u5, u7);
+ out[2 * outstride] = _mm256_permute2f128_si256(x0, x1, 0x20);
+ out[6 * outstride] = _mm256_permute2f128_si256(x0, x1, 0x31);
+
+ x0 = _mm256_unpackhi_epi64(u1, u3);
+ x1 = _mm256_unpackhi_epi64(u5, u7);
+ out[3 * outstride] = _mm256_permute2f128_si256(x0, x1, 0x20);
+ out[7 * outstride] = _mm256_permute2f128_si256(x0, x1, 0x31);
+}
+static INLINE void round_shift_32_8xn_avx2(__m256i *in, int size, int bit,
+ int stride) {
+ if (bit < 0) {
+ bit = -bit;
+ __m256i round = _mm256_set1_epi32(1 << (bit - 1));
+ for (int i = 0; i < size; ++i) {
+ in[stride * i] = _mm256_add_epi32(in[stride * i], round);
+ in[stride * i] = _mm256_srai_epi32(in[stride * i], bit);
+ }
+ } else if (bit > 0) {
+ for (int i = 0; i < size; ++i) {
+ in[stride * i] = _mm256_slli_epi32(in[stride * i], bit);
+ }
+ }
+}
+static INLINE void store_buffer_avx2(const __m256i *const in, int32_t *out,
+ const int stride, const int out_size) {
+ for (int i = 0; i < out_size; ++i) {
+ _mm256_store_si256((__m256i *)(out), in[i]);
+ out += stride;
+ }
+}
+static INLINE void fwd_txfm_transpose_16x16_avx2(const __m256i *in,
+ __m256i *out) {
+ fwd_txfm_transpose_8x8_avx2(&in[0], &out[0], 2, 2);
+ fwd_txfm_transpose_8x8_avx2(&in[1], &out[16], 2, 2);
+ fwd_txfm_transpose_8x8_avx2(&in[16], &out[1], 2, 2);
+ fwd_txfm_transpose_8x8_avx2(&in[17], &out[17], 2, 2);
+}
+
+static INLINE __m256i av1_half_btf_avx2(const __m256i *w0, const __m256i *n0,
+ const __m256i *w1, const __m256i *n1,
+ const __m256i *rounding, int bit) {
+ __m256i x, y;
+
+ x = _mm256_mullo_epi32(*w0, *n0);
+ y = _mm256_mullo_epi32(*w1, *n1);
+ x = _mm256_add_epi32(x, y);
+ x = _mm256_add_epi32(x, *rounding);
+ x = _mm256_srai_epi32(x, bit);
+ return x;
+}
+#define btf_32_avx2_type0(w0, w1, in0, in1, out0, out1, bit) \
+ do { \
+ const __m256i ww0 = _mm256_set1_epi32(w0); \
+ const __m256i ww1 = _mm256_set1_epi32(w1); \
+ const __m256i in0_w0 = _mm256_mullo_epi32(in0, ww0); \
+ const __m256i in1_w1 = _mm256_mullo_epi32(in1, ww1); \
+ out0 = _mm256_add_epi32(in0_w0, in1_w1); \
+ round_shift_32_8xn_avx2(&out0, 1, -bit, 1); \
+ const __m256i in0_w1 = _mm256_mullo_epi32(in0, ww1); \
+ const __m256i in1_w0 = _mm256_mullo_epi32(in1, ww0); \
+ out1 = _mm256_sub_epi32(in0_w1, in1_w0); \
+ round_shift_32_8xn_avx2(&out1, 1, -bit, 1); \
+ } while (0)
+
+#define btf_32_type0_avx2_new(ww0, ww1, in0, in1, out0, out1, r, bit) \
+ do { \
+ const __m256i in0_w0 = _mm256_mullo_epi32(in0, ww0); \
+ const __m256i in1_w1 = _mm256_mullo_epi32(in1, ww1); \
+ out0 = _mm256_add_epi32(in0_w0, in1_w1); \
+ out0 = _mm256_add_epi32(out0, r); \
+ out0 = _mm256_srai_epi32(out0, bit); \
+ const __m256i in0_w1 = _mm256_mullo_epi32(in0, ww1); \
+ const __m256i in1_w0 = _mm256_mullo_epi32(in1, ww0); \
+ out1 = _mm256_sub_epi32(in0_w1, in1_w0); \
+ out1 = _mm256_add_epi32(out1, r); \
+ out1 = _mm256_srai_epi32(out1, bit); \
+ } while (0)
+
+typedef void (*transform_1d_avx2)(__m256i *in, __m256i *out,
+ const int8_t cos_bit, int instride,
+ int outstride);
+static void fdct8_avx2(__m256i *in, __m256i *out, const int8_t bit,
+ const int col_num, const int outstride) {
+ const int32_t *cospi = cospi_arr(bit);
+ const __m256i cospi32 = _mm256_set1_epi32(cospi[32]);
+ const __m256i cospim32 = _mm256_set1_epi32(-cospi[32]);
+ const __m256i cospi48 = _mm256_set1_epi32(cospi[48]);
+ const __m256i cospi16 = _mm256_set1_epi32(cospi[16]);
+ const __m256i cospi56 = _mm256_set1_epi32(cospi[56]);
+ const __m256i cospi8 = _mm256_set1_epi32(cospi[8]);
+ const __m256i cospi24 = _mm256_set1_epi32(cospi[24]);
+ const __m256i cospi40 = _mm256_set1_epi32(cospi[40]);
+ const __m256i rnding = _mm256_set1_epi32(1 << (bit - 1));
+ __m256i u[8], v[8];
+ for (int col = 0; col < col_num; ++col) {
+ u[0] = _mm256_add_epi32(in[0 * col_num + col], in[7 * col_num + col]);
+ v[7] = _mm256_sub_epi32(in[0 * col_num + col], in[7 * col_num + col]);
+ u[1] = _mm256_add_epi32(in[1 * col_num + col], in[6 * col_num + col]);
+ u[6] = _mm256_sub_epi32(in[1 * col_num + col], in[6 * col_num + col]);
+ u[2] = _mm256_add_epi32(in[2 * col_num + col], in[5 * col_num + col]);
+ u[5] = _mm256_sub_epi32(in[2 * col_num + col], in[5 * col_num + col]);
+ u[3] = _mm256_add_epi32(in[3 * col_num + col], in[4 * col_num + col]);
+ v[4] = _mm256_sub_epi32(in[3 * col_num + col], in[4 * col_num + col]);
+ v[0] = _mm256_add_epi32(u[0], u[3]);
+ v[3] = _mm256_sub_epi32(u[0], u[3]);
+ v[1] = _mm256_add_epi32(u[1], u[2]);
+ v[2] = _mm256_sub_epi32(u[1], u[2]);
+
+ v[5] = _mm256_mullo_epi32(u[5], cospim32);
+ v[6] = _mm256_mullo_epi32(u[6], cospi32);
+ v[5] = _mm256_add_epi32(v[5], v[6]);
+ v[5] = _mm256_add_epi32(v[5], rnding);
+ v[5] = _mm256_srai_epi32(v[5], bit);
+
+ u[0] = _mm256_mullo_epi32(u[5], cospi32);
+ v[6] = _mm256_mullo_epi32(u[6], cospim32);
+ v[6] = _mm256_sub_epi32(u[0], v[6]);
+ v[6] = _mm256_add_epi32(v[6], rnding);
+ v[6] = _mm256_srai_epi32(v[6], bit);
+
+ // stage 3
+ // type 0
+ v[0] = _mm256_mullo_epi32(v[0], cospi32);
+ v[1] = _mm256_mullo_epi32(v[1], cospi32);
+ u[0] = _mm256_add_epi32(v[0], v[1]);
+ u[0] = _mm256_add_epi32(u[0], rnding);
+ u[0] = _mm256_srai_epi32(u[0], bit);
+
+ u[1] = _mm256_sub_epi32(v[0], v[1]);
+ u[1] = _mm256_add_epi32(u[1], rnding);
+ u[1] = _mm256_srai_epi32(u[1], bit);
+
+ // type 1
+ v[0] = _mm256_mullo_epi32(v[2], cospi48);
+ v[1] = _mm256_mullo_epi32(v[3], cospi16);
+ u[2] = _mm256_add_epi32(v[0], v[1]);
+ u[2] = _mm256_add_epi32(u[2], rnding);
+ u[2] = _mm256_srai_epi32(u[2], bit);
+
+ v[0] = _mm256_mullo_epi32(v[2], cospi16);
+ v[1] = _mm256_mullo_epi32(v[3], cospi48);
+ u[3] = _mm256_sub_epi32(v[1], v[0]);
+ u[3] = _mm256_add_epi32(u[3], rnding);
+ u[3] = _mm256_srai_epi32(u[3], bit);
+
+ u[4] = _mm256_add_epi32(v[4], v[5]);
+ u[5] = _mm256_sub_epi32(v[4], v[5]);
+ u[6] = _mm256_sub_epi32(v[7], v[6]);
+ u[7] = _mm256_add_epi32(v[7], v[6]);
+
+ // stage 4
+ // stage 5
+ v[0] = _mm256_mullo_epi32(u[4], cospi56);
+ v[1] = _mm256_mullo_epi32(u[7], cospi8);
+ v[0] = _mm256_add_epi32(v[0], v[1]);
+ v[0] = _mm256_add_epi32(v[0], rnding);
+ out[1 * outstride + col] = _mm256_srai_epi32(v[0], bit); // buf0[4]
+
+ v[0] = _mm256_mullo_epi32(u[4], cospi8);
+ v[1] = _mm256_mullo_epi32(u[7], cospi56);
+ v[0] = _mm256_sub_epi32(v[1], v[0]);
+ v[0] = _mm256_add_epi32(v[0], rnding);
+ out[7 * outstride + col] = _mm256_srai_epi32(v[0], bit); // buf0[7]
+
+ v[0] = _mm256_mullo_epi32(u[5], cospi24);
+ v[1] = _mm256_mullo_epi32(u[6], cospi40);
+ v[0] = _mm256_add_epi32(v[0], v[1]);
+ v[0] = _mm256_add_epi32(v[0], rnding);
+ out[5 * outstride + col] = _mm256_srai_epi32(v[0], bit); // buf0[5]
+
+ v[0] = _mm256_mullo_epi32(u[5], cospi40);
+ v[1] = _mm256_mullo_epi32(u[6], cospi24);
+ v[0] = _mm256_sub_epi32(v[1], v[0]);
+ v[0] = _mm256_add_epi32(v[0], rnding);
+ out[3 * outstride + col] = _mm256_srai_epi32(v[0], bit); // buf0[6]
+
+ out[0 * outstride + col] = u[0]; // buf0[0]
+ out[4 * outstride + col] = u[1]; // buf0[1]
+ out[2 * outstride + col] = u[2]; // buf0[2]
+ out[6 * outstride + col] = u[3]; // buf0[3]
+ }
+}
+static void fadst8_avx2(__m256i *in, __m256i *out, const int8_t bit,
+ const int col_num, const int outstirde) {
+ (void)col_num;
+ const int32_t *cospi = cospi_arr(bit);
+ const __m256i cospi32 = _mm256_set1_epi32(cospi[32]);
+ const __m256i cospi16 = _mm256_set1_epi32(cospi[16]);
+ const __m256i cospim16 = _mm256_set1_epi32(-cospi[16]);
+ const __m256i cospi48 = _mm256_set1_epi32(cospi[48]);
+ const __m256i cospim48 = _mm256_set1_epi32(-cospi[48]);
+ const __m256i cospi4 = _mm256_set1_epi32(cospi[4]);
+ const __m256i cospim4 = _mm256_set1_epi32(-cospi[4]);
+ const __m256i cospi60 = _mm256_set1_epi32(cospi[60]);
+ const __m256i cospi20 = _mm256_set1_epi32(cospi[20]);
+ const __m256i cospim20 = _mm256_set1_epi32(-cospi[20]);
+ const __m256i cospi44 = _mm256_set1_epi32(cospi[44]);
+ const __m256i cospi28 = _mm256_set1_epi32(cospi[28]);
+ const __m256i cospi36 = _mm256_set1_epi32(cospi[36]);
+ const __m256i cospim36 = _mm256_set1_epi32(-cospi[36]);
+ const __m256i cospi52 = _mm256_set1_epi32(cospi[52]);
+ const __m256i cospim52 = _mm256_set1_epi32(-cospi[52]);
+ const __m256i cospi12 = _mm256_set1_epi32(cospi[12]);
+ const __m256i rnding = _mm256_set1_epi32(1 << (bit - 1));
+ const __m256i zero = _mm256_setzero_si256();
+ __m256i u0, u1, u2, u3, u4, u5, u6, u7;
+ __m256i v0, v1, v2, v3, v4, v5, v6, v7;
+ __m256i x, y;
+ for (int col = 0; col < col_num; ++col) {
+ u0 = in[0 * col_num + col];
+ u1 = _mm256_sub_epi32(zero, in[7 * col_num + col]);
+ u2 = _mm256_sub_epi32(zero, in[3 * col_num + col]);
+ u3 = in[4 * col_num + col];
+ u4 = _mm256_sub_epi32(zero, in[1 * col_num + col]);
+ u5 = in[6 * col_num + col];
+ u6 = in[2 * col_num + col];
+ u7 = _mm256_sub_epi32(zero, in[5 * col_num + col]);
+
+ // stage 2
+ v0 = u0;
+ v1 = u1;
+
+ x = _mm256_mullo_epi32(u2, cospi32);
+ y = _mm256_mullo_epi32(u3, cospi32);
+ v2 = _mm256_add_epi32(x, y);
+ v2 = _mm256_add_epi32(v2, rnding);
+ v2 = _mm256_srai_epi32(v2, bit);
+
+ v3 = _mm256_sub_epi32(x, y);
+ v3 = _mm256_add_epi32(v3, rnding);
+ v3 = _mm256_srai_epi32(v3, bit);
+
+ v4 = u4;
+ v5 = u5;
+
+ x = _mm256_mullo_epi32(u6, cospi32);
+ y = _mm256_mullo_epi32(u7, cospi32);
+ v6 = _mm256_add_epi32(x, y);
+ v6 = _mm256_add_epi32(v6, rnding);
+ v6 = _mm256_srai_epi32(v6, bit);
+
+ v7 = _mm256_sub_epi32(x, y);
+ v7 = _mm256_add_epi32(v7, rnding);
+ v7 = _mm256_srai_epi32(v7, bit);
+
+ // stage 3
+ u0 = _mm256_add_epi32(v0, v2);
+ u1 = _mm256_add_epi32(v1, v3);
+ u2 = _mm256_sub_epi32(v0, v2);
+ u3 = _mm256_sub_epi32(v1, v3);
+ u4 = _mm256_add_epi32(v4, v6);
+ u5 = _mm256_add_epi32(v5, v7);
+ u6 = _mm256_sub_epi32(v4, v6);
+ u7 = _mm256_sub_epi32(v5, v7);
+
+ // stage 4
+ v0 = u0;
+ v1 = u1;
+ v2 = u2;
+ v3 = u3;
+
+ x = _mm256_mullo_epi32(u4, cospi16);
+ y = _mm256_mullo_epi32(u5, cospi48);
+ v4 = _mm256_add_epi32(x, y);
+ v4 = _mm256_add_epi32(v4, rnding);
+ v4 = _mm256_srai_epi32(v4, bit);
+
+ x = _mm256_mullo_epi32(u4, cospi48);
+ y = _mm256_mullo_epi32(u5, cospim16);
+ v5 = _mm256_add_epi32(x, y);
+ v5 = _mm256_add_epi32(v5, rnding);
+ v5 = _mm256_srai_epi32(v5, bit);
+
+ x = _mm256_mullo_epi32(u6, cospim48);
+ y = _mm256_mullo_epi32(u7, cospi16);
+ v6 = _mm256_add_epi32(x, y);
+ v6 = _mm256_add_epi32(v6, rnding);
+ v6 = _mm256_srai_epi32(v6, bit);
+
+ x = _mm256_mullo_epi32(u6, cospi16);
+ y = _mm256_mullo_epi32(u7, cospi48);
+ v7 = _mm256_add_epi32(x, y);
+ v7 = _mm256_add_epi32(v7, rnding);
+ v7 = _mm256_srai_epi32(v7, bit);
+
+ // stage 5
+ u0 = _mm256_add_epi32(v0, v4);
+ u1 = _mm256_add_epi32(v1, v5);
+ u2 = _mm256_add_epi32(v2, v6);
+ u3 = _mm256_add_epi32(v3, v7);
+ u4 = _mm256_sub_epi32(v0, v4);
+ u5 = _mm256_sub_epi32(v1, v5);
+ u6 = _mm256_sub_epi32(v2, v6);
+ u7 = _mm256_sub_epi32(v3, v7);
+
+ // stage 6
+ x = _mm256_mullo_epi32(u0, cospi4);
+ y = _mm256_mullo_epi32(u1, cospi60);
+ v0 = _mm256_add_epi32(x, y);
+ v0 = _mm256_add_epi32(v0, rnding);
+ v0 = _mm256_srai_epi32(v0, bit);
+
+ x = _mm256_mullo_epi32(u0, cospi60);
+ y = _mm256_mullo_epi32(u1, cospim4);
+ v1 = _mm256_add_epi32(x, y);
+ v1 = _mm256_add_epi32(v1, rnding);
+ v1 = _mm256_srai_epi32(v1, bit);
+
+ x = _mm256_mullo_epi32(u2, cospi20);
+ y = _mm256_mullo_epi32(u3, cospi44);
+ v2 = _mm256_add_epi32(x, y);
+ v2 = _mm256_add_epi32(v2, rnding);
+ v2 = _mm256_srai_epi32(v2, bit);
+
+ x = _mm256_mullo_epi32(u2, cospi44);
+ y = _mm256_mullo_epi32(u3, cospim20);
+ v3 = _mm256_add_epi32(x, y);
+ v3 = _mm256_add_epi32(v3, rnding);
+ v3 = _mm256_srai_epi32(v3, bit);
+
+ x = _mm256_mullo_epi32(u4, cospi36);
+ y = _mm256_mullo_epi32(u5, cospi28);
+ v4 = _mm256_add_epi32(x, y);
+ v4 = _mm256_add_epi32(v4, rnding);
+ v4 = _mm256_srai_epi32(v4, bit);
+
+ x = _mm256_mullo_epi32(u4, cospi28);
+ y = _mm256_mullo_epi32(u5, cospim36);
+ v5 = _mm256_add_epi32(x, y);
+ v5 = _mm256_add_epi32(v5, rnding);
+ v5 = _mm256_srai_epi32(v5, bit);
+
+ x = _mm256_mullo_epi32(u6, cospi52);
+ y = _mm256_mullo_epi32(u7, cospi12);
+ v6 = _mm256_add_epi32(x, y);
+ v6 = _mm256_add_epi32(v6, rnding);
+ v6 = _mm256_srai_epi32(v6, bit);
+
+ x = _mm256_mullo_epi32(u6, cospi12);
+ y = _mm256_mullo_epi32(u7, cospim52);
+ v7 = _mm256_add_epi32(x, y);
+ v7 = _mm256_add_epi32(v7, rnding);
+ v7 = _mm256_srai_epi32(v7, bit);
+
+ // stage 7
+ out[0 * outstirde + col] = v1;
+ out[1 * outstirde + col] = v6;
+ out[2 * outstirde + col] = v3;
+ out[3 * outstirde + col] = v4;
+ out[4 * outstirde + col] = v5;
+ out[5 * outstirde + col] = v2;
+ out[6 * outstirde + col] = v7;
+ out[7 * outstirde + col] = v0;
+ }
+}
+static void idtx8_avx2(__m256i *in, __m256i *out, const int8_t bit, int col_num,
+ int outstride) {
+ (void)bit;
+ (void)outstride;
+ int num_iters = 8 * col_num;
+ for (int i = 0; i < num_iters; i += 8) {
+ out[i] = _mm256_add_epi32(in[i], in[i]);
+ out[i + 1] = _mm256_add_epi32(in[i + 1], in[i + 1]);
+ out[i + 2] = _mm256_add_epi32(in[i + 2], in[i + 2]);
+ out[i + 3] = _mm256_add_epi32(in[i + 3], in[i + 3]);
+ out[i + 4] = _mm256_add_epi32(in[i + 4], in[i + 4]);
+ out[i + 5] = _mm256_add_epi32(in[i + 5], in[i + 5]);
+ out[i + 6] = _mm256_add_epi32(in[i + 6], in[i + 6]);
+ out[i + 7] = _mm256_add_epi32(in[i + 7], in[i + 7]);
+ }
+}
+void av1_fwd_txfm2d_8x8_avx2(const int16_t *input, int32_t *coeff, int stride,
+ TX_TYPE tx_type, int bd) {
+ __m256i in[8], out[8];
+ const TX_SIZE tx_size = TX_8X8;
+ const int8_t *shift = av1_fwd_txfm_shift_ls[tx_size];
+ const int txw_idx = get_txw_idx(tx_size);
+ const int txh_idx = get_txh_idx(tx_size);
+ const int width = tx_size_wide[tx_size];
+ const int width_div8 = (width >> 3);
+
+ switch (tx_type) {
+ case DCT_DCT:
+ load_buffer_8x8_avx2(input, in, stride, 0, 0, shift[0]);
+ fdct8_avx2(in, out, av1_fwd_cos_bit_col[txw_idx][txh_idx], width_div8,
+ width_div8);
+ col_txfm_8x8_rounding(out, -shift[1]);
+ fwd_txfm_transpose_8x8_avx2(out, in, width_div8, width_div8);
+ fdct8_avx2(in, out, av1_fwd_cos_bit_row[txw_idx][txh_idx], width_div8,
+ width_div8);
+ fwd_txfm_transpose_8x8_avx2(out, in, width_div8, width_div8);
+ store_buffer_avx2(in, coeff, 8, 8);
+ break;
+ case ADST_DCT:
+ load_buffer_8x8_avx2(input, in, stride, 0, 0, shift[0]);
+ fadst8_avx2(in, out, av1_fwd_cos_bit_col[txw_idx][txh_idx], width_div8,
+ width_div8);
+ col_txfm_8x8_rounding(out, -shift[1]);
+ fwd_txfm_transpose_8x8_avx2(out, in, width_div8, width_div8);
+ fdct8_avx2(in, out, av1_fwd_cos_bit_row[txw_idx][txh_idx], width_div8,
+ width_div8);
+ fwd_txfm_transpose_8x8_avx2(out, in, width_div8, width_div8);
+ store_buffer_avx2(in, coeff, 8, 8);
+ break;
+ case DCT_ADST:
+ load_buffer_8x8_avx2(input, in, stride, 0, 0, shift[0]);
+ fdct8_avx2(in, out, av1_fwd_cos_bit_col[txw_idx][txh_idx], width_div8,
+ width_div8);
+ col_txfm_8x8_rounding(out, -shift[1]);
+ fwd_txfm_transpose_8x8_avx2(out, in, width_div8, width_div8);
+ fadst8_avx2(in, out, av1_fwd_cos_bit_row[txw_idx][txh_idx], width_div8,
+ width_div8);
+ fwd_txfm_transpose_8x8_avx2(out, in, width_div8, width_div8);
+ store_buffer_avx2(in, coeff, 8, 8);
+ break;
+ case ADST_ADST:
+ load_buffer_8x8_avx2(input, in, stride, 0, 0, shift[0]);
+ fadst8_avx2(in, out, av1_fwd_cos_bit_col[txw_idx][txh_idx], width_div8,
+ width_div8);
+ col_txfm_8x8_rounding(out, -shift[1]);
+ fwd_txfm_transpose_8x8_avx2(out, in, width_div8, width_div8);
+ fadst8_avx2(in, out, av1_fwd_cos_bit_row[txw_idx][txh_idx], width_div8,
+ width_div8);
+ fwd_txfm_transpose_8x8_avx2(out, in, width_div8, width_div8);
+ store_buffer_avx2(in, coeff, 8, 8);
+ break;
+ case FLIPADST_DCT:
+ load_buffer_8x8_avx2(input, in, stride, 1, 0, shift[0]);
+ fadst8_avx2(in, out, av1_fwd_cos_bit_col[txw_idx][txh_idx], width_div8,
+ width_div8);
+ col_txfm_8x8_rounding(out, -shift[1]);
+ fwd_txfm_transpose_8x8_avx2(out, in, width_div8, width_div8);
+ fdct8_avx2(in, out, av1_fwd_cos_bit_row[txw_idx][txh_idx], width_div8,
+ width_div8);
+ fwd_txfm_transpose_8x8_avx2(out, in, width_div8, width_div8);
+ store_buffer_avx2(in, coeff, 8, 8);
+ break;
+ case DCT_FLIPADST:
+ load_buffer_8x8_avx2(input, in, stride, 0, 1, shift[0]);
+ fdct8_avx2(in, out, av1_fwd_cos_bit_col[txw_idx][txh_idx], width_div8,
+ width_div8);
+ col_txfm_8x8_rounding(out, -shift[1]);
+ fwd_txfm_transpose_8x8_avx2(out, in, width_div8, width_div8);
+ fadst8_avx2(in, out, av1_fwd_cos_bit_row[txw_idx][txh_idx], width_div8,
+ width_div8);
+ fwd_txfm_transpose_8x8_avx2(out, in, width_div8, width_div8);
+ store_buffer_avx2(in, coeff, 8, 8);
+ break;
+ case FLIPADST_FLIPADST:
+ load_buffer_8x8_avx2(input, in, stride, 1, 1, shift[0]);
+ fadst8_avx2(in, out, av1_fwd_cos_bit_col[txw_idx][txh_idx], width_div8,
+ width_div8);
+ col_txfm_8x8_rounding(out, -shift[1]);
+ fwd_txfm_transpose_8x8_avx2(out, in, width_div8, width_div8);
+ fadst8_avx2(in, out, av1_fwd_cos_bit_row[txw_idx][txh_idx], width_div8,
+ width_div8);
+ fwd_txfm_transpose_8x8_avx2(out, in, width_div8, width_div8);
+ store_buffer_avx2(in, coeff, 8, 8);
+ break;
+ case ADST_FLIPADST:
+ load_buffer_8x8_avx2(input, in, stride, 0, 1, shift[0]);
+ fadst8_avx2(in, out, av1_fwd_cos_bit_col[txw_idx][txh_idx], width_div8,
+ width_div8);
+ col_txfm_8x8_rounding(out, -shift[1]);
+ fwd_txfm_transpose_8x8_avx2(out, in, width_div8, width_div8);
+ fadst8_avx2(in, out, av1_fwd_cos_bit_row[txw_idx][txh_idx], width_div8,
+ width_div8);
+ fwd_txfm_transpose_8x8_avx2(out, in, width_div8, width_div8);
+ store_buffer_avx2(in, coeff, 8, 8);
+ break;
+ case FLIPADST_ADST:
+ load_buffer_8x8_avx2(input, in, stride, 1, 0, shift[0]);
+ fadst8_avx2(in, out, av1_fwd_cos_bit_col[txw_idx][txh_idx], width_div8,
+ width_div8);
+ col_txfm_8x8_rounding(out, -shift[1]);
+ fwd_txfm_transpose_8x8_avx2(out, in, width_div8, width_div8);
+ fadst8_avx2(in, out, av1_fwd_cos_bit_row[txw_idx][txh_idx], width_div8,
+ width_div8);
+ fwd_txfm_transpose_8x8_avx2(out, in, width_div8, width_div8);
+ store_buffer_avx2(in, coeff, 8, 8);
+ break;
+ case IDTX:
+ load_buffer_8x8_avx2(input, in, stride, 0, 0, shift[0]);
+ idtx8_avx2(in, out, av1_fwd_cos_bit_col[txw_idx][txh_idx], width_div8,
+ width_div8);
+ col_txfm_8x8_rounding(out, -shift[1]);
+ idtx8_avx2(out, in, av1_fwd_cos_bit_col[txw_idx][txh_idx], width_div8,
+ width_div8);
+ store_buffer_avx2(in, coeff, 8, 8);
+ break;
+ case V_DCT:
+ load_buffer_8x8_avx2(input, in, stride, 0, 0, shift[0]);
+ fdct8_avx2(in, out, av1_fwd_cos_bit_col[txw_idx][txh_idx], width_div8,
+ width_div8);
+ col_txfm_8x8_rounding(out, -shift[1]);
+ idtx8_avx2(out, in, av1_fwd_cos_bit_col[txw_idx][txh_idx], width_div8,
+ width_div8);
+ store_buffer_avx2(in, coeff, 8, 8);
+ break;
+ case H_DCT:
+ load_buffer_8x8_avx2(input, in, stride, 0, 0, shift[0]);
+ idtx8_avx2(in, out, av1_fwd_cos_bit_col[txw_idx][txh_idx], width_div8,
+ width_div8);
+ col_txfm_8x8_rounding(out, -shift[1]);
+ fwd_txfm_transpose_8x8_avx2(out, in, width_div8, width_div8);
+ fdct8_avx2(in, out, av1_fwd_cos_bit_col[txw_idx][txh_idx], width_div8,
+ width_div8);
+ fwd_txfm_transpose_8x8_avx2(out, in, width_div8, width_div8);
+ store_buffer_avx2(in, coeff, 8, 8);
+ break;
+ case V_ADST:
+ load_buffer_8x8_avx2(input, in, stride, 0, 0, shift[0]);
+ fadst8_avx2(in, out, av1_fwd_cos_bit_col[txw_idx][txh_idx], width_div8,
+ width_div8);
+ col_txfm_8x8_rounding(out, -shift[1]);
+ idtx8_avx2(out, in, av1_fwd_cos_bit_col[txw_idx][txh_idx], width_div8,
+ width_div8);
+ store_buffer_avx2(in, coeff, 8, 8);
+ break;
+ case H_ADST:
+ load_buffer_8x8_avx2(input, in, stride, 0, 0, shift[0]);
+ idtx8_avx2(in, out, av1_fwd_cos_bit_col[txw_idx][txh_idx], width_div8,
+ width_div8);
+ col_txfm_8x8_rounding(out, -shift[1]);
+ fwd_txfm_transpose_8x8_avx2(out, in, width_div8, width_div8);
+ fadst8_avx2(in, out, av1_fwd_cos_bit_col[txw_idx][txh_idx], width_div8,
+ width_div8);
+ fwd_txfm_transpose_8x8_avx2(out, in, width_div8, width_div8);
+ store_buffer_avx2(in, coeff, 8, 8);
+ break;
+ case V_FLIPADST:
+ load_buffer_8x8_avx2(input, in, stride, 1, 0, shift[0]);
+ fadst8_avx2(in, out, av1_fwd_cos_bit_col[txw_idx][txh_idx], width_div8,
+ width_div8);
+ col_txfm_8x8_rounding(out, -shift[1]);
+ idtx8_avx2(out, in, av1_fwd_cos_bit_col[txw_idx][txh_idx], width_div8,
+ width_div8);
+ store_buffer_avx2(in, coeff, 8, 8);
+ break;
+ case H_FLIPADST:
+ load_buffer_8x8_avx2(input, in, stride, 0, 1, shift[0]);
+ idtx8_avx2(in, out, av1_fwd_cos_bit_col[txw_idx][txh_idx], width_div8,
+ width_div8);
+ col_txfm_8x8_rounding(out, -shift[1]);
+ fwd_txfm_transpose_8x8_avx2(out, in, width_div8, width_div8);
+ fadst8_avx2(in, out, av1_fwd_cos_bit_col[txw_idx][txh_idx], width_div8,
+ width_div8);
+ fwd_txfm_transpose_8x8_avx2(out, in, width_div8, width_div8);
+ store_buffer_avx2(in, coeff, 8, 8);
+ break;
+ default: assert(0);
+ }
+ (void)bd;
+}
+
+static void fdct16_avx2(__m256i *in, __m256i *out, const int8_t bit,
+ const int col_num, const int outstride) {
+ const int32_t *cospi = cospi_arr(bit);
+ const __m256i cospi32 = _mm256_set1_epi32(cospi[32]);
+ const __m256i cospim32 = _mm256_set1_epi32(-cospi[32]);
+ const __m256i cospi48 = _mm256_set1_epi32(cospi[48]);
+ const __m256i cospi16 = _mm256_set1_epi32(cospi[16]);
+ const __m256i cospim48 = _mm256_set1_epi32(-cospi[48]);
+ const __m256i cospim16 = _mm256_set1_epi32(-cospi[16]);
+ const __m256i cospi56 = _mm256_set1_epi32(cospi[56]);
+ const __m256i cospi8 = _mm256_set1_epi32(cospi[8]);
+ const __m256i cospi24 = _mm256_set1_epi32(cospi[24]);
+ const __m256i cospi40 = _mm256_set1_epi32(cospi[40]);
+ const __m256i cospi60 = _mm256_set1_epi32(cospi[60]);
+ const __m256i cospi4 = _mm256_set1_epi32(cospi[4]);
+ const __m256i cospi28 = _mm256_set1_epi32(cospi[28]);
+ const __m256i cospi36 = _mm256_set1_epi32(cospi[36]);
+ const __m256i cospi44 = _mm256_set1_epi32(cospi[44]);
+ const __m256i cospi20 = _mm256_set1_epi32(cospi[20]);
+ const __m256i cospi12 = _mm256_set1_epi32(cospi[12]);
+ const __m256i cospi52 = _mm256_set1_epi32(cospi[52]);
+ const __m256i rnding = _mm256_set1_epi32(1 << (bit - 1));
+ __m256i u[16], v[16], x;
+ int col;
+
+ // Calculate the column 0, 1, 2, 3
+ for (col = 0; col < col_num; ++col) {
+ // stage 0
+ // stage 1
+ u[0] = _mm256_add_epi32(in[0 * col_num + col], in[15 * col_num + col]);
+ u[15] = _mm256_sub_epi32(in[0 * col_num + col], in[15 * col_num + col]);
+ u[1] = _mm256_add_epi32(in[1 * col_num + col], in[14 * col_num + col]);
+ u[14] = _mm256_sub_epi32(in[1 * col_num + col], in[14 * col_num + col]);
+ u[2] = _mm256_add_epi32(in[2 * col_num + col], in[13 * col_num + col]);
+ u[13] = _mm256_sub_epi32(in[2 * col_num + col], in[13 * col_num + col]);
+ u[3] = _mm256_add_epi32(in[3 * col_num + col], in[12 * col_num + col]);
+ u[12] = _mm256_sub_epi32(in[3 * col_num + col], in[12 * col_num + col]);
+ u[4] = _mm256_add_epi32(in[4 * col_num + col], in[11 * col_num + col]);
+ u[11] = _mm256_sub_epi32(in[4 * col_num + col], in[11 * col_num + col]);
+ u[5] = _mm256_add_epi32(in[5 * col_num + col], in[10 * col_num + col]);
+ u[10] = _mm256_sub_epi32(in[5 * col_num + col], in[10 * col_num + col]);
+ u[6] = _mm256_add_epi32(in[6 * col_num + col], in[9 * col_num + col]);
+ u[9] = _mm256_sub_epi32(in[6 * col_num + col], in[9 * col_num + col]);
+ u[7] = _mm256_add_epi32(in[7 * col_num + col], in[8 * col_num + col]);
+ u[8] = _mm256_sub_epi32(in[7 * col_num + col], in[8 * col_num + col]);
+
+ // stage 2
+ v[0] = _mm256_add_epi32(u[0], u[7]);
+ v[7] = _mm256_sub_epi32(u[0], u[7]);
+ v[1] = _mm256_add_epi32(u[1], u[6]);
+ v[6] = _mm256_sub_epi32(u[1], u[6]);
+ v[2] = _mm256_add_epi32(u[2], u[5]);
+ v[5] = _mm256_sub_epi32(u[2], u[5]);
+ v[3] = _mm256_add_epi32(u[3], u[4]);
+ v[4] = _mm256_sub_epi32(u[3], u[4]);
+ v[8] = u[8];
+ v[9] = u[9];
+
+ v[10] = _mm256_mullo_epi32(u[10], cospim32);
+ x = _mm256_mullo_epi32(u[13], cospi32);
+ v[10] = _mm256_add_epi32(v[10], x);
+ v[10] = _mm256_add_epi32(v[10], rnding);
+ v[10] = _mm256_srai_epi32(v[10], bit);
+
+ v[13] = _mm256_mullo_epi32(u[10], cospi32);
+ x = _mm256_mullo_epi32(u[13], cospim32);
+ v[13] = _mm256_sub_epi32(v[13], x);
+ v[13] = _mm256_add_epi32(v[13], rnding);
+ v[13] = _mm256_srai_epi32(v[13], bit);
+
+ v[11] = _mm256_mullo_epi32(u[11], cospim32);
+ x = _mm256_mullo_epi32(u[12], cospi32);
+ v[11] = _mm256_add_epi32(v[11], x);
+ v[11] = _mm256_add_epi32(v[11], rnding);
+ v[11] = _mm256_srai_epi32(v[11], bit);
+
+ v[12] = _mm256_mullo_epi32(u[11], cospi32);
+ x = _mm256_mullo_epi32(u[12], cospim32);
+ v[12] = _mm256_sub_epi32(v[12], x);
+ v[12] = _mm256_add_epi32(v[12], rnding);
+ v[12] = _mm256_srai_epi32(v[12], bit);
+ v[14] = u[14];
+ v[15] = u[15];
+
+ // stage 3
+ u[0] = _mm256_add_epi32(v[0], v[3]);
+ u[3] = _mm256_sub_epi32(v[0], v[3]);
+ u[1] = _mm256_add_epi32(v[1], v[2]);
+ u[2] = _mm256_sub_epi32(v[1], v[2]);
+ u[4] = v[4];
+
+ u[5] = _mm256_mullo_epi32(v[5], cospim32);
+ x = _mm256_mullo_epi32(v[6], cospi32);
+ u[5] = _mm256_add_epi32(u[5], x);
+ u[5] = _mm256_add_epi32(u[5], rnding);
+ u[5] = _mm256_srai_epi32(u[5], bit);
+
+ u[6] = _mm256_mullo_epi32(v[5], cospi32);
+ x = _mm256_mullo_epi32(v[6], cospim32);
+ u[6] = _mm256_sub_epi32(u[6], x);
+ u[6] = _mm256_add_epi32(u[6], rnding);
+ u[6] = _mm256_srai_epi32(u[6], bit);
+
+ u[7] = v[7];
+ u[8] = _mm256_add_epi32(v[8], v[11]);
+ u[11] = _mm256_sub_epi32(v[8], v[11]);
+ u[9] = _mm256_add_epi32(v[9], v[10]);
+ u[10] = _mm256_sub_epi32(v[9], v[10]);
+ u[12] = _mm256_sub_epi32(v[15], v[12]);
+ u[15] = _mm256_add_epi32(v[15], v[12]);
+ u[13] = _mm256_sub_epi32(v[14], v[13]);
+ u[14] = _mm256_add_epi32(v[14], v[13]);
+
+ // stage 4
+ u[0] = _mm256_mullo_epi32(u[0], cospi32);
+ u[1] = _mm256_mullo_epi32(u[1], cospi32);
+ v[0] = _mm256_add_epi32(u[0], u[1]);
+ v[0] = _mm256_add_epi32(v[0], rnding);
+ v[0] = _mm256_srai_epi32(v[0], bit);
+
+ v[1] = _mm256_sub_epi32(u[0], u[1]);
+ v[1] = _mm256_add_epi32(v[1], rnding);
+ v[1] = _mm256_srai_epi32(v[1], bit);
+
+ v[2] = _mm256_mullo_epi32(u[2], cospi48);
+ x = _mm256_mullo_epi32(u[3], cospi16);
+ v[2] = _mm256_add_epi32(v[2], x);
+ v[2] = _mm256_add_epi32(v[2], rnding);
+ v[2] = _mm256_srai_epi32(v[2], bit);
+
+ v[3] = _mm256_mullo_epi32(u[2], cospi16);
+ x = _mm256_mullo_epi32(u[3], cospi48);
+ v[3] = _mm256_sub_epi32(x, v[3]);
+ v[3] = _mm256_add_epi32(v[3], rnding);
+ v[3] = _mm256_srai_epi32(v[3], bit);
+
+ v[4] = _mm256_add_epi32(u[4], u[5]);
+ v[5] = _mm256_sub_epi32(u[4], u[5]);
+ v[6] = _mm256_sub_epi32(u[7], u[6]);
+ v[7] = _mm256_add_epi32(u[7], u[6]);
+ v[8] = u[8];
+
+ v[9] = _mm256_mullo_epi32(u[9], cospim16);
+ x = _mm256_mullo_epi32(u[14], cospi48);
+ v[9] = _mm256_add_epi32(v[9], x);
+ v[9] = _mm256_add_epi32(v[9], rnding);
+ v[9] = _mm256_srai_epi32(v[9], bit);
+
+ v[14] = _mm256_mullo_epi32(u[9], cospi48);
+ x = _mm256_mullo_epi32(u[14], cospim16);
+ v[14] = _mm256_sub_epi32(v[14], x);
+ v[14] = _mm256_add_epi32(v[14], rnding);
+ v[14] = _mm256_srai_epi32(v[14], bit);
+
+ v[10] = _mm256_mullo_epi32(u[10], cospim48);
+ x = _mm256_mullo_epi32(u[13], cospim16);
+ v[10] = _mm256_add_epi32(v[10], x);
+ v[10] = _mm256_add_epi32(v[10], rnding);
+ v[10] = _mm256_srai_epi32(v[10], bit);
+
+ v[13] = _mm256_mullo_epi32(u[10], cospim16);
+ x = _mm256_mullo_epi32(u[13], cospim48);
+ v[13] = _mm256_sub_epi32(v[13], x);
+ v[13] = _mm256_add_epi32(v[13], rnding);
+ v[13] = _mm256_srai_epi32(v[13], bit);
+
+ v[11] = u[11];
+ v[12] = u[12];
+ v[15] = u[15];
+
+ // stage 5
+ u[0] = v[0];
+ u[1] = v[1];
+ u[2] = v[2];
+ u[3] = v[3];
+
+ u[4] = _mm256_mullo_epi32(v[4], cospi56);
+ x = _mm256_mullo_epi32(v[7], cospi8);
+ u[4] = _mm256_add_epi32(u[4], x);
+ u[4] = _mm256_add_epi32(u[4], rnding);
+ u[4] = _mm256_srai_epi32(u[4], bit);
+
+ u[7] = _mm256_mullo_epi32(v[4], cospi8);
+ x = _mm256_mullo_epi32(v[7], cospi56);
+ u[7] = _mm256_sub_epi32(x, u[7]);
+ u[7] = _mm256_add_epi32(u[7], rnding);
+ u[7] = _mm256_srai_epi32(u[7], bit);
+
+ u[5] = _mm256_mullo_epi32(v[5], cospi24);
+ x = _mm256_mullo_epi32(v[6], cospi40);
+ u[5] = _mm256_add_epi32(u[5], x);
+ u[5] = _mm256_add_epi32(u[5], rnding);
+ u[5] = _mm256_srai_epi32(u[5], bit);
+
+ u[6] = _mm256_mullo_epi32(v[5], cospi40);
+ x = _mm256_mullo_epi32(v[6], cospi24);
+ u[6] = _mm256_sub_epi32(x, u[6]);
+ u[6] = _mm256_add_epi32(u[6], rnding);
+ u[6] = _mm256_srai_epi32(u[6], bit);
+
+ u[8] = _mm256_add_epi32(v[8], v[9]);
+ u[9] = _mm256_sub_epi32(v[8], v[9]);
+ u[10] = _mm256_sub_epi32(v[11], v[10]);
+ u[11] = _mm256_add_epi32(v[11], v[10]);
+ u[12] = _mm256_add_epi32(v[12], v[13]);
+ u[13] = _mm256_sub_epi32(v[12], v[13]);
+ u[14] = _mm256_sub_epi32(v[15], v[14]);
+ u[15] = _mm256_add_epi32(v[15], v[14]);
+
+ // stage 6
+ v[0] = u[0];
+ v[1] = u[1];
+ v[2] = u[2];
+ v[3] = u[3];
+ v[4] = u[4];
+ v[5] = u[5];
+ v[6] = u[6];
+ v[7] = u[7];
+
+ v[8] = _mm256_mullo_epi32(u[8], cospi60);
+ x = _mm256_mullo_epi32(u[15], cospi4);
+ v[8] = _mm256_add_epi32(v[8], x);
+ v[8] = _mm256_add_epi32(v[8], rnding);
+ v[8] = _mm256_srai_epi32(v[8], bit);
+
+ v[15] = _mm256_mullo_epi32(u[8], cospi4);
+ x = _mm256_mullo_epi32(u[15], cospi60);
+ v[15] = _mm256_sub_epi32(x, v[15]);
+ v[15] = _mm256_add_epi32(v[15], rnding);
+ v[15] = _mm256_srai_epi32(v[15], bit);
+
+ v[9] = _mm256_mullo_epi32(u[9], cospi28);
+ x = _mm256_mullo_epi32(u[14], cospi36);
+ v[9] = _mm256_add_epi32(v[9], x);
+ v[9] = _mm256_add_epi32(v[9], rnding);
+ v[9] = _mm256_srai_epi32(v[9], bit);
+
+ v[14] = _mm256_mullo_epi32(u[9], cospi36);
+ x = _mm256_mullo_epi32(u[14], cospi28);
+ v[14] = _mm256_sub_epi32(x, v[14]);
+ v[14] = _mm256_add_epi32(v[14], rnding);
+ v[14] = _mm256_srai_epi32(v[14], bit);
+
+ v[10] = _mm256_mullo_epi32(u[10], cospi44);
+ x = _mm256_mullo_epi32(u[13], cospi20);
+ v[10] = _mm256_add_epi32(v[10], x);
+ v[10] = _mm256_add_epi32(v[10], rnding);
+ v[10] = _mm256_srai_epi32(v[10], bit);
+
+ v[13] = _mm256_mullo_epi32(u[10], cospi20);
+ x = _mm256_mullo_epi32(u[13], cospi44);
+ v[13] = _mm256_sub_epi32(x, v[13]);
+ v[13] = _mm256_add_epi32(v[13], rnding);
+ v[13] = _mm256_srai_epi32(v[13], bit);
+
+ v[11] = _mm256_mullo_epi32(u[11], cospi12);
+ x = _mm256_mullo_epi32(u[12], cospi52);
+ v[11] = _mm256_add_epi32(v[11], x);
+ v[11] = _mm256_add_epi32(v[11], rnding);
+ v[11] = _mm256_srai_epi32(v[11], bit);
+
+ v[12] = _mm256_mullo_epi32(u[11], cospi52);
+ x = _mm256_mullo_epi32(u[12], cospi12);
+ v[12] = _mm256_sub_epi32(x, v[12]);
+ v[12] = _mm256_add_epi32(v[12], rnding);
+ v[12] = _mm256_srai_epi32(v[12], bit);
+
+ out[0 * outstride + col] = v[0];
+ out[1 * outstride + col] = v[8];
+ out[2 * outstride + col] = v[4];
+ out[3 * outstride + col] = v[12];
+ out[4 * outstride + col] = v[2];
+ out[5 * outstride + col] = v[10];
+ out[6 * outstride + col] = v[6];
+ out[7 * outstride + col] = v[14];
+ out[8 * outstride + col] = v[1];
+ out[9 * outstride + col] = v[9];
+ out[10 * outstride + col] = v[5];
+ out[11 * outstride + col] = v[13];
+ out[12 * outstride + col] = v[3];
+ out[13 * outstride + col] = v[11];
+ out[14 * outstride + col] = v[7];
+ out[15 * outstride + col] = v[15];
+ }
+}
+static void fadst16_avx2(__m256i *in, __m256i *out, const int8_t bit,
+ const int num_cols, const int outstride) {
+ const int32_t *cospi = cospi_arr(bit);
+ const __m256i cospi32 = _mm256_set1_epi32(cospi[32]);
+ const __m256i cospi48 = _mm256_set1_epi32(cospi[48]);
+ const __m256i cospi16 = _mm256_set1_epi32(cospi[16]);
+ const __m256i cospim16 = _mm256_set1_epi32(-cospi[16]);
+ const __m256i cospim48 = _mm256_set1_epi32(-cospi[48]);
+ const __m256i cospi8 = _mm256_set1_epi32(cospi[8]);
+ const __m256i cospi56 = _mm256_set1_epi32(cospi[56]);
+ const __m256i cospim56 = _mm256_set1_epi32(-cospi[56]);
+ const __m256i cospim8 = _mm256_set1_epi32(-cospi[8]);
+ const __m256i cospi24 = _mm256_set1_epi32(cospi[24]);
+ const __m256i cospim24 = _mm256_set1_epi32(-cospi[24]);
+ const __m256i cospim40 = _mm256_set1_epi32(-cospi[40]);
+ const __m256i cospi40 = _mm256_set1_epi32(cospi[40]);
+ const __m256i cospi2 = _mm256_set1_epi32(cospi[2]);
+ const __m256i cospi62 = _mm256_set1_epi32(cospi[62]);
+ const __m256i cospim2 = _mm256_set1_epi32(-cospi[2]);
+ const __m256i cospi10 = _mm256_set1_epi32(cospi[10]);
+ const __m256i cospi54 = _mm256_set1_epi32(cospi[54]);
+ const __m256i cospim10 = _mm256_set1_epi32(-cospi[10]);
+ const __m256i cospi18 = _mm256_set1_epi32(cospi[18]);
+ const __m256i cospi46 = _mm256_set1_epi32(cospi[46]);
+ const __m256i cospim18 = _mm256_set1_epi32(-cospi[18]);
+ const __m256i cospi26 = _mm256_set1_epi32(cospi[26]);
+ const __m256i cospi38 = _mm256_set1_epi32(cospi[38]);
+ const __m256i cospim26 = _mm256_set1_epi32(-cospi[26]);
+ const __m256i cospi34 = _mm256_set1_epi32(cospi[34]);
+ const __m256i cospi30 = _mm256_set1_epi32(cospi[30]);
+ const __m256i cospim34 = _mm256_set1_epi32(-cospi[34]);
+ const __m256i cospi42 = _mm256_set1_epi32(cospi[42]);
+ const __m256i cospi22 = _mm256_set1_epi32(cospi[22]);
+ const __m256i cospim42 = _mm256_set1_epi32(-cospi[42]);
+ const __m256i cospi50 = _mm256_set1_epi32(cospi[50]);
+ const __m256i cospi14 = _mm256_set1_epi32(cospi[14]);
+ const __m256i cospim50 = _mm256_set1_epi32(-cospi[50]);
+ const __m256i cospi58 = _mm256_set1_epi32(cospi[58]);
+ const __m256i cospi6 = _mm256_set1_epi32(cospi[6]);
+ const __m256i cospim58 = _mm256_set1_epi32(-cospi[58]);
+ const __m256i rnding = _mm256_set1_epi32(1 << (bit - 1));
+ const __m256i zero = _mm256_setzero_si256();
+
+ __m256i u[16], v[16], x, y;
+ int col;
+
+ for (col = 0; col < num_cols; ++col) {
+ // stage 0
+ // stage 1
+ u[0] = in[0 * num_cols + col];
+ u[1] = _mm256_sub_epi32(zero, in[15 * num_cols + col]);
+ u[2] = _mm256_sub_epi32(zero, in[7 * num_cols + col]);
+ u[3] = in[8 * num_cols + col];
+ u[4] = _mm256_sub_epi32(zero, in[3 * num_cols + col]);
+ u[5] = in[12 * num_cols + col];
+ u[6] = in[4 * num_cols + col];
+ u[7] = _mm256_sub_epi32(zero, in[11 * num_cols + col]);
+ u[8] = _mm256_sub_epi32(zero, in[1 * num_cols + col]);
+ u[9] = in[14 * num_cols + col];
+ u[10] = in[6 * num_cols + col];
+ u[11] = _mm256_sub_epi32(zero, in[9 * num_cols + col]);
+ u[12] = in[2 * num_cols + col];
+ u[13] = _mm256_sub_epi32(zero, in[13 * num_cols + col]);
+ u[14] = _mm256_sub_epi32(zero, in[5 * num_cols + col]);
+ u[15] = in[10 * num_cols + col];
+
+ // stage 2
+ v[0] = u[0];
+ v[1] = u[1];
+
+ x = _mm256_mullo_epi32(u[2], cospi32);
+ y = _mm256_mullo_epi32(u[3], cospi32);
+ v[2] = _mm256_add_epi32(x, y);
+ v[2] = _mm256_add_epi32(v[2], rnding);
+ v[2] = _mm256_srai_epi32(v[2], bit);
+
+ v[3] = _mm256_sub_epi32(x, y);
+ v[3] = _mm256_add_epi32(v[3], rnding);
+ v[3] = _mm256_srai_epi32(v[3], bit);
+
+ v[4] = u[4];
+ v[5] = u[5];
+
+ x = _mm256_mullo_epi32(u[6], cospi32);
+ y = _mm256_mullo_epi32(u[7], cospi32);
+ v[6] = _mm256_add_epi32(x, y);
+ v[6] = _mm256_add_epi32(v[6], rnding);
+ v[6] = _mm256_srai_epi32(v[6], bit);
+
+ v[7] = _mm256_sub_epi32(x, y);
+ v[7] = _mm256_add_epi32(v[7], rnding);
+ v[7] = _mm256_srai_epi32(v[7], bit);
+
+ v[8] = u[8];
+ v[9] = u[9];
+
+ x = _mm256_mullo_epi32(u[10], cospi32);
+ y = _mm256_mullo_epi32(u[11], cospi32);
+ v[10] = _mm256_add_epi32(x, y);
+ v[10] = _mm256_add_epi32(v[10], rnding);
+ v[10] = _mm256_srai_epi32(v[10], bit);
+
+ v[11] = _mm256_sub_epi32(x, y);
+ v[11] = _mm256_add_epi32(v[11], rnding);
+ v[11] = _mm256_srai_epi32(v[11], bit);
+
+ v[12] = u[12];
+ v[13] = u[13];
+
+ x = _mm256_mullo_epi32(u[14], cospi32);
+ y = _mm256_mullo_epi32(u[15], cospi32);
+ v[14] = _mm256_add_epi32(x, y);
+ v[14] = _mm256_add_epi32(v[14], rnding);
+ v[14] = _mm256_srai_epi32(v[14], bit);
+
+ v[15] = _mm256_sub_epi32(x, y);
+ v[15] = _mm256_add_epi32(v[15], rnding);
+ v[15] = _mm256_srai_epi32(v[15], bit);
+
+ // stage 3
+ u[0] = _mm256_add_epi32(v[0], v[2]);
+ u[1] = _mm256_add_epi32(v[1], v[3]);
+ u[2] = _mm256_sub_epi32(v[0], v[2]);
+ u[3] = _mm256_sub_epi32(v[1], v[3]);
+ u[4] = _mm256_add_epi32(v[4], v[6]);
+ u[5] = _mm256_add_epi32(v[5], v[7]);
+ u[6] = _mm256_sub_epi32(v[4], v[6]);
+ u[7] = _mm256_sub_epi32(v[5], v[7]);
+ u[8] = _mm256_add_epi32(v[8], v[10]);
+ u[9] = _mm256_add_epi32(v[9], v[11]);
+ u[10] = _mm256_sub_epi32(v[8], v[10]);
+ u[11] = _mm256_sub_epi32(v[9], v[11]);
+ u[12] = _mm256_add_epi32(v[12], v[14]);
+ u[13] = _mm256_add_epi32(v[13], v[15]);
+ u[14] = _mm256_sub_epi32(v[12], v[14]);
+ u[15] = _mm256_sub_epi32(v[13], v[15]);
+
+ // stage 4
+ v[0] = u[0];
+ v[1] = u[1];
+ v[2] = u[2];
+ v[3] = u[3];
+ v[4] = av1_half_btf_avx2(&cospi16, &u[4], &cospi48, &u[5], &rnding, bit);
+ v[5] = av1_half_btf_avx2(&cospi48, &u[4], &cospim16, &u[5], &rnding, bit);
+ v[6] = av1_half_btf_avx2(&cospim48, &u[6], &cospi16, &u[7], &rnding, bit);
+ v[7] = av1_half_btf_avx2(&cospi16, &u[6], &cospi48, &u[7], &rnding, bit);
+ v[8] = u[8];
+ v[9] = u[9];
+ v[10] = u[10];
+ v[11] = u[11];
+ v[12] = av1_half_btf_avx2(&cospi16, &u[12], &cospi48, &u[13], &rnding, bit);
+ v[13] =
+ av1_half_btf_avx2(&cospi48, &u[12], &cospim16, &u[13], &rnding, bit);
+ v[14] =
+ av1_half_btf_avx2(&cospim48, &u[14], &cospi16, &u[15], &rnding, bit);
+ v[15] = av1_half_btf_avx2(&cospi16, &u[14], &cospi48, &u[15], &rnding, bit);
+
+ // stage 5
+ u[0] = _mm256_add_epi32(v[0], v[4]);
+ u[1] = _mm256_add_epi32(v[1], v[5]);
+ u[2] = _mm256_add_epi32(v[2], v[6]);
+ u[3] = _mm256_add_epi32(v[3], v[7]);
+ u[4] = _mm256_sub_epi32(v[0], v[4]);
+ u[5] = _mm256_sub_epi32(v[1], v[5]);
+ u[6] = _mm256_sub_epi32(v[2], v[6]);
+ u[7] = _mm256_sub_epi32(v[3], v[7]);
+ u[8] = _mm256_add_epi32(v[8], v[12]);
+ u[9] = _mm256_add_epi32(v[9], v[13]);
+ u[10] = _mm256_add_epi32(v[10], v[14]);
+ u[11] = _mm256_add_epi32(v[11], v[15]);
+ u[12] = _mm256_sub_epi32(v[8], v[12]);
+ u[13] = _mm256_sub_epi32(v[9], v[13]);
+ u[14] = _mm256_sub_epi32(v[10], v[14]);
+ u[15] = _mm256_sub_epi32(v[11], v[15]);
+
+ // stage 6
+ v[0] = u[0];
+ v[1] = u[1];
+ v[2] = u[2];
+ v[3] = u[3];
+ v[4] = u[4];
+ v[5] = u[5];
+ v[6] = u[6];
+ v[7] = u[7];
+ v[8] = av1_half_btf_avx2(&cospi8, &u[8], &cospi56, &u[9], &rnding, bit);
+ v[9] = av1_half_btf_avx2(&cospi56, &u[8], &cospim8, &u[9], &rnding, bit);
+ v[10] = av1_half_btf_avx2(&cospi40, &u[10], &cospi24, &u[11], &rnding, bit);
+ v[11] =
+ av1_half_btf_avx2(&cospi24, &u[10], &cospim40, &u[11], &rnding, bit);
+ v[12] = av1_half_btf_avx2(&cospim56, &u[12], &cospi8, &u[13], &rnding, bit);
+ v[13] = av1_half_btf_avx2(&cospi8, &u[12], &cospi56, &u[13], &rnding, bit);
+ v[14] =
+ av1_half_btf_avx2(&cospim24, &u[14], &cospi40, &u[15], &rnding, bit);
+ v[15] = av1_half_btf_avx2(&cospi40, &u[14], &cospi24, &u[15], &rnding, bit);
+
+ // stage 7
+ u[0] = _mm256_add_epi32(v[0], v[8]);
+ u[1] = _mm256_add_epi32(v[1], v[9]);
+ u[2] = _mm256_add_epi32(v[2], v[10]);
+ u[3] = _mm256_add_epi32(v[3], v[11]);
+ u[4] = _mm256_add_epi32(v[4], v[12]);
+ u[5] = _mm256_add_epi32(v[5], v[13]);
+ u[6] = _mm256_add_epi32(v[6], v[14]);
+ u[7] = _mm256_add_epi32(v[7], v[15]);
+ u[8] = _mm256_sub_epi32(v[0], v[8]);
+ u[9] = _mm256_sub_epi32(v[1], v[9]);
+ u[10] = _mm256_sub_epi32(v[2], v[10]);
+ u[11] = _mm256_sub_epi32(v[3], v[11]);
+ u[12] = _mm256_sub_epi32(v[4], v[12]);
+ u[13] = _mm256_sub_epi32(v[5], v[13]);
+ u[14] = _mm256_sub_epi32(v[6], v[14]);
+ u[15] = _mm256_sub_epi32(v[7], v[15]);
+
+ // stage 8
+ v[0] = av1_half_btf_avx2(&cospi2, &u[0], &cospi62, &u[1], &rnding, bit);
+ v[1] = av1_half_btf_avx2(&cospi62, &u[0], &cospim2, &u[1], &rnding, bit);
+ v[2] = av1_half_btf_avx2(&cospi10, &u[2], &cospi54, &u[3], &rnding, bit);
+ v[3] = av1_half_btf_avx2(&cospi54, &u[2], &cospim10, &u[3], &rnding, bit);
+ v[4] = av1_half_btf_avx2(&cospi18, &u[4], &cospi46, &u[5], &rnding, bit);
+ v[5] = av1_half_btf_avx2(&cospi46, &u[4], &cospim18, &u[5], &rnding, bit);
+ v[6] = av1_half_btf_avx2(&cospi26, &u[6], &cospi38, &u[7], &rnding, bit);
+ v[7] = av1_half_btf_avx2(&cospi38, &u[6], &cospim26, &u[7], &rnding, bit);
+ v[8] = av1_half_btf_avx2(&cospi34, &u[8], &cospi30, &u[9], &rnding, bit);
+ v[9] = av1_half_btf_avx2(&cospi30, &u[8], &cospim34, &u[9], &rnding, bit);
+ v[10] = av1_half_btf_avx2(&cospi42, &u[10], &cospi22, &u[11], &rnding, bit);
+ v[11] =
+ av1_half_btf_avx2(&cospi22, &u[10], &cospim42, &u[11], &rnding, bit);
+ v[12] = av1_half_btf_avx2(&cospi50, &u[12], &cospi14, &u[13], &rnding, bit);
+ v[13] =
+ av1_half_btf_avx2(&cospi14, &u[12], &cospim50, &u[13], &rnding, bit);
+ v[14] = av1_half_btf_avx2(&cospi58, &u[14], &cospi6, &u[15], &rnding, bit);
+ v[15] = av1_half_btf_avx2(&cospi6, &u[14], &cospim58, &u[15], &rnding, bit);
+
+ // stage 9
+ out[0 * outstride + col] = v[1];
+ out[1 * outstride + col] = v[14];
+ out[2 * outstride + col] = v[3];
+ out[3 * outstride + col] = v[12];
+ out[4 * outstride + col] = v[5];
+ out[5 * outstride + col] = v[10];
+ out[6 * outstride + col] = v[7];
+ out[7 * outstride + col] = v[8];
+ out[8 * outstride + col] = v[9];
+ out[9 * outstride + col] = v[6];
+ out[10 * outstride + col] = v[11];
+ out[11 * outstride + col] = v[4];
+ out[12 * outstride + col] = v[13];
+ out[13 * outstride + col] = v[2];
+ out[14 * outstride + col] = v[15];
+ out[15 * outstride + col] = v[0];
+ }
+}
+static void idtx16_avx2(__m256i *in, __m256i *out, const int8_t bit,
+ int col_num, const int outstride) {
+ (void)bit;
+ (void)outstride;
+ __m256i fact = _mm256_set1_epi32(2 * NewSqrt2);
+ __m256i offset = _mm256_set1_epi32(1 << (NewSqrt2Bits - 1));
+ __m256i a_low;
+
+ int num_iters = 16 * col_num;
+ for (int i = 0; i < num_iters; i++) {
+ a_low = _mm256_mullo_epi32(in[i], fact);
+ a_low = _mm256_add_epi32(a_low, offset);
+ out[i] = _mm256_srai_epi32(a_low, NewSqrt2Bits);
+ }
+}
+static const transform_1d_avx2 col_highbd_txfm8x16_arr[TX_TYPES] = {
+ fdct16_avx2, // DCT_DCT
+ fadst16_avx2, // ADST_DCT
+ fdct16_avx2, // DCT_ADST
+ fadst16_avx2, // ADST_ADST
+ fadst16_avx2, // FLIPADST_DCT
+ fdct16_avx2, // DCT_FLIPADST
+ fadst16_avx2, // FLIPADST_FLIPADST
+ fadst16_avx2, // ADST_FLIPADST
+ fadst16_avx2, // FLIPADST_ADST
+ idtx16_avx2, // IDTX
+ fdct16_avx2, // V_DCT
+ idtx16_avx2, // H_DCT
+ fadst16_avx2, // V_ADST
+ idtx16_avx2, // H_ADST
+ fadst16_avx2, // V_FLIPADST
+ idtx16_avx2 // H_FLIPADST
+};
+static const transform_1d_avx2 row_highbd_txfm8x8_arr[TX_TYPES] = {
+ fdct8_avx2, // DCT_DCT
+ fdct8_avx2, // ADST_DCT
+ fadst8_avx2, // DCT_ADST
+ fadst8_avx2, // ADST_ADST
+ fdct8_avx2, // FLIPADST_DCT
+ fadst8_avx2, // DCT_FLIPADST
+ fadst8_avx2, // FLIPADST_FLIPADST
+ fadst8_avx2, // ADST_FLIPADST
+ fadst8_avx2, // FLIPADST_ADST
+ idtx8_avx2, // IDTX
+ idtx8_avx2, // V_DCT
+ fdct8_avx2, // H_DCT
+ idtx8_avx2, // V_ADST
+ fadst8_avx2, // H_ADST
+ idtx8_avx2, // V_FLIPADST
+ fadst8_avx2 // H_FLIPADST
+};
+void av1_fwd_txfm2d_8x16_avx2(const int16_t *input, int32_t *coeff, int stride,
+ TX_TYPE tx_type, int bd) {
+ __m256i in[16], out[16];
+ const int8_t *shift = av1_fwd_txfm_shift_ls[TX_8X16];
+ const int txw_idx = get_txw_idx(TX_8X16);
+ const int txh_idx = get_txh_idx(TX_8X16);
+ const transform_1d_avx2 col_txfm = col_highbd_txfm8x16_arr[tx_type];
+ const transform_1d_avx2 row_txfm = row_highbd_txfm8x8_arr[tx_type];
+ const int8_t bit = av1_fwd_cos_bit_col[txw_idx][txh_idx];
+ int ud_flip, lr_flip;
+ get_flip_cfg(tx_type, &ud_flip, &lr_flip);
+
+ load_buffer_8x16_avx2(input, in, stride, ud_flip, lr_flip, shift[0]);
+ col_txfm(in, out, bit, 1, 1);
+ col_txfm_8x8_rounding(out, -shift[1]);
+ col_txfm_8x8_rounding(&out[8], -shift[1]);
+ fwd_txfm_transpose_8x8_avx2(out, in, 1, 2);
+ fwd_txfm_transpose_8x8_avx2(&out[8], &in[1], 1, 2);
+ row_txfm(in, out, bit, 2, 2);
+ fwd_txfm_transpose_8x8_avx2(out, in, 2, 1);
+ fwd_txfm_transpose_8x8_avx2(&out[1], &in[8], 2, 1);
+ av1_round_shift_rect_array_32_avx2(in, in, 16, -shift[2], NewSqrt2);
+ store_buffer_avx2(in, coeff, 8, 16);
+ (void)bd;
+}
+static const transform_1d_avx2 col_highbd_txfm8x8_arr[TX_TYPES] = {
+ fdct8_avx2, // DCT_DCT
+ fadst8_avx2, // ADST_DCT
+ fdct8_avx2, // DCT_ADST
+ fadst8_avx2, // ADST_ADST
+ fadst8_avx2, // FLIPADST_DCT
+ fdct8_avx2, // DCT_FLIPADST
+ fadst8_avx2, // FLIPADST_FLIPADST
+ fadst8_avx2, // ADST_FLIPADST
+ fadst8_avx2, // FLIPADST_ADST
+ idtx8_avx2, // IDTX
+ fdct8_avx2, // V_DCT
+ idtx8_avx2, // H_DCT
+ fadst8_avx2, // V_ADST
+ idtx8_avx2, // H_ADST
+ fadst8_avx2, // V_FLIPADST
+ idtx8_avx2 // H_FLIPADST
+};
+static const transform_1d_avx2 row_highbd_txfm8x16_arr[TX_TYPES] = {
+ fdct16_avx2, // DCT_DCT
+ fdct16_avx2, // ADST_DCT
+ fadst16_avx2, // DCT_ADST
+ fadst16_avx2, // ADST_ADST
+ fdct16_avx2, // FLIPADST_DCT
+ fadst16_avx2, // DCT_FLIPADST
+ fadst16_avx2, // FLIPADST_FLIPADST
+ fadst16_avx2, // ADST_FLIPADST
+ fadst16_avx2, // FLIPADST_ADST
+ idtx16_avx2, // IDTX
+ idtx16_avx2, // V_DCT
+ fdct16_avx2, // H_DCT
+ idtx16_avx2, // V_ADST
+ fadst16_avx2, // H_ADST
+ idtx16_avx2, // V_FLIPADST
+ fadst16_avx2 // H_FLIPADST
+};
+void av1_fwd_txfm2d_16x8_avx2(const int16_t *input, int32_t *coeff, int stride,
+ TX_TYPE tx_type, int bd) {
+ __m256i in[16], out[16];
+ const int8_t *shift = av1_fwd_txfm_shift_ls[TX_16X8];
+ const int txw_idx = get_txw_idx(TX_16X8);
+ const int txh_idx = get_txh_idx(TX_16X8);
+ const transform_1d_avx2 col_txfm = col_highbd_txfm8x8_arr[tx_type];
+ const transform_1d_avx2 row_txfm = row_highbd_txfm8x16_arr[tx_type];
+ const int8_t bit = av1_fwd_cos_bit_col[txw_idx][txh_idx];
+ int ud_flip, lr_flip;
+ get_flip_cfg(tx_type, &ud_flip, &lr_flip);
+
+ load_buffer_16xn_avx2(input, in, stride, 8, 2, ud_flip, lr_flip);
+ round_shift_32_8xn_avx2(in, 16, shift[0], 1);
+ col_txfm(in, out, bit, 2, 2);
+ round_shift_32_8xn_avx2(out, 16, shift[1], 1);
+ fwd_txfm_transpose_8x8_avx2(out, in, 2, 1);
+ fwd_txfm_transpose_8x8_avx2(&out[1], &in[8], 2, 1);
+ row_txfm(in, out, bit, 1, 1);
+ fwd_txfm_transpose_8x8_avx2(out, in, 1, 2);
+ fwd_txfm_transpose_8x8_avx2(&out[8], &in[1], 1, 2);
+ av1_round_shift_rect_array_32_avx2(in, in, 16, -shift[2], NewSqrt2);
+ store_buffer_avx2(in, coeff, 8, 16);
+ (void)bd;
+}
+void av1_fwd_txfm2d_16x16_avx2(const int16_t *input, int32_t *coeff, int stride,
+ TX_TYPE tx_type, int bd) {
+ __m256i in[32], out[32];
+ const TX_SIZE tx_size = TX_16X16;
+ const int8_t *shift = av1_fwd_txfm_shift_ls[tx_size];
+ const int txw_idx = get_txw_idx(tx_size);
+ const int txh_idx = get_txh_idx(tx_size);
+ const int width = tx_size_wide[tx_size];
+ const int height = tx_size_high[tx_size];
+ const int width_div8 = (width >> 3);
+ const int width_div16 = (width >> 4);
+ const int size = (height << 1);
+ switch (tx_type) {
+ case DCT_DCT:
+ load_buffer_16xn_avx2(input, in, stride, height, width_div8, 0, 0);
+ round_shift_32_8xn_avx2(in, size, shift[0], width_div16);
+ fdct16_avx2(in, out, av1_fwd_cos_bit_col[txw_idx][txh_idx], width_div8,
+ width_div8);
+ round_shift_32_8xn_avx2(out, size, shift[1], width_div16);
+ fwd_txfm_transpose_16x16_avx2(out, in);
+ fdct16_avx2(in, out, av1_fwd_cos_bit_row[txw_idx][txh_idx], width_div8,
+ width_div8);
+ fwd_txfm_transpose_16x16_avx2(out, in);
+ store_buffer_avx2(in, coeff, 8, 32);
+ break;
+ case ADST_DCT:
+ load_buffer_16xn_avx2(input, in, stride, height, width_div8, 0, 0);
+ round_shift_32_8xn_avx2(in, size, shift[0], width_div16);
+ fadst16_avx2(in, out, av1_fwd_cos_bit_col[txw_idx][txh_idx], width_div8,
+ width_div8);
+ round_shift_32_8xn_avx2(out, size, shift[1], width_div16);
+ fwd_txfm_transpose_16x16_avx2(out, in);
+ fdct16_avx2(in, out, av1_fwd_cos_bit_row[txw_idx][txh_idx], width_div8,
+ width_div8);
+ fwd_txfm_transpose_16x16_avx2(out, in);
+ store_buffer_avx2(in, coeff, 8, 32);
+ break;
+ case DCT_ADST:
+ load_buffer_16xn_avx2(input, in, stride, height, width_div8, 0, 0);
+ round_shift_32_8xn_avx2(in, size, shift[0], width_div16);
+ fdct16_avx2(in, out, av1_fwd_cos_bit_col[txw_idx][txh_idx], width_div8,
+ width_div8);
+ round_shift_32_8xn_avx2(out, size, shift[1], width_div16);
+ fwd_txfm_transpose_16x16_avx2(out, in);
+ fadst16_avx2(in, out, av1_fwd_cos_bit_row[txw_idx][txh_idx], width_div8,
+ width_div8);
+ fwd_txfm_transpose_16x16_avx2(out, in);
+ store_buffer_avx2(in, coeff, 8, 32);
+ break;
+ case ADST_ADST:
+ load_buffer_16xn_avx2(input, in, stride, height, width_div8, 0, 0);
+ round_shift_32_8xn_avx2(in, size, shift[0], width_div16);
+ fadst16_avx2(in, out, av1_fwd_cos_bit_col[txw_idx][txh_idx], width_div8,
+ width_div8);
+ round_shift_32_8xn_avx2(out, size, shift[1], width_div16);
+ fwd_txfm_transpose_16x16_avx2(out, in);
+ fadst16_avx2(in, out, av1_fwd_cos_bit_row[txw_idx][txh_idx], width_div8,
+ width_div8);
+ fwd_txfm_transpose_16x16_avx2(out, in);
+ store_buffer_avx2(in, coeff, 8, 32);
+ break;
+ case FLIPADST_DCT:
+ load_buffer_16xn_avx2(input, in, stride, height, width_div8, 1, 0);
+ round_shift_32_8xn_avx2(in, size, shift[0], width_div16);
+ fadst16_avx2(in, out, av1_fwd_cos_bit_col[txw_idx][txh_idx], width_div8,
+ width_div8);
+ round_shift_32_8xn_avx2(out, size, shift[1], width_div16);
+ fwd_txfm_transpose_16x16_avx2(out, in);
+ fdct16_avx2(in, out, av1_fwd_cos_bit_row[txw_idx][txh_idx], width_div8,
+ width_div8);
+ fwd_txfm_transpose_16x16_avx2(out, in);
+ store_buffer_avx2(in, coeff, 8, 32);
+ break;
+ case DCT_FLIPADST:
+ load_buffer_16xn_avx2(input, in, stride, height, width_div8, 0, 1);
+ round_shift_32_8xn_avx2(in, size, shift[0], width_div16);
+ fdct16_avx2(in, out, av1_fwd_cos_bit_col[txw_idx][txh_idx], width_div8,
+ width_div8);
+ round_shift_32_8xn_avx2(out, size, shift[1], width_div16);
+ fwd_txfm_transpose_16x16_avx2(out, in);
+ fadst16_avx2(in, out, av1_fwd_cos_bit_row[txw_idx][txh_idx], width_div8,
+ width_div8);
+ fwd_txfm_transpose_16x16_avx2(out, in);
+ store_buffer_avx2(in, coeff, 8, 32);
+ break;
+ case FLIPADST_FLIPADST:
+ load_buffer_16xn_avx2(input, in, stride, height, width_div8, 1, 1);
+ round_shift_32_8xn_avx2(in, size, shift[0], width_div16);
+ fadst16_avx2(in, out, av1_fwd_cos_bit_col[txw_idx][txh_idx], width_div8,
+ width_div8);
+ round_shift_32_8xn_avx2(out, size, shift[1], width_div16);
+ fwd_txfm_transpose_16x16_avx2(out, in);
+ fadst16_avx2(in, out, av1_fwd_cos_bit_row[txw_idx][txh_idx], width_div8,
+ width_div8);
+ fwd_txfm_transpose_16x16_avx2(out, in);
+ store_buffer_avx2(in, coeff, 8, 32);
+ break;
+ case ADST_FLIPADST:
+ load_buffer_16xn_avx2(input, in, stride, height, width_div8, 0, 1);
+ round_shift_32_8xn_avx2(in, size, shift[0], width_div16);
+ fadst16_avx2(in, out, av1_fwd_cos_bit_col[txw_idx][txh_idx], width_div8,
+ width_div8);
+ round_shift_32_8xn_avx2(out, size, shift[1], width_div16);
+ fwd_txfm_transpose_16x16_avx2(out, in);
+ fadst16_avx2(in, out, av1_fwd_cos_bit_row[txw_idx][txh_idx], width_div8,
+ width_div8);
+ fwd_txfm_transpose_16x16_avx2(out, in);
+ store_buffer_avx2(in, coeff, 8, 32);
+ break;
+ case FLIPADST_ADST:
+ load_buffer_16xn_avx2(input, in, stride, height, width_div8, 1, 0);
+ round_shift_32_8xn_avx2(in, size, shift[0], width_div16);
+ fadst16_avx2(in, out, av1_fwd_cos_bit_col[txw_idx][txh_idx], width_div8,
+ width_div8);
+ round_shift_32_8xn_avx2(out, size, shift[1], width_div16);
+ fwd_txfm_transpose_16x16_avx2(out, in);
+ fadst16_avx2(in, out, av1_fwd_cos_bit_row[txw_idx][txh_idx], width_div8,
+ width_div8);
+ fwd_txfm_transpose_16x16_avx2(out, in);
+ store_buffer_avx2(in, coeff, 8, 32);
+ break;
+ case IDTX:
+ load_buffer_16xn_avx2(input, in, stride, height, width_div8, 0, 0);
+ round_shift_32_8xn_avx2(in, size, shift[0], width_div16);
+ idtx16_avx2(in, out, av1_fwd_cos_bit_col[txw_idx][txh_idx], width_div8,
+ width_div8);
+ round_shift_32_8xn_avx2(out, size, shift[1], width_div16);
+ idtx16_avx2(out, in, av1_fwd_cos_bit_row[txw_idx][txh_idx], width_div8,
+ width_div8);
+ store_buffer_avx2(in, coeff, 8, 32);
+ break;
+ case V_DCT:
+ load_buffer_16xn_avx2(input, in, stride, height, width_div8, 0, 0);
+ round_shift_32_8xn_avx2(in, size, shift[0], width_div16);
+ fdct16_avx2(in, out, av1_fwd_cos_bit_col[txw_idx][txh_idx], width_div8,
+ width_div8);
+ round_shift_32_8xn_avx2(out, size, shift[1], width_div16);
+ idtx16_avx2(out, in, av1_fwd_cos_bit_row[txw_idx][txh_idx], width_div8,
+ width_div8);
+ store_buffer_avx2(in, coeff, 8, 32);
+ break;
+ case H_DCT:
+ load_buffer_16xn_avx2(input, in, stride, height, width_div8, 0, 0);
+ round_shift_32_8xn_avx2(in, size, shift[0], width_div16);
+ idtx16_avx2(in, out, av1_fwd_cos_bit_col[txw_idx][txh_idx], width_div8,
+ width_div8);
+ round_shift_32_8xn_avx2(out, size, shift[1], width_div16);
+ fwd_txfm_transpose_16x16_avx2(out, in);
+ fdct16_avx2(in, out, av1_fwd_cos_bit_row[txw_idx][txh_idx], width_div8,
+ width_div8);
+ fwd_txfm_transpose_16x16_avx2(out, in);
+ store_buffer_avx2(in, coeff, 8, 32);
+ break;
+ case V_ADST:
+ load_buffer_16xn_avx2(input, in, stride, height, width_div8, 0, 0);
+ round_shift_32_8xn_avx2(in, size, shift[0], width_div16);
+ fadst16_avx2(in, out, av1_fwd_cos_bit_col[txw_idx][txh_idx], width_div8,
+ width_div8);
+ round_shift_32_8xn_avx2(out, size, shift[1], width_div16);
+ idtx16_avx2(out, in, av1_fwd_cos_bit_row[txw_idx][txh_idx], width_div8,
+ width_div8);
+ store_buffer_avx2(in, coeff, 8, 32);
+ break;
+ case H_ADST:
+ load_buffer_16xn_avx2(input, in, stride, height, width_div8, 0, 0);
+ round_shift_32_8xn_avx2(in, size, shift[0], width_div16);
+ idtx16_avx2(in, out, av1_fwd_cos_bit_col[txw_idx][txh_idx], width_div8,
+ width_div8);
+ round_shift_32_8xn_avx2(out, size, shift[1], width_div16);
+ fwd_txfm_transpose_16x16_avx2(out, in);
+ fadst16_avx2(in, out, av1_fwd_cos_bit_row[txw_idx][txh_idx], width_div8,
+ width_div8);
+ fwd_txfm_transpose_16x16_avx2(out, in);
+ store_buffer_avx2(in, coeff, 8, 32);
+ break;
+ case V_FLIPADST:
+ load_buffer_16xn_avx2(input, in, stride, height, width_div8, 1, 0);
+ round_shift_32_8xn_avx2(in, size, shift[0], width_div16);
+ fadst16_avx2(in, out, av1_fwd_cos_bit_col[txw_idx][txh_idx], width_div8,
+ width_div8);
+ round_shift_32_8xn_avx2(out, size, shift[1], width_div16);
+ idtx16_avx2(out, in, av1_fwd_cos_bit_row[txw_idx][txh_idx], width_div8,
+ width_div8);
+ store_buffer_avx2(in, coeff, 8, 32);
+ break;
+ case H_FLIPADST:
+ load_buffer_16xn_avx2(input, in, stride, height, width_div8, 0, 1);
+ round_shift_32_8xn_avx2(in, size, shift[0], width_div16);
+ idtx16_avx2(in, out, av1_fwd_cos_bit_col[txw_idx][txh_idx], width_div8,
+ width_div8);
+ round_shift_32_8xn_avx2(out, size, shift[1], width_div16);
+ fwd_txfm_transpose_16x16_avx2(out, in);
+ fadst16_avx2(in, out, av1_fwd_cos_bit_row[txw_idx][txh_idx], width_div8,
+ width_div8);
+ fwd_txfm_transpose_16x16_avx2(out, in);
+ store_buffer_avx2(in, coeff, 8, 32);
+ break;
+ default: assert(0);
+ }
+ (void)bd;
+}
+static INLINE void fdct32_avx2(__m256i *input, __m256i *output,
+ const int8_t cos_bit, const int instride,
+ const int outstride) {
+ __m256i buf0[32];
+ __m256i buf1[32];
+ const int32_t *cospi;
+ int startidx = 0 * instride;
+ int endidx = 31 * instride;
+ // stage 0
+ // stage 1
+ buf1[0] = _mm256_add_epi32(input[startidx], input[endidx]);
+ buf1[31] = _mm256_sub_epi32(input[startidx], input[endidx]);
+ startidx += instride;
+ endidx -= instride;
+ buf1[1] = _mm256_add_epi32(input[startidx], input[endidx]);
+ buf1[30] = _mm256_sub_epi32(input[startidx], input[endidx]);
+ startidx += instride;
+ endidx -= instride;
+ buf1[2] = _mm256_add_epi32(input[startidx], input[endidx]);
+ buf1[29] = _mm256_sub_epi32(input[startidx], input[endidx]);
+ startidx += instride;
+ endidx -= instride;
+ buf1[3] = _mm256_add_epi32(input[startidx], input[endidx]);
+ buf1[28] = _mm256_sub_epi32(input[startidx], input[endidx]);
+ startidx += instride;
+ endidx -= instride;
+ buf1[4] = _mm256_add_epi32(input[startidx], input[endidx]);
+ buf1[27] = _mm256_sub_epi32(input[startidx], input[endidx]);
+ startidx += instride;
+ endidx -= instride;
+ buf1[5] = _mm256_add_epi32(input[startidx], input[endidx]);
+ buf1[26] = _mm256_sub_epi32(input[startidx], input[endidx]);
+ startidx += instride;
+ endidx -= instride;
+ buf1[6] = _mm256_add_epi32(input[startidx], input[endidx]);
+ buf1[25] = _mm256_sub_epi32(input[startidx], input[endidx]);
+ startidx += instride;
+ endidx -= instride;
+ buf1[7] = _mm256_add_epi32(input[startidx], input[endidx]);
+ buf1[24] = _mm256_sub_epi32(input[startidx], input[endidx]);
+ startidx += instride;
+ endidx -= instride;
+ buf1[8] = _mm256_add_epi32(input[startidx], input[endidx]);
+ buf1[23] = _mm256_sub_epi32(input[startidx], input[endidx]);
+ startidx += instride;
+ endidx -= instride;
+ buf1[9] = _mm256_add_epi32(input[startidx], input[endidx]);
+ buf1[22] = _mm256_sub_epi32(input[startidx], input[endidx]);
+ startidx += instride;
+ endidx -= instride;
+ buf1[10] = _mm256_add_epi32(input[startidx], input[endidx]);
+ buf1[21] = _mm256_sub_epi32(input[startidx], input[endidx]);
+ startidx += instride;
+ endidx -= instride;
+ buf1[11] = _mm256_add_epi32(input[startidx], input[endidx]);
+ buf1[20] = _mm256_sub_epi32(input[startidx], input[endidx]);
+ startidx += instride;
+ endidx -= instride;
+ buf1[12] = _mm256_add_epi32(input[startidx], input[endidx]);
+ buf1[19] = _mm256_sub_epi32(input[startidx], input[endidx]);
+ startidx += instride;
+ endidx -= instride;
+ buf1[13] = _mm256_add_epi32(input[startidx], input[endidx]);
+ buf1[18] = _mm256_sub_epi32(input[startidx], input[endidx]);
+ startidx += instride;
+ endidx -= instride;
+ buf1[14] = _mm256_add_epi32(input[startidx], input[endidx]);
+ buf1[17] = _mm256_sub_epi32(input[startidx], input[endidx]);
+ startidx += instride;
+ endidx -= instride;
+ buf1[15] = _mm256_add_epi32(input[startidx], input[endidx]);
+ buf1[16] = _mm256_sub_epi32(input[startidx], input[endidx]);
+
+ // stage 2
+ cospi = cospi_arr(cos_bit);
+ buf0[0] = _mm256_add_epi32(buf1[0], buf1[15]);
+ buf0[15] = _mm256_sub_epi32(buf1[0], buf1[15]);
+ buf0[1] = _mm256_add_epi32(buf1[1], buf1[14]);
+ buf0[14] = _mm256_sub_epi32(buf1[1], buf1[14]);
+ buf0[2] = _mm256_add_epi32(buf1[2], buf1[13]);
+ buf0[13] = _mm256_sub_epi32(buf1[2], buf1[13]);
+ buf0[3] = _mm256_add_epi32(buf1[3], buf1[12]);
+ buf0[12] = _mm256_sub_epi32(buf1[3], buf1[12]);
+ buf0[4] = _mm256_add_epi32(buf1[4], buf1[11]);
+ buf0[11] = _mm256_sub_epi32(buf1[4], buf1[11]);
+ buf0[5] = _mm256_add_epi32(buf1[5], buf1[10]);
+ buf0[10] = _mm256_sub_epi32(buf1[5], buf1[10]);
+ buf0[6] = _mm256_add_epi32(buf1[6], buf1[9]);
+ buf0[9] = _mm256_sub_epi32(buf1[6], buf1[9]);
+ buf0[7] = _mm256_add_epi32(buf1[7], buf1[8]);
+ buf0[8] = _mm256_sub_epi32(buf1[7], buf1[8]);
+ buf0[16] = buf1[16];
+ buf0[17] = buf1[17];
+ buf0[18] = buf1[18];
+ buf0[19] = buf1[19];
+ btf_32_avx2_type0(-cospi[32], cospi[32], buf1[20], buf1[27], buf0[20],
+ buf0[27], cos_bit);
+ btf_32_avx2_type0(-cospi[32], cospi[32], buf1[21], buf1[26], buf0[21],
+ buf0[26], cos_bit);
+ btf_32_avx2_type0(-cospi[32], cospi[32], buf1[22], buf1[25], buf0[22],
+ buf0[25], cos_bit);
+ btf_32_avx2_type0(-cospi[32], cospi[32], buf1[23], buf1[24], buf0[23],
+ buf0[24], cos_bit);
+ buf0[28] = buf1[28];
+ buf0[29] = buf1[29];
+ buf0[30] = buf1[30];
+ buf0[31] = buf1[31];
+
+ // stage 3
+ cospi = cospi_arr(cos_bit);
+ buf1[0] = _mm256_add_epi32(buf0[0], buf0[7]);
+ buf1[7] = _mm256_sub_epi32(buf0[0], buf0[7]);
+ buf1[1] = _mm256_add_epi32(buf0[1], buf0[6]);
+ buf1[6] = _mm256_sub_epi32(buf0[1], buf0[6]);
+ buf1[2] = _mm256_add_epi32(buf0[2], buf0[5]);
+ buf1[5] = _mm256_sub_epi32(buf0[2], buf0[5]);
+ buf1[3] = _mm256_add_epi32(buf0[3], buf0[4]);
+ buf1[4] = _mm256_sub_epi32(buf0[3], buf0[4]);
+ buf1[8] = buf0[8];
+ buf1[9] = buf0[9];
+ btf_32_avx2_type0(-cospi[32], cospi[32], buf0[10], buf0[13], buf1[10],
+ buf1[13], cos_bit);
+ btf_32_avx2_type0(-cospi[32], cospi[32], buf0[11], buf0[12], buf1[11],
+ buf1[12], cos_bit);
+ buf1[14] = buf0[14];
+ buf1[15] = buf0[15];
+ buf1[16] = _mm256_add_epi32(buf0[16], buf0[23]);
+ buf1[23] = _mm256_sub_epi32(buf0[16], buf0[23]);
+ buf1[17] = _mm256_add_epi32(buf0[17], buf0[22]);
+ buf1[22] = _mm256_sub_epi32(buf0[17], buf0[22]);
+ buf1[18] = _mm256_add_epi32(buf0[18], buf0[21]);
+ buf1[21] = _mm256_sub_epi32(buf0[18], buf0[21]);
+ buf1[19] = _mm256_add_epi32(buf0[19], buf0[20]);
+ buf1[20] = _mm256_sub_epi32(buf0[19], buf0[20]);
+ buf1[24] = _mm256_sub_epi32(buf0[31], buf0[24]);
+ buf1[31] = _mm256_add_epi32(buf0[31], buf0[24]);
+ buf1[25] = _mm256_sub_epi32(buf0[30], buf0[25]);
+ buf1[30] = _mm256_add_epi32(buf0[30], buf0[25]);
+ buf1[26] = _mm256_sub_epi32(buf0[29], buf0[26]);
+ buf1[29] = _mm256_add_epi32(buf0[29], buf0[26]);
+ buf1[27] = _mm256_sub_epi32(buf0[28], buf0[27]);
+ buf1[28] = _mm256_add_epi32(buf0[28], buf0[27]);
+
+ // stage 4
+ cospi = cospi_arr(cos_bit);
+ buf0[0] = _mm256_add_epi32(buf1[0], buf1[3]);
+ buf0[3] = _mm256_sub_epi32(buf1[0], buf1[3]);
+ buf0[1] = _mm256_add_epi32(buf1[1], buf1[2]);
+ buf0[2] = _mm256_sub_epi32(buf1[1], buf1[2]);
+ buf0[4] = buf1[4];
+ btf_32_avx2_type0(-cospi[32], cospi[32], buf1[5], buf1[6], buf0[5], buf0[6],
+ cos_bit);
+ buf0[7] = buf1[7];
+ buf0[8] = _mm256_add_epi32(buf1[8], buf1[11]);
+ buf0[11] = _mm256_sub_epi32(buf1[8], buf1[11]);
+ buf0[9] = _mm256_add_epi32(buf1[9], buf1[10]);
+ buf0[10] = _mm256_sub_epi32(buf1[9], buf1[10]);
+ buf0[12] = _mm256_sub_epi32(buf1[15], buf1[12]);
+ buf0[15] = _mm256_add_epi32(buf1[15], buf1[12]);
+ buf0[13] = _mm256_sub_epi32(buf1[14], buf1[13]);
+ buf0[14] = _mm256_add_epi32(buf1[14], buf1[13]);
+ buf0[16] = buf1[16];
+ buf0[17] = buf1[17];
+ btf_32_avx2_type0(-cospi[16], cospi[48], buf1[18], buf1[29], buf0[18],
+ buf0[29], cos_bit);
+ btf_32_avx2_type0(-cospi[16], cospi[48], buf1[19], buf1[28], buf0[19],
+ buf0[28], cos_bit);
+ btf_32_avx2_type0(-cospi[48], -cospi[16], buf1[20], buf1[27], buf0[20],
+ buf0[27], cos_bit);
+ btf_32_avx2_type0(-cospi[48], -cospi[16], buf1[21], buf1[26], buf0[21],
+ buf0[26], cos_bit);
+ buf0[22] = buf1[22];
+ buf0[23] = buf1[23];
+ buf0[24] = buf1[24];
+ buf0[25] = buf1[25];
+ buf0[30] = buf1[30];
+ buf0[31] = buf1[31];
+
+ // stage 5
+ cospi = cospi_arr(cos_bit);
+ btf_32_avx2_type0(cospi[32], cospi[32], buf0[0], buf0[1], buf1[0], buf1[1],
+ cos_bit);
+ btf_32_avx2_type0(cospi[16], cospi[48], buf0[3], buf0[2], buf1[2], buf1[3],
+ cos_bit);
+ buf1[4] = _mm256_add_epi32(buf0[4], buf0[5]);
+ buf1[5] = _mm256_sub_epi32(buf0[4], buf0[5]);
+ buf1[6] = _mm256_sub_epi32(buf0[7], buf0[6]);
+ buf1[7] = _mm256_add_epi32(buf0[7], buf0[6]);
+ buf1[8] = buf0[8];
+ btf_32_avx2_type0(-cospi[16], cospi[48], buf0[9], buf0[14], buf1[9], buf1[14],
+ cos_bit);
+ btf_32_avx2_type0(-cospi[48], -cospi[16], buf0[10], buf0[13], buf1[10],
+ buf1[13], cos_bit);
+ buf1[11] = buf0[11];
+ buf1[12] = buf0[12];
+ buf1[15] = buf0[15];
+ buf1[16] = _mm256_add_epi32(buf0[16], buf0[19]);
+ buf1[19] = _mm256_sub_epi32(buf0[16], buf0[19]);
+ buf1[17] = _mm256_add_epi32(buf0[17], buf0[18]);
+ buf1[18] = _mm256_sub_epi32(buf0[17], buf0[18]);
+ buf1[20] = _mm256_sub_epi32(buf0[23], buf0[20]);
+ buf1[23] = _mm256_add_epi32(buf0[23], buf0[20]);
+ buf1[21] = _mm256_sub_epi32(buf0[22], buf0[21]);
+ buf1[22] = _mm256_add_epi32(buf0[22], buf0[21]);
+ buf1[24] = _mm256_add_epi32(buf0[24], buf0[27]);
+ buf1[27] = _mm256_sub_epi32(buf0[24], buf0[27]);
+ buf1[25] = _mm256_add_epi32(buf0[25], buf0[26]);
+ buf1[26] = _mm256_sub_epi32(buf0[25], buf0[26]);
+ buf1[28] = _mm256_sub_epi32(buf0[31], buf0[28]);
+ buf1[31] = _mm256_add_epi32(buf0[31], buf0[28]);
+ buf1[29] = _mm256_sub_epi32(buf0[30], buf0[29]);
+ buf1[30] = _mm256_add_epi32(buf0[30], buf0[29]);
+
+ // stage 6
+ cospi = cospi_arr(cos_bit);
+ buf0[0] = buf1[0];
+ buf0[1] = buf1[1];
+ buf0[2] = buf1[2];
+ buf0[3] = buf1[3];
+ btf_32_avx2_type0(cospi[8], cospi[56], buf1[7], buf1[4], buf0[4], buf0[7],
+ cos_bit);
+ btf_32_avx2_type0(cospi[40], cospi[24], buf1[6], buf1[5], buf0[5], buf0[6],
+ cos_bit);
+ buf0[8] = _mm256_add_epi32(buf1[8], buf1[9]);
+ buf0[9] = _mm256_sub_epi32(buf1[8], buf1[9]);
+ buf0[10] = _mm256_sub_epi32(buf1[11], buf1[10]);
+ buf0[11] = _mm256_add_epi32(buf1[11], buf1[10]);
+ buf0[12] = _mm256_add_epi32(buf1[12], buf1[13]);
+ buf0[13] = _mm256_sub_epi32(buf1[12], buf1[13]);
+ buf0[14] = _mm256_sub_epi32(buf1[15], buf1[14]);
+ buf0[15] = _mm256_add_epi32(buf1[15], buf1[14]);
+ buf0[16] = buf1[16];
+ btf_32_avx2_type0(-cospi[8], cospi[56], buf1[17], buf1[30], buf0[17],
+ buf0[30], cos_bit);
+ btf_32_avx2_type0(-cospi[56], -cospi[8], buf1[18], buf1[29], buf0[18],
+ buf0[29], cos_bit);
+ buf0[19] = buf1[19];
+ buf0[20] = buf1[20];
+ btf_32_avx2_type0(-cospi[40], cospi[24], buf1[21], buf1[26], buf0[21],
+ buf0[26], cos_bit);
+ btf_32_avx2_type0(-cospi[24], -cospi[40], buf1[22], buf1[25], buf0[22],
+ buf0[25], cos_bit);
+ buf0[23] = buf1[23];
+ buf0[24] = buf1[24];
+ buf0[27] = buf1[27];
+ buf0[28] = buf1[28];
+ buf0[31] = buf1[31];
+
+ // stage 7
+ cospi = cospi_arr(cos_bit);
+ buf1[0] = buf0[0];
+ buf1[1] = buf0[1];
+ buf1[2] = buf0[2];
+ buf1[3] = buf0[3];
+ buf1[4] = buf0[4];
+ buf1[5] = buf0[5];
+ buf1[6] = buf0[6];
+ buf1[7] = buf0[7];
+ btf_32_avx2_type0(cospi[4], cospi[60], buf0[15], buf0[8], buf1[8], buf1[15],
+ cos_bit);
+ btf_32_avx2_type0(cospi[36], cospi[28], buf0[14], buf0[9], buf1[9], buf1[14],
+ cos_bit);
+ btf_32_avx2_type0(cospi[20], cospi[44], buf0[13], buf0[10], buf1[10],
+ buf1[13], cos_bit);
+ btf_32_avx2_type0(cospi[52], cospi[12], buf0[12], buf0[11], buf1[11],
+ buf1[12], cos_bit);
+ buf1[16] = _mm256_add_epi32(buf0[16], buf0[17]);
+ buf1[17] = _mm256_sub_epi32(buf0[16], buf0[17]);
+ buf1[18] = _mm256_sub_epi32(buf0[19], buf0[18]);
+ buf1[19] = _mm256_add_epi32(buf0[19], buf0[18]);
+ buf1[20] = _mm256_add_epi32(buf0[20], buf0[21]);
+ buf1[21] = _mm256_sub_epi32(buf0[20], buf0[21]);
+ buf1[22] = _mm256_sub_epi32(buf0[23], buf0[22]);
+ buf1[23] = _mm256_add_epi32(buf0[23], buf0[22]);
+ buf1[24] = _mm256_add_epi32(buf0[24], buf0[25]);
+ buf1[25] = _mm256_sub_epi32(buf0[24], buf0[25]);
+ buf1[26] = _mm256_sub_epi32(buf0[27], buf0[26]);
+ buf1[27] = _mm256_add_epi32(buf0[27], buf0[26]);
+ buf1[28] = _mm256_add_epi32(buf0[28], buf0[29]);
+ buf1[29] = _mm256_sub_epi32(buf0[28], buf0[29]);
+ buf1[30] = _mm256_sub_epi32(buf0[31], buf0[30]);
+ buf1[31] = _mm256_add_epi32(buf0[31], buf0[30]);
+
+ // stage 8
+ cospi = cospi_arr(cos_bit);
+ buf0[0] = buf1[0];
+ buf0[1] = buf1[1];
+ buf0[2] = buf1[2];
+ buf0[3] = buf1[3];
+ buf0[4] = buf1[4];
+ buf0[5] = buf1[5];
+ buf0[6] = buf1[6];
+ buf0[7] = buf1[7];
+ buf0[8] = buf1[8];
+ buf0[9] = buf1[9];
+ buf0[10] = buf1[10];
+ buf0[11] = buf1[11];
+ buf0[12] = buf1[12];
+ buf0[13] = buf1[13];
+ buf0[14] = buf1[14];
+ buf0[15] = buf1[15];
+ btf_32_avx2_type0(cospi[2], cospi[62], buf1[31], buf1[16], buf0[16], buf0[31],
+ cos_bit);
+ btf_32_avx2_type0(cospi[34], cospi[30], buf1[30], buf1[17], buf0[17],
+ buf0[30], cos_bit);
+ btf_32_avx2_type0(cospi[18], cospi[46], buf1[29], buf1[18], buf0[18],
+ buf0[29], cos_bit);
+ btf_32_avx2_type0(cospi[50], cospi[14], buf1[28], buf1[19], buf0[19],
+ buf0[28], cos_bit);
+ btf_32_avx2_type0(cospi[10], cospi[54], buf1[27], buf1[20], buf0[20],
+ buf0[27], cos_bit);
+ btf_32_avx2_type0(cospi[42], cospi[22], buf1[26], buf1[21], buf0[21],
+ buf0[26], cos_bit);
+ btf_32_avx2_type0(cospi[26], cospi[38], buf1[25], buf1[22], buf0[22],
+ buf0[25], cos_bit);
+ btf_32_avx2_type0(cospi[58], cospi[6], buf1[24], buf1[23], buf0[23], buf0[24],
+ cos_bit);
+
+ startidx = 0 * outstride;
+ endidx = 31 * outstride;
+ // stage 9
+ output[startidx] = buf0[0];
+ output[endidx] = buf0[31];
+ startidx += outstride;
+ endidx -= outstride;
+ output[startidx] = buf0[16];
+ output[endidx] = buf0[15];
+ startidx += outstride;
+ endidx -= outstride;
+ output[startidx] = buf0[8];
+ output[endidx] = buf0[23];
+ startidx += outstride;
+ endidx -= outstride;
+ output[startidx] = buf0[24];
+ output[endidx] = buf0[7];
+ startidx += outstride;
+ endidx -= outstride;
+ output[startidx] = buf0[4];
+ output[endidx] = buf0[27];
+ startidx += outstride;
+ endidx -= outstride;
+ output[startidx] = buf0[20];
+ output[endidx] = buf0[11];
+ startidx += outstride;
+ endidx -= outstride;
+ output[startidx] = buf0[12];
+ output[endidx] = buf0[19];
+ startidx += outstride;
+ endidx -= outstride;
+ output[startidx] = buf0[28];
+ output[endidx] = buf0[3];
+ startidx += outstride;
+ endidx -= outstride;
+ output[startidx] = buf0[2];
+ output[endidx] = buf0[29];
+ startidx += outstride;
+ endidx -= outstride;
+ output[startidx] = buf0[18];
+ output[endidx] = buf0[13];
+ startidx += outstride;
+ endidx -= outstride;
+ output[startidx] = buf0[10];
+ output[endidx] = buf0[21];
+ startidx += outstride;
+ endidx -= outstride;
+ output[startidx] = buf0[26];
+ output[endidx] = buf0[5];
+ startidx += outstride;
+ endidx -= outstride;
+ output[startidx] = buf0[6];
+ output[endidx] = buf0[25];
+ startidx += outstride;
+ endidx -= outstride;
+ output[startidx] = buf0[22];
+ output[endidx] = buf0[9];
+ startidx += outstride;
+ endidx -= outstride;
+ output[startidx] = buf0[14];
+ output[endidx] = buf0[17];
+ startidx += outstride;
+ endidx -= outstride;
+ output[startidx] = buf0[30];
+ output[endidx] = buf0[1];
+}
+static INLINE void idtx32x32_avx2(__m256i *input, __m256i *output,
+ const int8_t cos_bit, int instride,
+ int outstride) {
+ (void)cos_bit;
+ for (int i = 0; i < 32; i += 8) {
+ output[i * outstride] = _mm256_slli_epi32(input[i * instride], 2);
+ output[(i + 1) * outstride] =
+ _mm256_slli_epi32(input[(i + 1) * instride], 2);
+ output[(i + 2) * outstride] =
+ _mm256_slli_epi32(input[(i + 2) * instride], 2);
+ output[(i + 3) * outstride] =
+ _mm256_slli_epi32(input[(i + 3) * instride], 2);
+ output[(i + 4) * outstride] =
+ _mm256_slli_epi32(input[(i + 4) * instride], 2);
+ output[(i + 5) * outstride] =
+ _mm256_slli_epi32(input[(i + 5) * instride], 2);
+ output[(i + 6) * outstride] =
+ _mm256_slli_epi32(input[(i + 6) * instride], 2);
+ output[(i + 7) * outstride] =
+ _mm256_slli_epi32(input[(i + 7) * instride], 2);
+ }
+}
+static const transform_1d_avx2 col_txfm8x32_arr[TX_TYPES] = {
+ fdct32_avx2, // DCT_DCT
+ NULL, // ADST_DCT
+ NULL, // DCT_ADST
+ NULL, // ADST_ADST
+ NULL, // FLIPADST_DCT
+ NULL, // DCT_FLIPADST
+ NULL, // FLIPADST_FLIPADST
+ NULL, // ADST_FLIPADST
+ NULL, // FLIPADST_ADST
+ idtx32x32_avx2, // IDTX
+ NULL, // V_DCT
+ NULL, // H_DCT
+ NULL, // V_ADST
+ NULL, // H_ADST
+ NULL, // V_FLIPADST
+ NULL // H_FLIPADST
+};
+static const transform_1d_avx2 row_txfm8x32_arr[TX_TYPES] = {
+ fdct32_avx2, // DCT_DCT
+ NULL, // ADST_DCT
+ NULL, // DCT_ADST
+ NULL, // ADST_ADST
+ NULL, // FLIPADST_DCT
+ NULL, // DCT_FLIPADST
+ NULL, // FLIPADST_FLIPADST
+ NULL, // ADST_FLIPADST
+ NULL, // FLIPADST_ADST
+ idtx32x32_avx2, // IDTX
+ NULL, // V_DCT
+ NULL, // H_DCT
+ NULL, // V_ADST
+ NULL, // H_ADST
+ NULL, // V_FLIPADST
+ NULL // H_FLIPADST
+};
+void av1_fwd_txfm2d_32x32_avx2(const int16_t *input, int32_t *output,
+ int stride, TX_TYPE tx_type, int bd) {
+ (void)bd;
+ __m256i buf0[128], buf1[128];
+ const int tx_size = TX_32X32;
+ const int8_t *shift = av1_fwd_txfm_shift_ls[tx_size];
+ const int txw_idx = get_txw_idx(tx_size);
+ const int txh_idx = get_txh_idx(tx_size);
+ const int cos_bit_col = av1_fwd_cos_bit_col[txw_idx][txh_idx];
+ const int cos_bit_row = av1_fwd_cos_bit_row[txw_idx][txh_idx];
+ const int width = tx_size_wide[tx_size];
+ const int height = tx_size_high[tx_size];
+ const transform_1d_avx2 col_txfm = col_txfm8x32_arr[tx_type];
+ const transform_1d_avx2 row_txfm = row_txfm8x32_arr[tx_type];
+ int r, c;
+ const int width_div16 = (width >> 4);
+ const int width_div8 = (width >> 3);
+
+ for (int i = 0; i < width_div16; i++) {
+ load_buffer_16xn_avx2(input + (i << 4), &buf0[(i << 1)], stride, height,
+ width_div8, 0, 0);
+ round_shift_32_8xn_avx2(&buf0[(i << 1)], height, shift[0], width_div8);
+ round_shift_32_8xn_avx2(&buf0[(i << 1) + 1], height, shift[0], width_div8);
+ col_txfm(&buf0[(i << 1)], &buf0[(i << 1)], cos_bit_col, width_div8,
+ width_div8);
+ col_txfm(&buf0[(i << 1) + 1], &buf0[(i << 1) + 1], cos_bit_col, width_div8,
+ width_div8);
+ round_shift_32_8xn_avx2(&buf0[(i << 1)], height, shift[1], width_div8);
+ round_shift_32_8xn_avx2(&buf0[(i << 1) + 1], height, shift[1], width_div8);
+ }
+
+ for (r = 0; r < height; r += 8) {
+ for (c = 0; c < width_div8; c++) {
+ fwd_txfm_transpose_8x8_avx2(&buf0[r * width_div8 + c],
+ &buf1[c * 8 * width_div8 + (r >> 3)],
+ width_div8, width_div8);
+ }
+ }
+
+ for (int i = 0; i < width_div16; i++) {
+ row_txfm(&buf1[(i << 1)], &buf1[(i << 1)], cos_bit_row, width_div8,
+ width_div8);
+ row_txfm(&buf1[(i << 1) + 1], &buf1[(i << 1) + 1], cos_bit_row, width_div8,
+ width_div8);
+ round_shift_32_8xn_avx2(&buf1[(i << 1)], height, shift[2], width_div8);
+ round_shift_32_8xn_avx2(&buf1[(i << 1) + 1], height, shift[2], width_div8);
+ }
+
+ for (r = 0; r < height; r += 8) {
+ for (c = 0; c < width_div8; c++) {
+ fwd_txfm_transpose_8x8_avx2(&buf1[r * width_div8 + c],
+ &buf0[c * 8 * width_div8 + (r >> 3)],
+ width_div8, width_div8);
+ }
+ }
+
+ store_buffer_avx2(buf0, output, 8, 128);
+}
+static INLINE void fdct64_stage2_avx2(__m256i *x1, __m256i *x2,
+ __m256i *cospi_m32, __m256i *cospi_p32,
+ const __m256i *__rounding,
+ int8_t cos_bit) {
+ x2[0] = _mm256_add_epi32(x1[0], x1[31]);
+ x2[31] = _mm256_sub_epi32(x1[0], x1[31]);
+ x2[1] = _mm256_add_epi32(x1[1], x1[30]);
+ x2[30] = _mm256_sub_epi32(x1[1], x1[30]);
+ x2[2] = _mm256_add_epi32(x1[2], x1[29]);
+ x2[29] = _mm256_sub_epi32(x1[2], x1[29]);
+ x2[3] = _mm256_add_epi32(x1[3], x1[28]);
+ x2[28] = _mm256_sub_epi32(x1[3], x1[28]);
+ x2[4] = _mm256_add_epi32(x1[4], x1[27]);
+ x2[27] = _mm256_sub_epi32(x1[4], x1[27]);
+ x2[5] = _mm256_add_epi32(x1[5], x1[26]);
+ x2[26] = _mm256_sub_epi32(x1[5], x1[26]);
+ x2[6] = _mm256_add_epi32(x1[6], x1[25]);
+ x2[25] = _mm256_sub_epi32(x1[6], x1[25]);
+ x2[7] = _mm256_add_epi32(x1[7], x1[24]);
+ x2[24] = _mm256_sub_epi32(x1[7], x1[24]);
+ x2[8] = _mm256_add_epi32(x1[8], x1[23]);
+ x2[23] = _mm256_sub_epi32(x1[8], x1[23]);
+ x2[9] = _mm256_add_epi32(x1[9], x1[22]);
+ x2[22] = _mm256_sub_epi32(x1[9], x1[22]);
+ x2[10] = _mm256_add_epi32(x1[10], x1[21]);
+ x2[21] = _mm256_sub_epi32(x1[10], x1[21]);
+ x2[11] = _mm256_add_epi32(x1[11], x1[20]);
+ x2[20] = _mm256_sub_epi32(x1[11], x1[20]);
+ x2[12] = _mm256_add_epi32(x1[12], x1[19]);
+ x2[19] = _mm256_sub_epi32(x1[12], x1[19]);
+ x2[13] = _mm256_add_epi32(x1[13], x1[18]);
+ x2[18] = _mm256_sub_epi32(x1[13], x1[18]);
+ x2[14] = _mm256_add_epi32(x1[14], x1[17]);
+ x2[17] = _mm256_sub_epi32(x1[14], x1[17]);
+ x2[15] = _mm256_add_epi32(x1[15], x1[16]);
+ x2[16] = _mm256_sub_epi32(x1[15], x1[16]);
+ x2[32] = x1[32];
+ x2[33] = x1[33];
+ x2[34] = x1[34];
+ x2[35] = x1[35];
+ x2[36] = x1[36];
+ x2[37] = x1[37];
+ x2[38] = x1[38];
+ x2[39] = x1[39];
+ btf_32_type0_avx2_new(*cospi_m32, *cospi_p32, x1[40], x1[55], x2[40], x2[55],
+ *__rounding, cos_bit);
+ btf_32_type0_avx2_new(*cospi_m32, *cospi_p32, x1[41], x1[54], x2[41], x2[54],
+ *__rounding, cos_bit);
+ btf_32_type0_avx2_new(*cospi_m32, *cospi_p32, x1[42], x1[53], x2[42], x2[53],
+ *__rounding, cos_bit);
+ btf_32_type0_avx2_new(*cospi_m32, *cospi_p32, x1[43], x1[52], x2[43], x2[52],
+ *__rounding, cos_bit);
+ btf_32_type0_avx2_new(*cospi_m32, *cospi_p32, x1[44], x1[51], x2[44], x2[51],
+ *__rounding, cos_bit);
+ btf_32_type0_avx2_new(*cospi_m32, *cospi_p32, x1[45], x1[50], x2[45], x2[50],
+ *__rounding, cos_bit);
+ btf_32_type0_avx2_new(*cospi_m32, *cospi_p32, x1[46], x1[49], x2[46], x2[49],
+ *__rounding, cos_bit);
+ btf_32_type0_avx2_new(*cospi_m32, *cospi_p32, x1[47], x1[48], x2[47], x2[48],
+ *__rounding, cos_bit);
+ x2[56] = x1[56];
+ x2[57] = x1[57];
+ x2[58] = x1[58];
+ x2[59] = x1[59];
+ x2[60] = x1[60];
+ x2[61] = x1[61];
+ x2[62] = x1[62];
+ x2[63] = x1[63];
+}
+static INLINE void fdct64_stage3_avx2(__m256i *x2, __m256i *x3,
+ __m256i *cospi_m32, __m256i *cospi_p32,
+ const __m256i *__rounding,
+ int8_t cos_bit) {
+ x3[0] = _mm256_add_epi32(x2[0], x2[15]);
+ x3[15] = _mm256_sub_epi32(x2[0], x2[15]);
+ x3[1] = _mm256_add_epi32(x2[1], x2[14]);
+ x3[14] = _mm256_sub_epi32(x2[1], x2[14]);
+ x3[2] = _mm256_add_epi32(x2[2], x2[13]);
+ x3[13] = _mm256_sub_epi32(x2[2], x2[13]);
+ x3[3] = _mm256_add_epi32(x2[3], x2[12]);
+ x3[12] = _mm256_sub_epi32(x2[3], x2[12]);
+ x3[4] = _mm256_add_epi32(x2[4], x2[11]);
+ x3[11] = _mm256_sub_epi32(x2[4], x2[11]);
+ x3[5] = _mm256_add_epi32(x2[5], x2[10]);
+ x3[10] = _mm256_sub_epi32(x2[5], x2[10]);
+ x3[6] = _mm256_add_epi32(x2[6], x2[9]);
+ x3[9] = _mm256_sub_epi32(x2[6], x2[9]);
+ x3[7] = _mm256_add_epi32(x2[7], x2[8]);
+ x3[8] = _mm256_sub_epi32(x2[7], x2[8]);
+ x3[16] = x2[16];
+ x3[17] = x2[17];
+ x3[18] = x2[18];
+ x3[19] = x2[19];
+ btf_32_type0_avx2_new(*cospi_m32, *cospi_p32, x2[20], x2[27], x3[20], x3[27],
+ *__rounding, cos_bit);
+ btf_32_type0_avx2_new(*cospi_m32, *cospi_p32, x2[21], x2[26], x3[21], x3[26],
+ *__rounding, cos_bit);
+ btf_32_type0_avx2_new(*cospi_m32, *cospi_p32, x2[22], x2[25], x3[22], x3[25],
+ *__rounding, cos_bit);
+ btf_32_type0_avx2_new(*cospi_m32, *cospi_p32, x2[23], x2[24], x3[23], x3[24],
+ *__rounding, cos_bit);
+ x3[28] = x2[28];
+ x3[29] = x2[29];
+ x3[30] = x2[30];
+ x3[31] = x2[31];
+ x3[32] = _mm256_add_epi32(x2[32], x2[47]);
+ x3[47] = _mm256_sub_epi32(x2[32], x2[47]);
+ x3[33] = _mm256_add_epi32(x2[33], x2[46]);
+ x3[46] = _mm256_sub_epi32(x2[33], x2[46]);
+ x3[34] = _mm256_add_epi32(x2[34], x2[45]);
+ x3[45] = _mm256_sub_epi32(x2[34], x2[45]);
+ x3[35] = _mm256_add_epi32(x2[35], x2[44]);
+ x3[44] = _mm256_sub_epi32(x2[35], x2[44]);
+ x3[36] = _mm256_add_epi32(x2[36], x2[43]);
+ x3[43] = _mm256_sub_epi32(x2[36], x2[43]);
+ x3[37] = _mm256_add_epi32(x2[37], x2[42]);
+ x3[42] = _mm256_sub_epi32(x2[37], x2[42]);
+ x3[38] = _mm256_add_epi32(x2[38], x2[41]);
+ x3[41] = _mm256_sub_epi32(x2[38], x2[41]);
+ x3[39] = _mm256_add_epi32(x2[39], x2[40]);
+ x3[40] = _mm256_sub_epi32(x2[39], x2[40]);
+ x3[48] = _mm256_sub_epi32(x2[63], x2[48]);
+ x3[63] = _mm256_add_epi32(x2[63], x2[48]);
+ x3[49] = _mm256_sub_epi32(x2[62], x2[49]);
+ x3[62] = _mm256_add_epi32(x2[62], x2[49]);
+ x3[50] = _mm256_sub_epi32(x2[61], x2[50]);
+ x3[61] = _mm256_add_epi32(x2[61], x2[50]);
+ x3[51] = _mm256_sub_epi32(x2[60], x2[51]);
+ x3[60] = _mm256_add_epi32(x2[60], x2[51]);
+ x3[52] = _mm256_sub_epi32(x2[59], x2[52]);
+ x3[59] = _mm256_add_epi32(x2[59], x2[52]);
+ x3[53] = _mm256_sub_epi32(x2[58], x2[53]);
+ x3[58] = _mm256_add_epi32(x2[58], x2[53]);
+ x3[54] = _mm256_sub_epi32(x2[57], x2[54]);
+ x3[57] = _mm256_add_epi32(x2[57], x2[54]);
+ x3[55] = _mm256_sub_epi32(x2[56], x2[55]);
+ x3[56] = _mm256_add_epi32(x2[56], x2[55]);
+}
+static INLINE void fdct64_stage4_avx2(__m256i *x3, __m256i *x4,
+ __m256i *cospi_m32, __m256i *cospi_p32,
+ __m256i *cospi_m16, __m256i *cospi_p48,
+ __m256i *cospi_m48,
+ const __m256i *__rounding,
+ int8_t cos_bit) {
+ x4[0] = _mm256_add_epi32(x3[0], x3[7]);
+ x4[7] = _mm256_sub_epi32(x3[0], x3[7]);
+ x4[1] = _mm256_add_epi32(x3[1], x3[6]);
+ x4[6] = _mm256_sub_epi32(x3[1], x3[6]);
+ x4[2] = _mm256_add_epi32(x3[2], x3[5]);
+ x4[5] = _mm256_sub_epi32(x3[2], x3[5]);
+ x4[3] = _mm256_add_epi32(x3[3], x3[4]);
+ x4[4] = _mm256_sub_epi32(x3[3], x3[4]);
+ x4[8] = x3[8];
+ x4[9] = x3[9];
+ btf_32_type0_avx2_new(*cospi_m32, *cospi_p32, x3[10], x3[13], x4[10], x4[13],
+ *__rounding, cos_bit);
+ btf_32_type0_avx2_new(*cospi_m32, *cospi_p32, x3[11], x3[12], x4[11], x4[12],
+ *__rounding, cos_bit);
+ x4[14] = x3[14];
+ x4[15] = x3[15];
+ x4[16] = _mm256_add_epi32(x3[16], x3[23]);
+ x4[23] = _mm256_sub_epi32(x3[16], x3[23]);
+ x4[17] = _mm256_add_epi32(x3[17], x3[22]);
+ x4[22] = _mm256_sub_epi32(x3[17], x3[22]);
+ x4[18] = _mm256_add_epi32(x3[18], x3[21]);
+ x4[21] = _mm256_sub_epi32(x3[18], x3[21]);
+ x4[19] = _mm256_add_epi32(x3[19], x3[20]);
+ x4[20] = _mm256_sub_epi32(x3[19], x3[20]);
+ x4[24] = _mm256_sub_epi32(x3[31], x3[24]);
+ x4[31] = _mm256_add_epi32(x3[31], x3[24]);
+ x4[25] = _mm256_sub_epi32(x3[30], x3[25]);
+ x4[30] = _mm256_add_epi32(x3[30], x3[25]);
+ x4[26] = _mm256_sub_epi32(x3[29], x3[26]);
+ x4[29] = _mm256_add_epi32(x3[29], x3[26]);
+ x4[27] = _mm256_sub_epi32(x3[28], x3[27]);
+ x4[28] = _mm256_add_epi32(x3[28], x3[27]);
+ x4[32] = x3[32];
+ x4[33] = x3[33];
+ x4[34] = x3[34];
+ x4[35] = x3[35];
+ btf_32_type0_avx2_new(*cospi_m16, *cospi_p48, x3[36], x3[59], x4[36], x4[59],
+ *__rounding, cos_bit);
+ btf_32_type0_avx2_new(*cospi_m16, *cospi_p48, x3[37], x3[58], x4[37], x4[58],
+ *__rounding, cos_bit);
+ btf_32_type0_avx2_new(*cospi_m16, *cospi_p48, x3[38], x3[57], x4[38], x4[57],
+ *__rounding, cos_bit);
+ btf_32_type0_avx2_new(*cospi_m16, *cospi_p48, x3[39], x3[56], x4[39], x4[56],
+ *__rounding, cos_bit);
+ btf_32_type0_avx2_new(*cospi_m48, *cospi_m16, x3[40], x3[55], x4[40], x4[55],
+ *__rounding, cos_bit);
+ btf_32_type0_avx2_new(*cospi_m48, *cospi_m16, x3[41], x3[54], x4[41], x4[54],
+ *__rounding, cos_bit);
+ btf_32_type0_avx2_new(*cospi_m48, *cospi_m16, x3[42], x3[53], x4[42], x4[53],
+ *__rounding, cos_bit);
+ btf_32_type0_avx2_new(*cospi_m48, *cospi_m16, x3[43], x3[52], x4[43], x4[52],
+ *__rounding, cos_bit);
+ x4[44] = x3[44];
+ x4[45] = x3[45];
+ x4[46] = x3[46];
+ x4[47] = x3[47];
+ x4[48] = x3[48];
+ x4[49] = x3[49];
+ x4[50] = x3[50];
+ x4[51] = x3[51];
+ x4[60] = x3[60];
+ x4[61] = x3[61];
+ x4[62] = x3[62];
+ x4[63] = x3[63];
+}
+static INLINE void fdct64_stage5_avx2(__m256i *x4, __m256i *x5,
+ __m256i *cospi_m32, __m256i *cospi_p32,
+ __m256i *cospi_m16, __m256i *cospi_p48,
+ __m256i *cospi_m48,
+ const __m256i *__rounding,
+ int8_t cos_bit) {
+ x5[0] = _mm256_add_epi32(x4[0], x4[3]);
+ x5[3] = _mm256_sub_epi32(x4[0], x4[3]);
+ x5[1] = _mm256_add_epi32(x4[1], x4[2]);
+ x5[2] = _mm256_sub_epi32(x4[1], x4[2]);
+ x5[4] = x4[4];
+ btf_32_type0_avx2_new(*cospi_m32, *cospi_p32, x4[5], x4[6], x5[5], x5[6],
+ *__rounding, cos_bit);
+ x5[7] = x4[7];
+ x5[8] = _mm256_add_epi32(x4[8], x4[11]);
+ x5[11] = _mm256_sub_epi32(x4[8], x4[11]);
+ x5[9] = _mm256_add_epi32(x4[9], x4[10]);
+ x5[10] = _mm256_sub_epi32(x4[9], x4[10]);
+ x5[12] = _mm256_sub_epi32(x4[15], x4[12]);
+ x5[15] = _mm256_add_epi32(x4[15], x4[12]);
+ x5[13] = _mm256_sub_epi32(x4[14], x4[13]);
+ x5[14] = _mm256_add_epi32(x4[14], x4[13]);
+ x5[16] = x4[16];
+ x5[17] = x4[17];
+ btf_32_type0_avx2_new(*cospi_m16, *cospi_p48, x4[18], x4[29], x5[18], x5[29],
+ *__rounding, cos_bit);
+ btf_32_type0_avx2_new(*cospi_m16, *cospi_p48, x4[19], x4[28], x5[19], x5[28],
+ *__rounding, cos_bit);
+ btf_32_type0_avx2_new(*cospi_m48, *cospi_m16, x4[20], x4[27], x5[20], x5[27],
+ *__rounding, cos_bit);
+ btf_32_type0_avx2_new(*cospi_m48, *cospi_m16, x4[21], x4[26], x5[21], x5[26],
+ *__rounding, cos_bit);
+ x5[22] = x4[22];
+ x5[23] = x4[23];
+ x5[24] = x4[24];
+ x5[25] = x4[25];
+ x5[30] = x4[30];
+ x5[31] = x4[31];
+ x5[32] = _mm256_add_epi32(x4[32], x4[39]);
+ x5[39] = _mm256_sub_epi32(x4[32], x4[39]);
+ x5[33] = _mm256_add_epi32(x4[33], x4[38]);
+ x5[38] = _mm256_sub_epi32(x4[33], x4[38]);
+ x5[34] = _mm256_add_epi32(x4[34], x4[37]);
+ x5[37] = _mm256_sub_epi32(x4[34], x4[37]);
+ x5[35] = _mm256_add_epi32(x4[35], x4[36]);
+ x5[36] = _mm256_sub_epi32(x4[35], x4[36]);
+ x5[40] = _mm256_sub_epi32(x4[47], x4[40]);
+ x5[47] = _mm256_add_epi32(x4[47], x4[40]);
+ x5[41] = _mm256_sub_epi32(x4[46], x4[41]);
+ x5[46] = _mm256_add_epi32(x4[46], x4[41]);
+ x5[42] = _mm256_sub_epi32(x4[45], x4[42]);
+ x5[45] = _mm256_add_epi32(x4[45], x4[42]);
+ x5[43] = _mm256_sub_epi32(x4[44], x4[43]);
+ x5[44] = _mm256_add_epi32(x4[44], x4[43]);
+ x5[48] = _mm256_add_epi32(x4[48], x4[55]);
+ x5[55] = _mm256_sub_epi32(x4[48], x4[55]);
+ x5[49] = _mm256_add_epi32(x4[49], x4[54]);
+ x5[54] = _mm256_sub_epi32(x4[49], x4[54]);
+ x5[50] = _mm256_add_epi32(x4[50], x4[53]);
+ x5[53] = _mm256_sub_epi32(x4[50], x4[53]);
+ x5[51] = _mm256_add_epi32(x4[51], x4[52]);
+ x5[52] = _mm256_sub_epi32(x4[51], x4[52]);
+ x5[56] = _mm256_sub_epi32(x4[63], x4[56]);
+ x5[63] = _mm256_add_epi32(x4[63], x4[56]);
+ x5[57] = _mm256_sub_epi32(x4[62], x4[57]);
+ x5[62] = _mm256_add_epi32(x4[62], x4[57]);
+ x5[58] = _mm256_sub_epi32(x4[61], x4[58]);
+ x5[61] = _mm256_add_epi32(x4[61], x4[58]);
+ x5[59] = _mm256_sub_epi32(x4[60], x4[59]);
+ x5[60] = _mm256_add_epi32(x4[60], x4[59]);
+}
+static INLINE void fdct64_stage6_avx2(
+ __m256i *x5, __m256i *x6, __m256i *cospi_p16, __m256i *cospi_p32,
+ __m256i *cospi_m16, __m256i *cospi_p48, __m256i *cospi_m48,
+ __m256i *cospi_m08, __m256i *cospi_p56, __m256i *cospi_m56,
+ __m256i *cospi_m40, __m256i *cospi_p24, __m256i *cospi_m24,
+ const __m256i *__rounding, int8_t cos_bit) {
+ btf_32_type0_avx2_new(*cospi_p32, *cospi_p32, x5[0], x5[1], x6[0], x6[1],
+ *__rounding, cos_bit);
+ btf_32_type0_avx2_new(*cospi_p16, *cospi_p48, x5[3], x5[2], x6[2], x6[3],
+ *__rounding, cos_bit);
+ x6[4] = _mm256_add_epi32(x5[4], x5[5]);
+ x6[5] = _mm256_sub_epi32(x5[4], x5[5]);
+ x6[6] = _mm256_sub_epi32(x5[7], x5[6]);
+ x6[7] = _mm256_add_epi32(x5[7], x5[6]);
+ x6[8] = x5[8];
+ btf_32_type0_avx2_new(*cospi_m16, *cospi_p48, x5[9], x5[14], x6[9], x6[14],
+ *__rounding, cos_bit);
+ btf_32_type0_avx2_new(*cospi_m48, *cospi_m16, x5[10], x5[13], x6[10], x6[13],
+ *__rounding, cos_bit);
+ x6[11] = x5[11];
+ x6[12] = x5[12];
+ x6[15] = x5[15];
+ x6[16] = _mm256_add_epi32(x5[16], x5[19]);
+ x6[19] = _mm256_sub_epi32(x5[16], x5[19]);
+ x6[17] = _mm256_add_epi32(x5[17], x5[18]);
+ x6[18] = _mm256_sub_epi32(x5[17], x5[18]);
+ x6[20] = _mm256_sub_epi32(x5[23], x5[20]);
+ x6[23] = _mm256_add_epi32(x5[23], x5[20]);
+ x6[21] = _mm256_sub_epi32(x5[22], x5[21]);
+ x6[22] = _mm256_add_epi32(x5[22], x5[21]);
+ x6[24] = _mm256_add_epi32(x5[24], x5[27]);
+ x6[27] = _mm256_sub_epi32(x5[24], x5[27]);
+ x6[25] = _mm256_add_epi32(x5[25], x5[26]);
+ x6[26] = _mm256_sub_epi32(x5[25], x5[26]);
+ x6[28] = _mm256_sub_epi32(x5[31], x5[28]);
+ x6[31] = _mm256_add_epi32(x5[31], x5[28]);
+ x6[29] = _mm256_sub_epi32(x5[30], x5[29]);
+ x6[30] = _mm256_add_epi32(x5[30], x5[29]);
+ x6[32] = x5[32];
+ x6[33] = x5[33];
+ btf_32_type0_avx2_new(*cospi_m08, *cospi_p56, x5[34], x5[61], x6[34], x6[61],
+ *__rounding, cos_bit);
+ btf_32_type0_avx2_new(*cospi_m08, *cospi_p56, x5[35], x5[60], x6[35], x6[60],
+ *__rounding, cos_bit);
+ btf_32_type0_avx2_new(*cospi_m56, *cospi_m08, x5[36], x5[59], x6[36], x6[59],
+ *__rounding, cos_bit);
+ btf_32_type0_avx2_new(*cospi_m56, *cospi_m08, x5[37], x5[58], x6[37], x6[58],
+ *__rounding, cos_bit);
+ x6[38] = x5[38];
+ x6[39] = x5[39];
+ x6[40] = x5[40];
+ x6[41] = x5[41];
+ btf_32_type0_avx2_new(*cospi_m40, *cospi_p24, x5[42], x5[53], x6[42], x6[53],
+ *__rounding, cos_bit);
+ btf_32_type0_avx2_new(*cospi_m40, *cospi_p24, x5[43], x5[52], x6[43], x6[52],
+ *__rounding, cos_bit);
+ btf_32_type0_avx2_new(*cospi_m24, *cospi_m40, x5[44], x5[51], x6[44], x6[51],
+ *__rounding, cos_bit);
+ btf_32_type0_avx2_new(*cospi_m24, *cospi_m40, x5[45], x5[50], x6[45], x6[50],
+ *__rounding, cos_bit);
+ x6[46] = x5[46];
+ x6[47] = x5[47];
+ x6[48] = x5[48];
+ x6[49] = x5[49];
+ x6[54] = x5[54];
+ x6[55] = x5[55];
+ x6[56] = x5[56];
+ x6[57] = x5[57];
+ x6[62] = x5[62];
+ x6[63] = x5[63];
+}
+static INLINE void fdct64_stage7_avx2(__m256i *x6, __m256i *x7,
+ __m256i *cospi_p08, __m256i *cospi_p56,
+ __m256i *cospi_p40, __m256i *cospi_p24,
+ __m256i *cospi_m08, __m256i *cospi_m56,
+ __m256i *cospi_m40, __m256i *cospi_m24,
+ const __m256i *__rounding,
+ int8_t cos_bit) {
+ x7[0] = x6[0];
+ x7[1] = x6[1];
+ x7[2] = x6[2];
+ x7[3] = x6[3];
+ btf_32_type0_avx2_new(*cospi_p08, *cospi_p56, x6[7], x6[4], x7[4], x7[7],
+ *__rounding, cos_bit);
+ btf_32_type0_avx2_new(*cospi_p40, *cospi_p24, x6[6], x6[5], x7[5], x7[6],
+ *__rounding, cos_bit);
+ x7[8] = _mm256_add_epi32(x6[8], x6[9]);
+ x7[9] = _mm256_sub_epi32(x6[8], x6[9]);
+ x7[10] = _mm256_sub_epi32(x6[11], x6[10]);
+ x7[11] = _mm256_add_epi32(x6[11], x6[10]);
+ x7[12] = _mm256_add_epi32(x6[12], x6[13]);
+ x7[13] = _mm256_sub_epi32(x6[12], x6[13]);
+ x7[14] = _mm256_sub_epi32(x6[15], x6[14]);
+ x7[15] = _mm256_add_epi32(x6[15], x6[14]);
+ x7[16] = x6[16];
+ btf_32_type0_avx2_new(*cospi_m08, *cospi_p56, x6[17], x6[30], x7[17], x7[30],
+ *__rounding, cos_bit);
+ btf_32_type0_avx2_new(*cospi_m56, *cospi_m08, x6[18], x6[29], x7[18], x7[29],
+ *__rounding, cos_bit);
+ x7[19] = x6[19];
+ x7[20] = x6[20];
+ btf_32_type0_avx2_new(*cospi_m40, *cospi_p24, x6[21], x6[26], x7[21], x7[26],
+ *__rounding, cos_bit);
+ btf_32_type0_avx2_new(*cospi_m24, *cospi_m40, x6[22], x6[25], x7[22], x7[25],
+ *__rounding, cos_bit);
+ x7[23] = x6[23];
+ x7[24] = x6[24];
+ x7[27] = x6[27];
+ x7[28] = x6[28];
+ x7[31] = x6[31];
+ x7[32] = _mm256_add_epi32(x6[32], x6[35]);
+ x7[35] = _mm256_sub_epi32(x6[32], x6[35]);
+ x7[33] = _mm256_add_epi32(x6[33], x6[34]);
+ x7[34] = _mm256_sub_epi32(x6[33], x6[34]);
+ x7[36] = _mm256_sub_epi32(x6[39], x6[36]);
+ x7[39] = _mm256_add_epi32(x6[39], x6[36]);
+ x7[37] = _mm256_sub_epi32(x6[38], x6[37]);
+ x7[38] = _mm256_add_epi32(x6[38], x6[37]);
+ x7[40] = _mm256_add_epi32(x6[40], x6[43]);
+ x7[43] = _mm256_sub_epi32(x6[40], x6[43]);
+ x7[41] = _mm256_add_epi32(x6[41], x6[42]);
+ x7[42] = _mm256_sub_epi32(x6[41], x6[42]);
+ x7[44] = _mm256_sub_epi32(x6[47], x6[44]);
+ x7[47] = _mm256_add_epi32(x6[47], x6[44]);
+ x7[45] = _mm256_sub_epi32(x6[46], x6[45]);
+ x7[46] = _mm256_add_epi32(x6[46], x6[45]);
+ x7[48] = _mm256_add_epi32(x6[48], x6[51]);
+ x7[51] = _mm256_sub_epi32(x6[48], x6[51]);
+ x7[49] = _mm256_add_epi32(x6[49], x6[50]);
+ x7[50] = _mm256_sub_epi32(x6[49], x6[50]);
+ x7[52] = _mm256_sub_epi32(x6[55], x6[52]);
+ x7[55] = _mm256_add_epi32(x6[55], x6[52]);
+ x7[53] = _mm256_sub_epi32(x6[54], x6[53]);
+ x7[54] = _mm256_add_epi32(x6[54], x6[53]);
+ x7[56] = _mm256_add_epi32(x6[56], x6[59]);
+ x7[59] = _mm256_sub_epi32(x6[56], x6[59]);
+ x7[57] = _mm256_add_epi32(x6[57], x6[58]);
+ x7[58] = _mm256_sub_epi32(x6[57], x6[58]);
+ x7[60] = _mm256_sub_epi32(x6[63], x6[60]);
+ x7[63] = _mm256_add_epi32(x6[63], x6[60]);
+ x7[61] = _mm256_sub_epi32(x6[62], x6[61]);
+ x7[62] = _mm256_add_epi32(x6[62], x6[61]);
+}
+static INLINE void fdct64_stage8_avx2(__m256i *x7, __m256i *x8,
+ const int32_t *cospi,
+ const __m256i *__rounding,
+ int8_t cos_bit) {
+ __m256i cospi_p60 = _mm256_set1_epi32(cospi[60]);
+ __m256i cospi_p04 = _mm256_set1_epi32(cospi[4]);
+ __m256i cospi_p28 = _mm256_set1_epi32(cospi[28]);
+ __m256i cospi_p36 = _mm256_set1_epi32(cospi[36]);
+ __m256i cospi_p44 = _mm256_set1_epi32(cospi[44]);
+ __m256i cospi_p20 = _mm256_set1_epi32(cospi[20]);
+ __m256i cospi_p12 = _mm256_set1_epi32(cospi[12]);
+ __m256i cospi_p52 = _mm256_set1_epi32(cospi[52]);
+ __m256i cospi_m04 = _mm256_set1_epi32(-cospi[4]);
+ __m256i cospi_m60 = _mm256_set1_epi32(-cospi[60]);
+ __m256i cospi_m36 = _mm256_set1_epi32(-cospi[36]);
+ __m256i cospi_m28 = _mm256_set1_epi32(-cospi[28]);
+ __m256i cospi_m20 = _mm256_set1_epi32(-cospi[20]);
+ __m256i cospi_m44 = _mm256_set1_epi32(-cospi[44]);
+ __m256i cospi_m52 = _mm256_set1_epi32(-cospi[52]);
+ __m256i cospi_m12 = _mm256_set1_epi32(-cospi[12]);
+
+ x8[0] = x7[0];
+ x8[1] = x7[1];
+ x8[2] = x7[2];
+ x8[3] = x7[3];
+ x8[4] = x7[4];
+ x8[5] = x7[5];
+ x8[6] = x7[6];
+ x8[7] = x7[7];
+
+ btf_32_type0_avx2_new(cospi_p04, cospi_p60, x7[15], x7[8], x8[8], x8[15],
+ *__rounding, cos_bit);
+ btf_32_type0_avx2_new(cospi_p36, cospi_p28, x7[14], x7[9], x8[9], x8[14],
+ *__rounding, cos_bit);
+ btf_32_type0_avx2_new(cospi_p20, cospi_p44, x7[13], x7[10], x8[10], x8[13],
+ *__rounding, cos_bit);
+ btf_32_type0_avx2_new(cospi_p52, cospi_p12, x7[12], x7[11], x8[11], x8[12],
+ *__rounding, cos_bit);
+ x8[16] = _mm256_add_epi32(x7[16], x7[17]);
+ x8[17] = _mm256_sub_epi32(x7[16], x7[17]);
+ x8[18] = _mm256_sub_epi32(x7[19], x7[18]);
+ x8[19] = _mm256_add_epi32(x7[19], x7[18]);
+ x8[20] = _mm256_add_epi32(x7[20], x7[21]);
+ x8[21] = _mm256_sub_epi32(x7[20], x7[21]);
+ x8[22] = _mm256_sub_epi32(x7[23], x7[22]);
+ x8[23] = _mm256_add_epi32(x7[23], x7[22]);
+ x8[24] = _mm256_add_epi32(x7[24], x7[25]);
+ x8[25] = _mm256_sub_epi32(x7[24], x7[25]);
+ x8[26] = _mm256_sub_epi32(x7[27], x7[26]);
+ x8[27] = _mm256_add_epi32(x7[27], x7[26]);
+ x8[28] = _mm256_add_epi32(x7[28], x7[29]);
+ x8[29] = _mm256_sub_epi32(x7[28], x7[29]);
+ x8[30] = _mm256_sub_epi32(x7[31], x7[30]);
+ x8[31] = _mm256_add_epi32(x7[31], x7[30]);
+ x8[32] = x7[32];
+ btf_32_type0_avx2_new(cospi_m04, cospi_p60, x7[33], x7[62], x8[33], x8[62],
+ *__rounding, cos_bit);
+ btf_32_type0_avx2_new(cospi_m60, cospi_m04, x7[34], x7[61], x8[34], x8[61],
+ *__rounding, cos_bit);
+ x8[35] = x7[35];
+ x8[36] = x7[36];
+ btf_32_type0_avx2_new(cospi_m36, cospi_p28, x7[37], x7[58], x8[37], x8[58],
+ *__rounding, cos_bit);
+ btf_32_type0_avx2_new(cospi_m28, cospi_m36, x7[38], x7[57], x8[38], x8[57],
+ *__rounding, cos_bit);
+ x8[39] = x7[39];
+ x8[40] = x7[40];
+ btf_32_type0_avx2_new(cospi_m20, cospi_p44, x7[41], x7[54], x8[41], x8[54],
+ *__rounding, cos_bit);
+ btf_32_type0_avx2_new(cospi_m44, cospi_m20, x7[42], x7[53], x8[42], x8[53],
+ *__rounding, cos_bit);
+ x8[43] = x7[43];
+ x8[44] = x7[44];
+ btf_32_type0_avx2_new(cospi_m52, cospi_p12, x7[45], x7[50], x8[45], x8[50],
+ *__rounding, cos_bit);
+ btf_32_type0_avx2_new(cospi_m12, cospi_m52, x7[46], x7[49], x8[46], x8[49],
+ *__rounding, cos_bit);
+ x8[47] = x7[47];
+ x8[48] = x7[48];
+ x8[51] = x7[51];
+ x8[52] = x7[52];
+ x8[55] = x7[55];
+ x8[56] = x7[56];
+ x8[59] = x7[59];
+ x8[60] = x7[60];
+ x8[63] = x7[63];
+}
+static INLINE void fdct64_stage9_avx2(__m256i *x8, __m256i *x9,
+ const int32_t *cospi,
+ const __m256i *__rounding,
+ int8_t cos_bit) {
+ __m256i cospi_p62 = _mm256_set1_epi32(cospi[62]);
+ __m256i cospi_p02 = _mm256_set1_epi32(cospi[2]);
+ __m256i cospi_p30 = _mm256_set1_epi32(cospi[30]);
+ __m256i cospi_p34 = _mm256_set1_epi32(cospi[34]);
+ __m256i cospi_p46 = _mm256_set1_epi32(cospi[46]);
+ __m256i cospi_p18 = _mm256_set1_epi32(cospi[18]);
+ __m256i cospi_p14 = _mm256_set1_epi32(cospi[14]);
+ __m256i cospi_p50 = _mm256_set1_epi32(cospi[50]);
+ __m256i cospi_p54 = _mm256_set1_epi32(cospi[54]);
+ __m256i cospi_p10 = _mm256_set1_epi32(cospi[10]);
+ __m256i cospi_p22 = _mm256_set1_epi32(cospi[22]);
+ __m256i cospi_p42 = _mm256_set1_epi32(cospi[42]);
+ __m256i cospi_p38 = _mm256_set1_epi32(cospi[38]);
+ __m256i cospi_p26 = _mm256_set1_epi32(cospi[26]);
+ __m256i cospi_p06 = _mm256_set1_epi32(cospi[6]);
+ __m256i cospi_p58 = _mm256_set1_epi32(cospi[58]);
+
+ x9[0] = x8[0];
+ x9[1] = x8[1];
+ x9[2] = x8[2];
+ x9[3] = x8[3];
+ x9[4] = x8[4];
+ x9[5] = x8[5];
+ x9[6] = x8[6];
+ x9[7] = x8[7];
+ x9[8] = x8[8];
+ x9[9] = x8[9];
+ x9[10] = x8[10];
+ x9[11] = x8[11];
+ x9[12] = x8[12];
+ x9[13] = x8[13];
+ x9[14] = x8[14];
+ x9[15] = x8[15];
+ btf_32_type0_avx2_new(cospi_p02, cospi_p62, x8[31], x8[16], x9[16], x9[31],
+ *__rounding, cos_bit);
+ btf_32_type0_avx2_new(cospi_p34, cospi_p30, x8[30], x8[17], x9[17], x9[30],
+ *__rounding, cos_bit);
+ btf_32_type0_avx2_new(cospi_p18, cospi_p46, x8[29], x8[18], x9[18], x9[29],
+ *__rounding, cos_bit);
+ btf_32_type0_avx2_new(cospi_p50, cospi_p14, x8[28], x8[19], x9[19], x9[28],
+ *__rounding, cos_bit);
+ btf_32_type0_avx2_new(cospi_p10, cospi_p54, x8[27], x8[20], x9[20], x9[27],
+ *__rounding, cos_bit);
+ btf_32_type0_avx2_new(cospi_p42, cospi_p22, x8[26], x8[21], x9[21], x9[26],
+ *__rounding, cos_bit);
+ btf_32_type0_avx2_new(cospi_p26, cospi_p38, x8[25], x8[22], x9[22], x9[25],
+ *__rounding, cos_bit);
+ btf_32_type0_avx2_new(cospi_p58, cospi_p06, x8[24], x8[23], x9[23], x9[24],
+ *__rounding, cos_bit);
+ x9[32] = _mm256_add_epi32(x8[32], x8[33]);
+ x9[33] = _mm256_sub_epi32(x8[32], x8[33]);
+ x9[34] = _mm256_sub_epi32(x8[35], x8[34]);
+ x9[35] = _mm256_add_epi32(x8[35], x8[34]);
+ x9[36] = _mm256_add_epi32(x8[36], x8[37]);
+ x9[37] = _mm256_sub_epi32(x8[36], x8[37]);
+ x9[38] = _mm256_sub_epi32(x8[39], x8[38]);
+ x9[39] = _mm256_add_epi32(x8[39], x8[38]);
+ x9[40] = _mm256_add_epi32(x8[40], x8[41]);
+ x9[41] = _mm256_sub_epi32(x8[40], x8[41]);
+ x9[42] = _mm256_sub_epi32(x8[43], x8[42]);
+ x9[43] = _mm256_add_epi32(x8[43], x8[42]);
+ x9[44] = _mm256_add_epi32(x8[44], x8[45]);
+ x9[45] = _mm256_sub_epi32(x8[44], x8[45]);
+ x9[46] = _mm256_sub_epi32(x8[47], x8[46]);
+ x9[47] = _mm256_add_epi32(x8[47], x8[46]);
+ x9[48] = _mm256_add_epi32(x8[48], x8[49]);
+ x9[49] = _mm256_sub_epi32(x8[48], x8[49]);
+ x9[50] = _mm256_sub_epi32(x8[51], x8[50]);
+ x9[51] = _mm256_add_epi32(x8[51], x8[50]);
+ x9[52] = _mm256_add_epi32(x8[52], x8[53]);
+ x9[53] = _mm256_sub_epi32(x8[52], x8[53]);
+ x9[54] = _mm256_sub_epi32(x8[55], x8[54]);
+ x9[55] = _mm256_add_epi32(x8[55], x8[54]);
+ x9[56] = _mm256_add_epi32(x8[56], x8[57]);
+ x9[57] = _mm256_sub_epi32(x8[56], x8[57]);
+ x9[58] = _mm256_sub_epi32(x8[59], x8[58]);
+ x9[59] = _mm256_add_epi32(x8[59], x8[58]);
+ x9[60] = _mm256_add_epi32(x8[60], x8[61]);
+ x9[61] = _mm256_sub_epi32(x8[60], x8[61]);
+ x9[62] = _mm256_sub_epi32(x8[63], x8[62]);
+ x9[63] = _mm256_add_epi32(x8[63], x8[62]);
+}
+static INLINE void fdct64_stage10_avx2(__m256i *x9, __m256i *x10,
+ const int32_t *cospi,
+ const __m256i *__rounding,
+ int8_t cos_bit) {
+ __m256i cospi_p63 = _mm256_set1_epi32(cospi[63]);
+ __m256i cospi_p01 = _mm256_set1_epi32(cospi[1]);
+ __m256i cospi_p31 = _mm256_set1_epi32(cospi[31]);
+ __m256i cospi_p33 = _mm256_set1_epi32(cospi[33]);
+ __m256i cospi_p47 = _mm256_set1_epi32(cospi[47]);
+ __m256i cospi_p17 = _mm256_set1_epi32(cospi[17]);
+ __m256i cospi_p15 = _mm256_set1_epi32(cospi[15]);
+ __m256i cospi_p49 = _mm256_set1_epi32(cospi[49]);
+ __m256i cospi_p55 = _mm256_set1_epi32(cospi[55]);
+ __m256i cospi_p09 = _mm256_set1_epi32(cospi[9]);
+ __m256i cospi_p23 = _mm256_set1_epi32(cospi[23]);
+ __m256i cospi_p41 = _mm256_set1_epi32(cospi[41]);
+ __m256i cospi_p39 = _mm256_set1_epi32(cospi[39]);
+ __m256i cospi_p25 = _mm256_set1_epi32(cospi[25]);
+ __m256i cospi_p07 = _mm256_set1_epi32(cospi[7]);
+ __m256i cospi_p57 = _mm256_set1_epi32(cospi[57]);
+ __m256i cospi_p59 = _mm256_set1_epi32(cospi[59]);
+ __m256i cospi_p05 = _mm256_set1_epi32(cospi[5]);
+ __m256i cospi_p27 = _mm256_set1_epi32(cospi[27]);
+ __m256i cospi_p37 = _mm256_set1_epi32(cospi[37]);
+ __m256i cospi_p43 = _mm256_set1_epi32(cospi[43]);
+ __m256i cospi_p21 = _mm256_set1_epi32(cospi[21]);
+ __m256i cospi_p11 = _mm256_set1_epi32(cospi[11]);
+ __m256i cospi_p53 = _mm256_set1_epi32(cospi[53]);
+ __m256i cospi_p51 = _mm256_set1_epi32(cospi[51]);
+ __m256i cospi_p13 = _mm256_set1_epi32(cospi[13]);
+ __m256i cospi_p19 = _mm256_set1_epi32(cospi[19]);
+ __m256i cospi_p45 = _mm256_set1_epi32(cospi[45]);
+ __m256i cospi_p35 = _mm256_set1_epi32(cospi[35]);
+ __m256i cospi_p29 = _mm256_set1_epi32(cospi[29]);
+ __m256i cospi_p03 = _mm256_set1_epi32(cospi[3]);
+ __m256i cospi_p61 = _mm256_set1_epi32(cospi[61]);
+
+ x10[0] = x9[0];
+ x10[1] = x9[1];
+ x10[2] = x9[2];
+ x10[3] = x9[3];
+ x10[4] = x9[4];
+ x10[5] = x9[5];
+ x10[6] = x9[6];
+ x10[7] = x9[7];
+ x10[8] = x9[8];
+ x10[9] = x9[9];
+ x10[10] = x9[10];
+ x10[11] = x9[11];
+ x10[12] = x9[12];
+ x10[13] = x9[13];
+ x10[14] = x9[14];
+ x10[15] = x9[15];
+ x10[16] = x9[16];
+ x10[17] = x9[17];
+ x10[18] = x9[18];
+ x10[19] = x9[19];
+ x10[20] = x9[20];
+ x10[21] = x9[21];
+ x10[22] = x9[22];
+ x10[23] = x9[23];
+ x10[24] = x9[24];
+ x10[25] = x9[25];
+ x10[26] = x9[26];
+ x10[27] = x9[27];
+ x10[28] = x9[28];
+ x10[29] = x9[29];
+ x10[30] = x9[30];
+ x10[31] = x9[31];
+ btf_32_type0_avx2_new(cospi_p01, cospi_p63, x9[63], x9[32], x10[32], x10[63],
+ *__rounding, cos_bit);
+ btf_32_type0_avx2_new(cospi_p33, cospi_p31, x9[62], x9[33], x10[33], x10[62],
+ *__rounding, cos_bit);
+ btf_32_type0_avx2_new(cospi_p17, cospi_p47, x9[61], x9[34], x10[34], x10[61],
+ *__rounding, cos_bit);
+ btf_32_type0_avx2_new(cospi_p49, cospi_p15, x9[60], x9[35], x10[35], x10[60],
+ *__rounding, cos_bit);
+ btf_32_type0_avx2_new(cospi_p09, cospi_p55, x9[59], x9[36], x10[36], x10[59],
+ *__rounding, cos_bit);
+ btf_32_type0_avx2_new(cospi_p41, cospi_p23, x9[58], x9[37], x10[37], x10[58],
+ *__rounding, cos_bit);
+ btf_32_type0_avx2_new(cospi_p25, cospi_p39, x9[57], x9[38], x10[38], x10[57],
+ *__rounding, cos_bit);
+ btf_32_type0_avx2_new(cospi_p57, cospi_p07, x9[56], x9[39], x10[39], x10[56],
+ *__rounding, cos_bit);
+ btf_32_type0_avx2_new(cospi_p05, cospi_p59, x9[55], x9[40], x10[40], x10[55],
+ *__rounding, cos_bit);
+ btf_32_type0_avx2_new(cospi_p37, cospi_p27, x9[54], x9[41], x10[41], x10[54],
+ *__rounding, cos_bit);
+ btf_32_type0_avx2_new(cospi_p21, cospi_p43, x9[53], x9[42], x10[42], x10[53],
+ *__rounding, cos_bit);
+ btf_32_type0_avx2_new(cospi_p53, cospi_p11, x9[52], x9[43], x10[43], x10[52],
+ *__rounding, cos_bit);
+ btf_32_type0_avx2_new(cospi_p13, cospi_p51, x9[51], x9[44], x10[44], x10[51],
+ *__rounding, cos_bit);
+ btf_32_type0_avx2_new(cospi_p45, cospi_p19, x9[50], x9[45], x10[45], x10[50],
+ *__rounding, cos_bit);
+ btf_32_type0_avx2_new(cospi_p29, cospi_p35, x9[49], x9[46], x10[46], x10[49],
+ *__rounding, cos_bit);
+ btf_32_type0_avx2_new(cospi_p61, cospi_p03, x9[48], x9[47], x10[47], x10[48],
+ *__rounding, cos_bit);
+}
+static void fdct64_avx2(__m256i *input, __m256i *output, int8_t cos_bit,
+ const int instride, const int outstride) {
+ const int32_t *cospi = cospi_arr(cos_bit);
+ const __m256i __rounding = _mm256_set1_epi32(1 << (cos_bit - 1));
+ __m256i cospi_m32 = _mm256_set1_epi32(-cospi[32]);
+ __m256i cospi_p32 = _mm256_set1_epi32(cospi[32]);
+ __m256i cospi_m16 = _mm256_set1_epi32(-cospi[16]);
+ __m256i cospi_p48 = _mm256_set1_epi32(cospi[48]);
+ __m256i cospi_m48 = _mm256_set1_epi32(-cospi[48]);
+ __m256i cospi_p16 = _mm256_set1_epi32(cospi[16]);
+ __m256i cospi_m08 = _mm256_set1_epi32(-cospi[8]);
+ __m256i cospi_p56 = _mm256_set1_epi32(cospi[56]);
+ __m256i cospi_m56 = _mm256_set1_epi32(-cospi[56]);
+ __m256i cospi_m40 = _mm256_set1_epi32(-cospi[40]);
+ __m256i cospi_p24 = _mm256_set1_epi32(cospi[24]);
+ __m256i cospi_m24 = _mm256_set1_epi32(-cospi[24]);
+ __m256i cospi_p08 = _mm256_set1_epi32(cospi[8]);
+ __m256i cospi_p40 = _mm256_set1_epi32(cospi[40]);
+
+ int startidx = 0 * instride;
+ int endidx = 63 * instride;
+ // stage 1
+ __m256i x1[64];
+ x1[0] = _mm256_add_epi32(input[startidx], input[endidx]);
+ x1[63] = _mm256_sub_epi32(input[startidx], input[endidx]);
+ startidx += instride;
+ endidx -= instride;
+ x1[1] = _mm256_add_epi32(input[startidx], input[endidx]);
+ x1[62] = _mm256_sub_epi32(input[startidx], input[endidx]);
+ startidx += instride;
+ endidx -= instride;
+ x1[2] = _mm256_add_epi32(input[startidx], input[endidx]);
+ x1[61] = _mm256_sub_epi32(input[startidx], input[endidx]);
+ startidx += instride;
+ endidx -= instride;
+ x1[3] = _mm256_add_epi32(input[startidx], input[endidx]);
+ x1[60] = _mm256_sub_epi32(input[startidx], input[endidx]);
+ startidx += instride;
+ endidx -= instride;
+ x1[4] = _mm256_add_epi32(input[startidx], input[endidx]);
+ x1[59] = _mm256_sub_epi32(input[startidx], input[endidx]);
+ startidx += instride;
+ endidx -= instride;
+ x1[5] = _mm256_add_epi32(input[startidx], input[endidx]);
+ x1[58] = _mm256_sub_epi32(input[startidx], input[endidx]);
+ startidx += instride;
+ endidx -= instride;
+ x1[6] = _mm256_add_epi32(input[startidx], input[endidx]);
+ x1[57] = _mm256_sub_epi32(input[startidx], input[endidx]);
+ startidx += instride;
+ endidx -= instride;
+ x1[7] = _mm256_add_epi32(input[startidx], input[endidx]);
+ x1[56] = _mm256_sub_epi32(input[startidx], input[endidx]);
+ startidx += instride;
+ endidx -= instride;
+ x1[8] = _mm256_add_epi32(input[startidx], input[endidx]);
+ x1[55] = _mm256_sub_epi32(input[startidx], input[endidx]);
+ startidx += instride;
+ endidx -= instride;
+ x1[9] = _mm256_add_epi32(input[startidx], input[endidx]);
+ x1[54] = _mm256_sub_epi32(input[startidx], input[endidx]);
+ startidx += instride;
+ endidx -= instride;
+ x1[10] = _mm256_add_epi32(input[startidx], input[endidx]);
+ x1[53] = _mm256_sub_epi32(input[startidx], input[endidx]);
+ startidx += instride;
+ endidx -= instride;
+ x1[11] = _mm256_add_epi32(input[startidx], input[endidx]);
+ x1[52] = _mm256_sub_epi32(input[startidx], input[endidx]);
+ startidx += instride;
+ endidx -= instride;
+ x1[12] = _mm256_add_epi32(input[startidx], input[endidx]);
+ x1[51] = _mm256_sub_epi32(input[startidx], input[endidx]);
+ startidx += instride;
+ endidx -= instride;
+ x1[13] = _mm256_add_epi32(input[startidx], input[endidx]);
+ x1[50] = _mm256_sub_epi32(input[startidx], input[endidx]);
+ startidx += instride;
+ endidx -= instride;
+ x1[14] = _mm256_add_epi32(input[startidx], input[endidx]);
+ x1[49] = _mm256_sub_epi32(input[startidx], input[endidx]);
+ startidx += instride;
+ endidx -= instride;
+ x1[15] = _mm256_add_epi32(input[startidx], input[endidx]);
+ x1[48] = _mm256_sub_epi32(input[startidx], input[endidx]);
+ startidx += instride;
+ endidx -= instride;
+ x1[16] = _mm256_add_epi32(input[startidx], input[endidx]);
+ x1[47] = _mm256_sub_epi32(input[startidx], input[endidx]);
+ startidx += instride;
+ endidx -= instride;
+ x1[17] = _mm256_add_epi32(input[startidx], input[endidx]);
+ x1[46] = _mm256_sub_epi32(input[startidx], input[endidx]);
+ startidx += instride;
+ endidx -= instride;
+ x1[18] = _mm256_add_epi32(input[startidx], input[endidx]);
+ x1[45] = _mm256_sub_epi32(input[startidx], input[endidx]);
+ startidx += instride;
+ endidx -= instride;
+ x1[19] = _mm256_add_epi32(input[startidx], input[endidx]);
+ x1[44] = _mm256_sub_epi32(input[startidx], input[endidx]);
+ startidx += instride;
+ endidx -= instride;
+ x1[20] = _mm256_add_epi32(input[startidx], input[endidx]);
+ x1[43] = _mm256_sub_epi32(input[startidx], input[endidx]);
+ startidx += instride;
+ endidx -= instride;
+ x1[21] = _mm256_add_epi32(input[startidx], input[endidx]);
+ x1[42] = _mm256_sub_epi32(input[startidx], input[endidx]);
+ startidx += instride;
+ endidx -= instride;
+ x1[22] = _mm256_add_epi32(input[startidx], input[endidx]);
+ x1[41] = _mm256_sub_epi32(input[startidx], input[endidx]);
+ startidx += instride;
+ endidx -= instride;
+ x1[23] = _mm256_add_epi32(input[startidx], input[endidx]);
+ x1[40] = _mm256_sub_epi32(input[startidx], input[endidx]);
+ startidx += instride;
+ endidx -= instride;
+ x1[24] = _mm256_add_epi32(input[startidx], input[endidx]);
+ x1[39] = _mm256_sub_epi32(input[startidx], input[endidx]);
+ startidx += instride;
+ endidx -= instride;
+ x1[25] = _mm256_add_epi32(input[startidx], input[endidx]);
+ x1[38] = _mm256_sub_epi32(input[startidx], input[endidx]);
+ startidx += instride;
+ endidx -= instride;
+ x1[26] = _mm256_add_epi32(input[startidx], input[endidx]);
+ x1[37] = _mm256_sub_epi32(input[startidx], input[endidx]);
+ startidx += instride;
+ endidx -= instride;
+ x1[27] = _mm256_add_epi32(input[startidx], input[endidx]);
+ x1[36] = _mm256_sub_epi32(input[startidx], input[endidx]);
+ startidx += instride;
+ endidx -= instride;
+ x1[28] = _mm256_add_epi32(input[startidx], input[endidx]);
+ x1[35] = _mm256_sub_epi32(input[startidx], input[endidx]);
+ startidx += instride;
+ endidx -= instride;
+ x1[29] = _mm256_add_epi32(input[startidx], input[endidx]);
+ x1[34] = _mm256_sub_epi32(input[startidx], input[endidx]);
+ startidx += instride;
+ endidx -= instride;
+ x1[30] = _mm256_add_epi32(input[startidx], input[endidx]);
+ x1[33] = _mm256_sub_epi32(input[startidx], input[endidx]);
+ startidx += instride;
+ endidx -= instride;
+ x1[31] = _mm256_add_epi32(input[startidx], input[endidx]);
+ x1[32] = _mm256_sub_epi32(input[startidx], input[endidx]);
+
+ // stage 2
+ __m256i x2[64];
+ fdct64_stage2_avx2(x1, x2, &cospi_m32, &cospi_p32, &__rounding, cos_bit);
+ // stage 3
+ fdct64_stage3_avx2(x2, x1, &cospi_m32, &cospi_p32, &__rounding, cos_bit);
+ // stage 4
+ fdct64_stage4_avx2(x1, x2, &cospi_m32, &cospi_p32, &cospi_m16, &cospi_p48,
+ &cospi_m48, &__rounding, cos_bit);
+ // stage 5
+ fdct64_stage5_avx2(x2, x1, &cospi_m32, &cospi_p32, &cospi_m16, &cospi_p48,
+ &cospi_m48, &__rounding, cos_bit);
+ // stage 6
+ fdct64_stage6_avx2(x1, x2, &cospi_p16, &cospi_p32, &cospi_m16, &cospi_p48,
+ &cospi_m48, &cospi_m08, &cospi_p56, &cospi_m56, &cospi_m40,
+ &cospi_p24, &cospi_m24, &__rounding, cos_bit);
+ // stage 7
+ fdct64_stage7_avx2(x2, x1, &cospi_p08, &cospi_p56, &cospi_p40, &cospi_p24,
+ &cospi_m08, &cospi_m56, &cospi_m40, &cospi_m24,
+ &__rounding, cos_bit);
+ // stage 8
+ fdct64_stage8_avx2(x1, x2, cospi, &__rounding, cos_bit);
+ // stage 9
+ fdct64_stage9_avx2(x2, x1, cospi, &__rounding, cos_bit);
+ // stage 10
+ fdct64_stage10_avx2(x1, x2, cospi, &__rounding, cos_bit);
+
+ startidx = 0 * outstride;
+ endidx = 63 * outstride;
+
+ // stage 11
+ output[startidx] = x2[0];
+ output[endidx] = x2[63];
+ startidx += outstride;
+ endidx -= outstride;
+ output[startidx] = x2[32];
+ output[endidx] = x2[31];
+ startidx += outstride;
+ endidx -= outstride;
+ output[startidx] = x2[16];
+ output[endidx] = x2[47];
+ startidx += outstride;
+ endidx -= outstride;
+ output[startidx] = x2[48];
+ output[endidx] = x2[15];
+ startidx += outstride;
+ endidx -= outstride;
+ output[startidx] = x2[8];
+ output[endidx] = x2[55];
+ startidx += outstride;
+ endidx -= outstride;
+ output[startidx] = x2[40];
+ output[endidx] = x2[23];
+ startidx += outstride;
+ endidx -= outstride;
+ output[startidx] = x2[24];
+ output[endidx] = x2[39];
+ startidx += outstride;
+ endidx -= outstride;
+ output[startidx] = x2[56];
+ output[endidx] = x2[7];
+ startidx += outstride;
+ endidx -= outstride;
+ output[startidx] = x2[4];
+ output[endidx] = x2[59];
+ startidx += outstride;
+ endidx -= outstride;
+ output[startidx] = x2[36];
+ output[endidx] = x2[27];
+ startidx += outstride;
+ endidx -= outstride;
+ output[startidx] = x2[20];
+ output[endidx] = x2[43];
+ startidx += outstride;
+ endidx -= outstride;
+ output[startidx] = x2[52];
+ output[endidx] = x2[11];
+ startidx += outstride;
+ endidx -= outstride;
+ output[startidx] = x2[12];
+ output[endidx] = x2[51];
+ startidx += outstride;
+ endidx -= outstride;
+ output[startidx] = x2[44];
+ output[endidx] = x2[19];
+ startidx += outstride;
+ endidx -= outstride;
+ output[startidx] = x2[28];
+ output[endidx] = x2[35];
+ startidx += outstride;
+ endidx -= outstride;
+ output[startidx] = x2[60];
+ output[endidx] = x2[3];
+ startidx += outstride;
+ endidx -= outstride;
+ output[startidx] = x2[2];
+ output[endidx] = x2[61];
+ startidx += outstride;
+ endidx -= outstride;
+ output[startidx] = x2[34];
+ output[endidx] = x2[29];
+ startidx += outstride;
+ endidx -= outstride;
+ output[startidx] = x2[18];
+ output[endidx] = x2[45];
+ startidx += outstride;
+ endidx -= outstride;
+ output[startidx] = x2[50];
+ output[endidx] = x2[13];
+ startidx += outstride;
+ endidx -= outstride;
+ output[startidx] = x2[10];
+ output[endidx] = x2[53];
+ startidx += outstride;
+ endidx -= outstride;
+ output[startidx] = x2[42];
+ output[endidx] = x2[21];
+ startidx += outstride;
+ endidx -= outstride;
+ output[startidx] = x2[26];
+ output[endidx] = x2[37];
+ startidx += outstride;
+ endidx -= outstride;
+ output[startidx] = x2[58];
+ output[endidx] = x2[5];
+ startidx += outstride;
+ endidx -= outstride;
+ output[startidx] = x2[6];
+ output[endidx] = x2[57];
+ startidx += outstride;
+ endidx -= outstride;
+ output[startidx] = x2[38];
+ output[endidx] = x2[25];
+ startidx += outstride;
+ endidx -= outstride;
+ output[startidx] = x2[22];
+ output[endidx] = x2[41];
+ startidx += outstride;
+ endidx -= outstride;
+ output[startidx] = x2[54];
+ output[endidx] = x2[9];
+ startidx += outstride;
+ endidx -= outstride;
+ output[startidx] = x2[14];
+ output[endidx] = x2[49];
+ startidx += outstride;
+ endidx -= outstride;
+ output[startidx] = x2[46];
+ output[endidx] = x2[17];
+ startidx += outstride;
+ endidx -= outstride;
+ output[startidx] = x2[30];
+ output[endidx] = x2[33];
+ startidx += outstride;
+ endidx -= outstride;
+ output[startidx] = x2[62];
+ output[endidx] = x2[1];
+}
+void av1_fwd_txfm2d_64x64_avx2(const int16_t *input, int32_t *output,
+ int stride, TX_TYPE tx_type, int bd) {
+ (void)bd;
+ (void)tx_type;
+ assert(tx_type == DCT_DCT);
+ const TX_SIZE tx_size = TX_64X64;
+ __m256i buf0[512], buf1[512];
+ const int8_t *shift = av1_fwd_txfm_shift_ls[tx_size];
+ const int txw_idx = get_txw_idx(tx_size);
+ const int txh_idx = get_txh_idx(tx_size);
+ const int cos_bit_col = av1_fwd_cos_bit_col[txw_idx][txh_idx];
+ const int cos_bit_row = av1_fwd_cos_bit_row[txw_idx][txh_idx];
+ const int width = tx_size_wide[tx_size];
+ const int height = tx_size_high[tx_size];
+ const transform_1d_avx2 col_txfm = fdct64_avx2;
+ const transform_1d_avx2 row_txfm = fdct64_avx2;
+ const int width_div16 = (width >> 4);
+ const int width_div8 = (width >> 3);
+ int r, c;
+ for (int i = 0; i < width_div16; i++) {
+ load_buffer_16xn_avx2(input + (i << 4), &buf0[i << 1], stride, height,
+ width_div8, 0, 0);
+ round_shift_32_8xn_avx2(&buf0[i << 1], height, shift[0], width_div8);
+ round_shift_32_8xn_avx2(&buf0[(i << 1) + 1], height, shift[0], width_div8);
+ col_txfm(&buf0[i << 1], &buf0[i << 1], cos_bit_col, width_div8, width_div8);
+ col_txfm(&buf0[(i << 1) + 1], &buf0[(i << 1) + 1], cos_bit_col, width_div8,
+ width_div8);
+ round_shift_32_8xn_avx2(&buf0[i << 1], height, shift[1], width_div8);
+ round_shift_32_8xn_avx2(&buf0[(i << 1) + 1], height, shift[1], width_div8);
+ }
+
+ for (r = 0; r < height; r += 8) {
+ for (c = 0; c < width_div8; c++) {
+ fwd_txfm_transpose_8x8_avx2(&buf0[r * width_div8 + c],
+ &buf1[c * 8 * width_div8 + (r >> 3)],
+ width_div8, width_div8);
+ }
+ }
+
+ for (int i = 0; i < 2; i++) {
+ row_txfm(&buf1[i << 1], &buf0[i << 1], cos_bit_row, width_div8,
+ width_div16);
+ row_txfm(&buf1[(i << 1) + 1], &buf0[(i << 1) + 1], cos_bit_row, width_div8,
+ width_div16);
+ round_shift_32_8xn_avx2(&buf0[i << 1], (height >> 1), shift[2],
+ width_div16);
+ round_shift_32_8xn_avx2(&buf0[(i << 1) + 1], (height >> 1), shift[2],
+ width_div16);
+ }
+
+ for (r = 0; r < (height >> 1); r += 8) {
+ for (c = 0; c < width_div16; c++) {
+ fwd_txfm_transpose_8x8_avx2(&buf0[r * width_div16 + c],
+ &buf1[c * 8 * width_div16 + (r >> 3)],
+ width_div16, width_div16);
+ }
+ }
+ store_buffer_avx2(buf1, output, 8, 128);
+}
diff --git a/media/libaom/src/av1/encoder/x86/highbd_fwd_txfm_sse4.c b/media/libaom/src/av1/encoder/x86/highbd_fwd_txfm_sse4.c
index 535485ae8e..73afc5d039 100644
--- a/media/libaom/src/av1/encoder/x86/highbd_fwd_txfm_sse4.c
+++ b/media/libaom/src/av1/encoder/x86/highbd_fwd_txfm_sse4.c
@@ -59,7 +59,8 @@ static INLINE void load_buffer_4x4(const int16_t *input, __m128i *in,
// shift[0] is used in load_buffer_4x4()
// shift[1] is used in txfm_func_col()
// shift[2] is used in txfm_func_row()
-static void fdct4x4_sse4_1(__m128i *in, int bit) {
+static void fdct4x4_sse4_1(__m128i *in, __m128i *out, int bit,
+ const int num_col) {
const int32_t *cospi = cospi_arr(bit);
const __m128i cospi32 = _mm_set1_epi32(cospi[32]);
const __m128i cospi48 = _mm_set1_epi32(cospi[48]);
@@ -69,10 +70,12 @@ static void fdct4x4_sse4_1(__m128i *in, int bit) {
__m128i u0, u1, u2, u3;
__m128i v0, v1, v2, v3;
- s0 = _mm_add_epi32(in[0], in[3]);
- s1 = _mm_add_epi32(in[1], in[2]);
- s2 = _mm_sub_epi32(in[1], in[2]);
- s3 = _mm_sub_epi32(in[0], in[3]);
+ int endidx = 3 * num_col;
+ s0 = _mm_add_epi32(in[0], in[endidx]);
+ s3 = _mm_sub_epi32(in[0], in[endidx]);
+ endidx -= num_col;
+ s1 = _mm_add_epi32(in[num_col], in[endidx]);
+ s2 = _mm_sub_epi32(in[num_col], in[endidx]);
// btf_32_sse4_1_type0(cospi32, cospi32, s[01], u[02], bit);
u0 = _mm_mullo_epi32(s0, cospi32);
@@ -109,10 +112,10 @@ static void fdct4x4_sse4_1(__m128i *in, int bit) {
v2 = _mm_unpacklo_epi32(u2, u3);
v3 = _mm_unpackhi_epi32(u2, u3);
- in[0] = _mm_unpacklo_epi64(v0, v2);
- in[1] = _mm_unpackhi_epi64(v0, v2);
- in[2] = _mm_unpacklo_epi64(v1, v3);
- in[3] = _mm_unpackhi_epi64(v1, v3);
+ out[0] = _mm_unpacklo_epi64(v0, v2);
+ out[1] = _mm_unpackhi_epi64(v0, v2);
+ out[2] = _mm_unpacklo_epi64(v1, v3);
+ out[3] = _mm_unpackhi_epi64(v1, v3);
}
static INLINE void write_buffer_4x4(__m128i *res, int32_t *output) {
@@ -122,7 +125,8 @@ static INLINE void write_buffer_4x4(__m128i *res, int32_t *output) {
_mm_store_si128((__m128i *)(output + 3 * 4), res[3]);
}
-static void fadst4x4_sse4_1(__m128i *in, int bit) {
+static void fadst4x4_sse4_1(__m128i *in, __m128i *out, int bit,
+ const int num_col) {
const int32_t *sinpi = sinpi_arr(bit);
const __m128i rnding = _mm_set1_epi32(1 << (bit - 1));
const __m128i sinpi1 = _mm_set1_epi32((int)sinpi[1]);
@@ -135,15 +139,19 @@ static void fadst4x4_sse4_1(__m128i *in, int bit) {
__m128i u0, u1, u2, u3;
__m128i v0, v1, v2, v3;
- s0 = _mm_mullo_epi32(in[0], sinpi1);
- s1 = _mm_mullo_epi32(in[0], sinpi4);
- s2 = _mm_mullo_epi32(in[1], sinpi2);
- s3 = _mm_mullo_epi32(in[1], sinpi1);
- s4 = _mm_mullo_epi32(in[2], sinpi3);
- s5 = _mm_mullo_epi32(in[3], sinpi4);
- s6 = _mm_mullo_epi32(in[3], sinpi2);
- t = _mm_add_epi32(in[0], in[1]);
- s7 = _mm_sub_epi32(t, in[3]);
+ int idx = 0 * num_col;
+ s0 = _mm_mullo_epi32(in[idx], sinpi1);
+ s1 = _mm_mullo_epi32(in[idx], sinpi4);
+ t = _mm_add_epi32(in[idx], in[idx + num_col]);
+ idx += num_col;
+ s2 = _mm_mullo_epi32(in[idx], sinpi2);
+ s3 = _mm_mullo_epi32(in[idx], sinpi1);
+ idx += num_col;
+ s4 = _mm_mullo_epi32(in[idx], sinpi3);
+ idx += num_col;
+ s5 = _mm_mullo_epi32(in[idx], sinpi4);
+ s6 = _mm_mullo_epi32(in[idx], sinpi2);
+ s7 = _mm_sub_epi32(t, in[idx]);
t = _mm_add_epi32(s0, s2);
x0 = _mm_add_epi32(t, s5);
@@ -175,72 +183,137 @@ static void fadst4x4_sse4_1(__m128i *in, int bit) {
v2 = _mm_unpacklo_epi32(u2, u3);
v3 = _mm_unpackhi_epi32(u2, u3);
- in[0] = _mm_unpacklo_epi64(v0, v2);
- in[1] = _mm_unpackhi_epi64(v0, v2);
- in[2] = _mm_unpacklo_epi64(v1, v3);
- in[3] = _mm_unpackhi_epi64(v1, v3);
+ out[0] = _mm_unpacklo_epi64(v0, v2);
+ out[1] = _mm_unpackhi_epi64(v0, v2);
+ out[2] = _mm_unpacklo_epi64(v1, v3);
+ out[3] = _mm_unpackhi_epi64(v1, v3);
}
+static void idtx4x4_sse4_1(__m128i *in, __m128i *out, int bit, int col_num) {
+ (void)bit;
+ __m128i fact = _mm_set1_epi32(NewSqrt2);
+ __m128i offset = _mm_set1_epi32(1 << (NewSqrt2Bits - 1));
+ __m128i a_low;
+ __m128i v[4];
+
+ for (int i = 0; i < 4; i++) {
+ a_low = _mm_mullo_epi32(in[i * col_num], fact);
+ a_low = _mm_add_epi32(a_low, offset);
+ out[i] = _mm_srai_epi32(a_low, NewSqrt2Bits);
+ }
+
+ // Transpose for 4x4
+ v[0] = _mm_unpacklo_epi32(out[0], out[1]);
+ v[1] = _mm_unpackhi_epi32(out[0], out[1]);
+ v[2] = _mm_unpacklo_epi32(out[2], out[3]);
+ v[3] = _mm_unpackhi_epi32(out[2], out[3]);
+ out[0] = _mm_unpacklo_epi64(v[0], v[2]);
+ out[1] = _mm_unpackhi_epi64(v[0], v[2]);
+ out[2] = _mm_unpacklo_epi64(v[1], v[3]);
+ out[3] = _mm_unpackhi_epi64(v[1], v[3]);
+}
void av1_fwd_txfm2d_4x4_sse4_1(const int16_t *input, int32_t *coeff,
int input_stride, TX_TYPE tx_type, int bd) {
__m128i in[4];
- const int8_t *shift = fwd_txfm_shift_ls[TX_4X4];
+ const int8_t *shift = av1_fwd_txfm_shift_ls[TX_4X4];
const int txw_idx = get_txw_idx(TX_4X4);
const int txh_idx = get_txh_idx(TX_4X4);
switch (tx_type) {
case DCT_DCT:
load_buffer_4x4(input, in, input_stride, 0, 0, shift[0]);
- fdct4x4_sse4_1(in, fwd_cos_bit_col[txw_idx][txh_idx]);
- fdct4x4_sse4_1(in, fwd_cos_bit_row[txw_idx][txh_idx]);
+ fdct4x4_sse4_1(in, in, av1_fwd_cos_bit_col[txw_idx][txh_idx], 1);
+ fdct4x4_sse4_1(in, in, av1_fwd_cos_bit_row[txw_idx][txh_idx], 1);
write_buffer_4x4(in, coeff);
break;
case ADST_DCT:
load_buffer_4x4(input, in, input_stride, 0, 0, shift[0]);
- fadst4x4_sse4_1(in, fwd_cos_bit_col[txw_idx][txh_idx]);
- fdct4x4_sse4_1(in, fwd_cos_bit_row[txw_idx][txh_idx]);
+ fadst4x4_sse4_1(in, in, av1_fwd_cos_bit_col[txw_idx][txh_idx], 1);
+ fdct4x4_sse4_1(in, in, av1_fwd_cos_bit_row[txw_idx][txh_idx], 1);
write_buffer_4x4(in, coeff);
break;
case DCT_ADST:
load_buffer_4x4(input, in, input_stride, 0, 0, shift[0]);
- fdct4x4_sse4_1(in, fwd_cos_bit_col[txw_idx][txh_idx]);
- fadst4x4_sse4_1(in, fwd_cos_bit_row[txw_idx][txh_idx]);
+ fdct4x4_sse4_1(in, in, av1_fwd_cos_bit_col[txw_idx][txh_idx], 1);
+ fadst4x4_sse4_1(in, in, av1_fwd_cos_bit_row[txw_idx][txh_idx], 1);
write_buffer_4x4(in, coeff);
break;
case ADST_ADST:
load_buffer_4x4(input, in, input_stride, 0, 0, shift[0]);
- fadst4x4_sse4_1(in, fwd_cos_bit_col[txw_idx][txh_idx]);
- fadst4x4_sse4_1(in, fwd_cos_bit_row[txw_idx][txh_idx]);
+ fadst4x4_sse4_1(in, in, av1_fwd_cos_bit_col[txw_idx][txh_idx], 1);
+ fadst4x4_sse4_1(in, in, av1_fwd_cos_bit_row[txw_idx][txh_idx], 1);
write_buffer_4x4(in, coeff);
break;
case FLIPADST_DCT:
load_buffer_4x4(input, in, input_stride, 1, 0, shift[0]);
- fadst4x4_sse4_1(in, fwd_cos_bit_col[txw_idx][txh_idx]);
- fdct4x4_sse4_1(in, fwd_cos_bit_row[txw_idx][txh_idx]);
+ fadst4x4_sse4_1(in, in, av1_fwd_cos_bit_col[txw_idx][txh_idx], 1);
+ fdct4x4_sse4_1(in, in, av1_fwd_cos_bit_row[txw_idx][txh_idx], 1);
write_buffer_4x4(in, coeff);
break;
case DCT_FLIPADST:
load_buffer_4x4(input, in, input_stride, 0, 1, shift[0]);
- fdct4x4_sse4_1(in, fwd_cos_bit_col[txw_idx][txh_idx]);
- fadst4x4_sse4_1(in, fwd_cos_bit_row[txw_idx][txh_idx]);
+ fdct4x4_sse4_1(in, in, av1_fwd_cos_bit_col[txw_idx][txh_idx], 1);
+ fadst4x4_sse4_1(in, in, av1_fwd_cos_bit_row[txw_idx][txh_idx], 1);
write_buffer_4x4(in, coeff);
break;
case FLIPADST_FLIPADST:
load_buffer_4x4(input, in, input_stride, 1, 1, shift[0]);
- fadst4x4_sse4_1(in, fwd_cos_bit_col[txw_idx][txh_idx]);
- fadst4x4_sse4_1(in, fwd_cos_bit_row[txw_idx][txh_idx]);
+ fadst4x4_sse4_1(in, in, av1_fwd_cos_bit_col[txw_idx][txh_idx], 1);
+ fadst4x4_sse4_1(in, in, av1_fwd_cos_bit_row[txw_idx][txh_idx], 1);
write_buffer_4x4(in, coeff);
break;
case ADST_FLIPADST:
load_buffer_4x4(input, in, input_stride, 0, 1, shift[0]);
- fadst4x4_sse4_1(in, fwd_cos_bit_col[txw_idx][txh_idx]);
- fadst4x4_sse4_1(in, fwd_cos_bit_row[txw_idx][txh_idx]);
+ fadst4x4_sse4_1(in, in, av1_fwd_cos_bit_col[txw_idx][txh_idx], 1);
+ fadst4x4_sse4_1(in, in, av1_fwd_cos_bit_row[txw_idx][txh_idx], 1);
write_buffer_4x4(in, coeff);
break;
case FLIPADST_ADST:
load_buffer_4x4(input, in, input_stride, 1, 0, shift[0]);
- fadst4x4_sse4_1(in, fwd_cos_bit_col[txw_idx][txh_idx]);
- fadst4x4_sse4_1(in, fwd_cos_bit_row[txw_idx][txh_idx]);
+ fadst4x4_sse4_1(in, in, av1_fwd_cos_bit_col[txw_idx][txh_idx], 1);
+ fadst4x4_sse4_1(in, in, av1_fwd_cos_bit_row[txw_idx][txh_idx], 1);
+ write_buffer_4x4(in, coeff);
+ break;
+ case IDTX:
+ load_buffer_4x4(input, in, input_stride, 0, 0, shift[0]);
+ idtx4x4_sse4_1(in, in, av1_fwd_cos_bit_col[txw_idx][txh_idx], 1);
+ idtx4x4_sse4_1(in, in, av1_fwd_cos_bit_row[txw_idx][txh_idx], 1);
+ write_buffer_4x4(in, coeff);
+ break;
+ case V_DCT:
+ load_buffer_4x4(input, in, input_stride, 0, 0, shift[0]);
+ fdct4x4_sse4_1(in, in, av1_fwd_cos_bit_col[txw_idx][txh_idx], 1);
+ idtx4x4_sse4_1(in, in, av1_fwd_cos_bit_row[txw_idx][txh_idx], 1);
+ write_buffer_4x4(in, coeff);
+ break;
+ case H_DCT:
+ load_buffer_4x4(input, in, input_stride, 0, 0, shift[0]);
+ idtx4x4_sse4_1(in, in, av1_fwd_cos_bit_row[txw_idx][txh_idx], 1);
+ fdct4x4_sse4_1(in, in, av1_fwd_cos_bit_col[txw_idx][txh_idx], 1);
+ write_buffer_4x4(in, coeff);
+ break;
+ case V_ADST:
+ load_buffer_4x4(input, in, input_stride, 0, 0, shift[0]);
+ fadst4x4_sse4_1(in, in, av1_fwd_cos_bit_col[txw_idx][txh_idx], 1);
+ idtx4x4_sse4_1(in, in, av1_fwd_cos_bit_row[txw_idx][txh_idx], 1);
+ write_buffer_4x4(in, coeff);
+ break;
+ case H_ADST:
+ load_buffer_4x4(input, in, input_stride, 0, 0, shift[0]);
+ idtx4x4_sse4_1(in, in, av1_fwd_cos_bit_row[txw_idx][txh_idx], 1);
+ fadst4x4_sse4_1(in, in, av1_fwd_cos_bit_col[txw_idx][txh_idx], 1);
+ write_buffer_4x4(in, coeff);
+ break;
+ case V_FLIPADST:
+ load_buffer_4x4(input, in, input_stride, 1, 0, shift[0]);
+ fadst4x4_sse4_1(in, in, av1_fwd_cos_bit_row[txw_idx][txh_idx], 1);
+ idtx4x4_sse4_1(in, in, av1_fwd_cos_bit_row[txw_idx][txh_idx], 1);
+ write_buffer_4x4(in, coeff);
+ break;
+ case H_FLIPADST:
+ load_buffer_4x4(input, in, input_stride, 0, 1, shift[0]);
+ idtx4x4_sse4_1(in, in, av1_fwd_cos_bit_row[txw_idx][txh_idx], 1);
+ fadst4x4_sse4_1(in, in, av1_fwd_cos_bit_row[txw_idx][txh_idx], 1);
write_buffer_4x4(in, coeff);
break;
default: assert(0);
@@ -372,6 +445,28 @@ static INLINE void col_txfm_8x8_rounding(__m128i *in, int shift) {
in[15] = _mm_srai_epi32(in[15], shift);
}
+static INLINE void col_txfm_4x8_rounding(__m128i *in, int shift) {
+ const __m128i rounding = _mm_set1_epi32(1 << (shift - 1));
+
+ in[0] = _mm_add_epi32(in[0], rounding);
+ in[1] = _mm_add_epi32(in[1], rounding);
+ in[2] = _mm_add_epi32(in[2], rounding);
+ in[3] = _mm_add_epi32(in[3], rounding);
+ in[4] = _mm_add_epi32(in[4], rounding);
+ in[5] = _mm_add_epi32(in[5], rounding);
+ in[6] = _mm_add_epi32(in[6], rounding);
+ in[7] = _mm_add_epi32(in[7], rounding);
+
+ in[0] = _mm_srai_epi32(in[0], shift);
+ in[1] = _mm_srai_epi32(in[1], shift);
+ in[2] = _mm_srai_epi32(in[2], shift);
+ in[3] = _mm_srai_epi32(in[3], shift);
+ in[4] = _mm_srai_epi32(in[4], shift);
+ in[5] = _mm_srai_epi32(in[5], shift);
+ in[6] = _mm_srai_epi32(in[6], shift);
+ in[7] = _mm_srai_epi32(in[7], shift);
+}
+
static INLINE void write_buffer_8x8(const __m128i *res, int32_t *output) {
_mm_store_si128((__m128i *)(output + 0 * 4), res[0]);
_mm_store_si128((__m128i *)(output + 1 * 4), res[1]);
@@ -417,9 +512,8 @@ static INLINE void write_buffer_16x8(const __m128i *res, int32_t *output,
_mm_storeu_si128((__m128i *)(output + (stride * 7) + 4), res[15]);
}
-static void fdct8x8_sse4_1(__m128i *in, __m128i *out, int bit,
+static void fdct4x8_sse4_1(__m128i *in, __m128i *out, int bit,
const int col_num) {
- (void)(col_num);
const int32_t *cospi = cospi_arr(bit);
const __m128i cospi32 = _mm_set1_epi32(cospi[32]);
const __m128i cospim32 = _mm_set1_epi32(-cospi[32]);
@@ -432,17 +526,25 @@ static void fdct8x8_sse4_1(__m128i *in, __m128i *out, int bit,
const __m128i rnding = _mm_set1_epi32(1 << (bit - 1));
__m128i u[8], v[8];
+ int startidx = 0 * col_num;
+ int endidx = 7 * col_num;
// Even 8 points 0, 2, ..., 14
// stage 0
// stage 1
- u[0] = _mm_add_epi32(in[0], in[14]);
- v[7] = _mm_sub_epi32(in[0], in[14]); // v[7]
- u[1] = _mm_add_epi32(in[2], in[12]);
- u[6] = _mm_sub_epi32(in[2], in[12]);
- u[2] = _mm_add_epi32(in[4], in[10]);
- u[5] = _mm_sub_epi32(in[4], in[10]);
- u[3] = _mm_add_epi32(in[6], in[8]);
- v[4] = _mm_sub_epi32(in[6], in[8]); // v[4]
+ u[0] = _mm_add_epi32(in[startidx], in[endidx]);
+ v[7] = _mm_sub_epi32(in[startidx], in[endidx]); // v[7]
+ startidx += col_num;
+ endidx -= col_num;
+ u[1] = _mm_add_epi32(in[startidx], in[endidx]);
+ u[6] = _mm_sub_epi32(in[startidx], in[endidx]);
+ startidx += col_num;
+ endidx -= col_num;
+ u[2] = _mm_add_epi32(in[startidx], in[endidx]);
+ u[5] = _mm_sub_epi32(in[startidx], in[endidx]);
+ startidx += col_num;
+ endidx -= col_num;
+ u[3] = _mm_add_epi32(in[startidx], in[endidx]);
+ v[4] = _mm_sub_epi32(in[startidx], in[endidx]); // v[4]
// stage 2
v[0] = _mm_add_epi32(u[0], u[3]);
@@ -498,126 +600,40 @@ static void fdct8x8_sse4_1(__m128i *in, __m128i *out, int bit,
v[1] = _mm_mullo_epi32(u[7], cospi8);
v[0] = _mm_add_epi32(v[0], v[1]);
v[0] = _mm_add_epi32(v[0], rnding);
- out[2] = _mm_srai_epi32(v[0], bit); // buf0[4]
+ out[1 * col_num] = _mm_srai_epi32(v[0], bit); // buf0[4]
v[0] = _mm_mullo_epi32(u[4], cospi8);
v[1] = _mm_mullo_epi32(u[7], cospi56);
v[0] = _mm_sub_epi32(v[1], v[0]);
v[0] = _mm_add_epi32(v[0], rnding);
- out[14] = _mm_srai_epi32(v[0], bit); // buf0[7]
+ out[7 * col_num] = _mm_srai_epi32(v[0], bit); // buf0[7]
v[0] = _mm_mullo_epi32(u[5], cospi24);
v[1] = _mm_mullo_epi32(u[6], cospi40);
v[0] = _mm_add_epi32(v[0], v[1]);
v[0] = _mm_add_epi32(v[0], rnding);
- out[10] = _mm_srai_epi32(v[0], bit); // buf0[5]
+ out[5 * col_num] = _mm_srai_epi32(v[0], bit); // buf0[5]
v[0] = _mm_mullo_epi32(u[5], cospi40);
v[1] = _mm_mullo_epi32(u[6], cospi24);
v[0] = _mm_sub_epi32(v[1], v[0]);
v[0] = _mm_add_epi32(v[0], rnding);
- out[6] = _mm_srai_epi32(v[0], bit); // buf0[6]
-
- out[0] = u[0]; // buf0[0]
- out[8] = u[1]; // buf0[1]
- out[4] = u[2]; // buf0[2]
- out[12] = u[3]; // buf0[3]
-
- // Odd 8 points: 1, 3, ..., 15
- // stage 0
- // stage 1
- u[0] = _mm_add_epi32(in[1], in[15]);
- v[7] = _mm_sub_epi32(in[1], in[15]); // v[7]
- u[1] = _mm_add_epi32(in[3], in[13]);
- u[6] = _mm_sub_epi32(in[3], in[13]);
- u[2] = _mm_add_epi32(in[5], in[11]);
- u[5] = _mm_sub_epi32(in[5], in[11]);
- u[3] = _mm_add_epi32(in[7], in[9]);
- v[4] = _mm_sub_epi32(in[7], in[9]); // v[4]
-
- // stage 2
- v[0] = _mm_add_epi32(u[0], u[3]);
- v[3] = _mm_sub_epi32(u[0], u[3]);
- v[1] = _mm_add_epi32(u[1], u[2]);
- v[2] = _mm_sub_epi32(u[1], u[2]);
-
- v[5] = _mm_mullo_epi32(u[5], cospim32);
- v[6] = _mm_mullo_epi32(u[6], cospi32);
- v[5] = _mm_add_epi32(v[5], v[6]);
- v[5] = _mm_add_epi32(v[5], rnding);
- v[5] = _mm_srai_epi32(v[5], bit);
-
- u[0] = _mm_mullo_epi32(u[5], cospi32);
- v[6] = _mm_mullo_epi32(u[6], cospim32);
- v[6] = _mm_sub_epi32(u[0], v[6]);
- v[6] = _mm_add_epi32(v[6], rnding);
- v[6] = _mm_srai_epi32(v[6], bit);
-
- // stage 3
- // type 0
- v[0] = _mm_mullo_epi32(v[0], cospi32);
- v[1] = _mm_mullo_epi32(v[1], cospi32);
- u[0] = _mm_add_epi32(v[0], v[1]);
- u[0] = _mm_add_epi32(u[0], rnding);
- u[0] = _mm_srai_epi32(u[0], bit);
-
- u[1] = _mm_sub_epi32(v[0], v[1]);
- u[1] = _mm_add_epi32(u[1], rnding);
- u[1] = _mm_srai_epi32(u[1], bit);
-
- // type 1
- v[0] = _mm_mullo_epi32(v[2], cospi48);
- v[1] = _mm_mullo_epi32(v[3], cospi16);
- u[2] = _mm_add_epi32(v[0], v[1]);
- u[2] = _mm_add_epi32(u[2], rnding);
- u[2] = _mm_srai_epi32(u[2], bit);
-
- v[0] = _mm_mullo_epi32(v[2], cospi16);
- v[1] = _mm_mullo_epi32(v[3], cospi48);
- u[3] = _mm_sub_epi32(v[1], v[0]);
- u[3] = _mm_add_epi32(u[3], rnding);
- u[3] = _mm_srai_epi32(u[3], bit);
-
- u[4] = _mm_add_epi32(v[4], v[5]);
- u[5] = _mm_sub_epi32(v[4], v[5]);
- u[6] = _mm_sub_epi32(v[7], v[6]);
- u[7] = _mm_add_epi32(v[7], v[6]);
-
- // stage 4
- // stage 5
- v[0] = _mm_mullo_epi32(u[4], cospi56);
- v[1] = _mm_mullo_epi32(u[7], cospi8);
- v[0] = _mm_add_epi32(v[0], v[1]);
- v[0] = _mm_add_epi32(v[0], rnding);
- out[3] = _mm_srai_epi32(v[0], bit); // buf0[4]
+ out[3 * col_num] = _mm_srai_epi32(v[0], bit); // buf0[6]
- v[0] = _mm_mullo_epi32(u[4], cospi8);
- v[1] = _mm_mullo_epi32(u[7], cospi56);
- v[0] = _mm_sub_epi32(v[1], v[0]);
- v[0] = _mm_add_epi32(v[0], rnding);
- out[15] = _mm_srai_epi32(v[0], bit); // buf0[7]
-
- v[0] = _mm_mullo_epi32(u[5], cospi24);
- v[1] = _mm_mullo_epi32(u[6], cospi40);
- v[0] = _mm_add_epi32(v[0], v[1]);
- v[0] = _mm_add_epi32(v[0], rnding);
- out[11] = _mm_srai_epi32(v[0], bit); // buf0[5]
-
- v[0] = _mm_mullo_epi32(u[5], cospi40);
- v[1] = _mm_mullo_epi32(u[6], cospi24);
- v[0] = _mm_sub_epi32(v[1], v[0]);
- v[0] = _mm_add_epi32(v[0], rnding);
- out[7] = _mm_srai_epi32(v[0], bit); // buf0[6]
+ out[0 * col_num] = u[0]; // buf0[0]
+ out[4 * col_num] = u[1]; // buf0[1]
+ out[2 * col_num] = u[2]; // buf0[2]
+ out[6 * col_num] = u[3]; // buf0[3]
+}
- out[1] = u[0]; // buf0[0]
- out[9] = u[1]; // buf0[1]
- out[5] = u[2]; // buf0[2]
- out[13] = u[3]; // buf0[3]
+static void fdct8x8_sse4_1(__m128i *in, __m128i *out, int bit,
+ const int col_num) {
+ fdct4x8_sse4_1(in, out, bit, col_num);
+ fdct4x8_sse4_1(in + 1, out + 1, bit, col_num);
}
static void fadst8x8_sse4_1(__m128i *in, __m128i *out, int bit,
const int col_num) {
- (void)(col_num);
const int32_t *cospi = cospi_arr(bit);
const __m128i cospi32 = _mm_set1_epi32(cospi[32]);
const __m128i cospi16 = _mm_set1_epi32(cospi[16]);
@@ -648,17 +664,17 @@ static void fadst8x8_sse4_1(__m128i *in, __m128i *out, int bit,
// Odd column: 1, 3, ..., 15
// one even column plus one odd column constructs one row (8 coeffs)
// total we have 8 rows (8x8).
- for (col = 0; col < 2; ++col) {
+ for (col = 0; col < col_num; ++col) {
// stage 0
// stage 1
- u0 = in[2 * 0 + col];
- u1 = _mm_sub_epi32(zero, in[2 * 7 + col]);
- u2 = _mm_sub_epi32(zero, in[2 * 3 + col]);
- u3 = in[2 * 4 + col];
- u4 = _mm_sub_epi32(zero, in[2 * 1 + col]);
- u5 = in[2 * 6 + col];
- u6 = in[2 * 2 + col];
- u7 = _mm_sub_epi32(zero, in[2 * 5 + col]);
+ u0 = in[col_num * 0 + col];
+ u1 = _mm_sub_epi32(zero, in[col_num * 7 + col]);
+ u2 = _mm_sub_epi32(zero, in[col_num * 3 + col]);
+ u3 = in[col_num * 4 + col];
+ u4 = _mm_sub_epi32(zero, in[col_num * 1 + col]);
+ u5 = in[col_num * 6 + col];
+ u6 = in[col_num * 2 + col];
+ u7 = _mm_sub_epi32(zero, in[col_num * 5 + col]);
// stage 2
v0 = u0;
@@ -787,103 +803,193 @@ static void fadst8x8_sse4_1(__m128i *in, __m128i *out, int bit,
v7 = _mm_srai_epi32(v7, bit);
// stage 7
- out[2 * 0 + col] = v1;
- out[2 * 1 + col] = v6;
- out[2 * 2 + col] = v3;
- out[2 * 3 + col] = v4;
- out[2 * 4 + col] = v5;
- out[2 * 5 + col] = v2;
- out[2 * 6 + col] = v7;
- out[2 * 7 + col] = v0;
+ out[col_num * 0 + col] = v1;
+ out[col_num * 1 + col] = v6;
+ out[col_num * 2 + col] = v3;
+ out[col_num * 3 + col] = v4;
+ out[col_num * 4 + col] = v5;
+ out[col_num * 5 + col] = v2;
+ out[col_num * 6 + col] = v7;
+ out[col_num * 7 + col] = v0;
+ }
+}
+static void idtx8x8_sse4_1(__m128i *in, __m128i *out, int bit, int col_num) {
+ (void)bit;
+
+ for (int i = 0; i < col_num; i += 1) {
+ out[0 + 8 * i] = _mm_add_epi32(in[0 + 8 * i], in[0 + 8 * i]);
+ out[1 + 8 * i] = _mm_add_epi32(in[1 + 8 * i], in[1 + 8 * i]);
+ out[2 + 8 * i] = _mm_add_epi32(in[2 + 8 * i], in[2 + 8 * i]);
+ out[3 + 8 * i] = _mm_add_epi32(in[3 + 8 * i], in[3 + 8 * i]);
+ out[4 + 8 * i] = _mm_add_epi32(in[4 + 8 * i], in[4 + 8 * i]);
+ out[5 + 8 * i] = _mm_add_epi32(in[5 + 8 * i], in[5 + 8 * i]);
+ out[6 + 8 * i] = _mm_add_epi32(in[6 + 8 * i], in[6 + 8 * i]);
+ out[7 + 8 * i] = _mm_add_epi32(in[7 + 8 * i], in[7 + 8 * i]);
+ }
+}
+static void idtx32x8_sse4_1(__m128i *in, __m128i *out, int bit, int col_num) {
+ (void)bit;
+ (void)col_num;
+ for (int j = 0; j < 2; j++) {
+ out[j + 8 * 0] = _mm_add_epi32(in[j + 8 * 0], in[j + 8 * 0]);
+ out[j + 8 * 1] = _mm_add_epi32(in[j + 8 * 1], in[j + 8 * 1]);
+ out[j + 8 * 2] = _mm_add_epi32(in[j + 8 * 2], in[j + 8 * 2]);
+ out[j + 8 * 3] = _mm_add_epi32(in[j + 8 * 3], in[j + 8 * 3]);
+ out[j + 8 * 4] = _mm_add_epi32(in[j + 8 * 4], in[j + 8 * 4]);
+ out[j + 8 * 5] = _mm_add_epi32(in[j + 8 * 5], in[j + 8 * 5]);
+ out[j + 8 * 6] = _mm_add_epi32(in[j + 8 * 6], in[j + 8 * 6]);
+ out[j + 8 * 7] = _mm_add_epi32(in[j + 8 * 7], in[j + 8 * 7]);
}
}
-
void av1_fwd_txfm2d_8x8_sse4_1(const int16_t *input, int32_t *coeff, int stride,
TX_TYPE tx_type, int bd) {
__m128i in[16], out[16];
- const int8_t *shift = fwd_txfm_shift_ls[TX_8X8];
+ const int8_t *shift = av1_fwd_txfm_shift_ls[TX_8X8];
const int txw_idx = get_txw_idx(TX_8X8);
const int txh_idx = get_txh_idx(TX_8X8);
switch (tx_type) {
case DCT_DCT:
load_buffer_8x8(input, in, stride, 0, 0, shift[0]);
- fdct8x8_sse4_1(in, out, fwd_cos_bit_col[txw_idx][txh_idx], 0);
+ fdct8x8_sse4_1(in, out, av1_fwd_cos_bit_col[txw_idx][txh_idx], 2);
col_txfm_8x8_rounding(out, -shift[1]);
transpose_8x8(out, in);
- fdct8x8_sse4_1(in, out, fwd_cos_bit_row[txw_idx][txh_idx], 0);
+ fdct8x8_sse4_1(in, out, av1_fwd_cos_bit_row[txw_idx][txh_idx], 2);
transpose_8x8(out, in);
write_buffer_8x8(in, coeff);
break;
case ADST_DCT:
load_buffer_8x8(input, in, stride, 0, 0, shift[0]);
- fadst8x8_sse4_1(in, out, fwd_cos_bit_col[txw_idx][txh_idx], 0);
+ fadst8x8_sse4_1(in, out, av1_fwd_cos_bit_col[txw_idx][txh_idx], 2);
col_txfm_8x8_rounding(out, -shift[1]);
transpose_8x8(out, in);
- fdct8x8_sse4_1(in, out, fwd_cos_bit_row[txw_idx][txh_idx], 0);
+ fdct8x8_sse4_1(in, out, av1_fwd_cos_bit_row[txw_idx][txh_idx], 2);
transpose_8x8(out, in);
write_buffer_8x8(in, coeff);
break;
case DCT_ADST:
load_buffer_8x8(input, in, stride, 0, 0, shift[0]);
- fdct8x8_sse4_1(in, out, fwd_cos_bit_col[txw_idx][txh_idx], 0);
+ fdct8x8_sse4_1(in, out, av1_fwd_cos_bit_col[txw_idx][txh_idx], 2);
col_txfm_8x8_rounding(out, -shift[1]);
transpose_8x8(out, in);
- fadst8x8_sse4_1(in, out, fwd_cos_bit_row[txw_idx][txh_idx], 0);
+ fadst8x8_sse4_1(in, out, av1_fwd_cos_bit_row[txw_idx][txh_idx], 2);
transpose_8x8(out, in);
write_buffer_8x8(in, coeff);
break;
case ADST_ADST:
load_buffer_8x8(input, in, stride, 0, 0, shift[0]);
- fadst8x8_sse4_1(in, out, fwd_cos_bit_col[txw_idx][txh_idx], 0);
+ fadst8x8_sse4_1(in, out, av1_fwd_cos_bit_col[txw_idx][txh_idx], 2);
col_txfm_8x8_rounding(out, -shift[1]);
transpose_8x8(out, in);
- fadst8x8_sse4_1(in, out, fwd_cos_bit_row[txw_idx][txh_idx], 0);
+ fadst8x8_sse4_1(in, out, av1_fwd_cos_bit_row[txw_idx][txh_idx], 2);
transpose_8x8(out, in);
write_buffer_8x8(in, coeff);
break;
case FLIPADST_DCT:
load_buffer_8x8(input, in, stride, 1, 0, shift[0]);
- fadst8x8_sse4_1(in, out, fwd_cos_bit_col[txw_idx][txh_idx], 0);
+ fadst8x8_sse4_1(in, out, av1_fwd_cos_bit_col[txw_idx][txh_idx], 2);
col_txfm_8x8_rounding(out, -shift[1]);
transpose_8x8(out, in);
- fdct8x8_sse4_1(in, out, fwd_cos_bit_row[txw_idx][txh_idx], 0);
+ fdct8x8_sse4_1(in, out, av1_fwd_cos_bit_row[txw_idx][txh_idx], 2);
transpose_8x8(out, in);
write_buffer_8x8(in, coeff);
break;
case DCT_FLIPADST:
load_buffer_8x8(input, in, stride, 0, 1, shift[0]);
- fdct8x8_sse4_1(in, out, fwd_cos_bit_col[txw_idx][txh_idx], 0);
+ fdct8x8_sse4_1(in, out, av1_fwd_cos_bit_col[txw_idx][txh_idx], 2);
col_txfm_8x8_rounding(out, -shift[1]);
transpose_8x8(out, in);
- fadst8x8_sse4_1(in, out, fwd_cos_bit_row[txw_idx][txh_idx], 0);
+ fadst8x8_sse4_1(in, out, av1_fwd_cos_bit_row[txw_idx][txh_idx], 2);
transpose_8x8(out, in);
write_buffer_8x8(in, coeff);
break;
case FLIPADST_FLIPADST:
load_buffer_8x8(input, in, stride, 1, 1, shift[0]);
- fadst8x8_sse4_1(in, out, fwd_cos_bit_col[txw_idx][txh_idx], 0);
+ fadst8x8_sse4_1(in, out, av1_fwd_cos_bit_col[txw_idx][txh_idx], 2);
col_txfm_8x8_rounding(out, -shift[1]);
transpose_8x8(out, in);
- fadst8x8_sse4_1(in, out, fwd_cos_bit_row[txw_idx][txh_idx], 0);
+ fadst8x8_sse4_1(in, out, av1_fwd_cos_bit_row[txw_idx][txh_idx], 2);
transpose_8x8(out, in);
write_buffer_8x8(in, coeff);
break;
case ADST_FLIPADST:
load_buffer_8x8(input, in, stride, 0, 1, shift[0]);
- fadst8x8_sse4_1(in, out, fwd_cos_bit_col[txw_idx][txh_idx], 0);
+ fadst8x8_sse4_1(in, out, av1_fwd_cos_bit_col[txw_idx][txh_idx], 2);
col_txfm_8x8_rounding(out, -shift[1]);
transpose_8x8(out, in);
- fadst8x8_sse4_1(in, out, fwd_cos_bit_row[txw_idx][txh_idx], 0);
+ fadst8x8_sse4_1(in, out, av1_fwd_cos_bit_row[txw_idx][txh_idx], 2);
transpose_8x8(out, in);
write_buffer_8x8(in, coeff);
break;
case FLIPADST_ADST:
load_buffer_8x8(input, in, stride, 1, 0, shift[0]);
- fadst8x8_sse4_1(in, out, fwd_cos_bit_col[txw_idx][txh_idx], 0);
+ fadst8x8_sse4_1(in, out, av1_fwd_cos_bit_col[txw_idx][txh_idx], 2);
+ col_txfm_8x8_rounding(out, -shift[1]);
+ transpose_8x8(out, in);
+ fadst8x8_sse4_1(in, out, av1_fwd_cos_bit_row[txw_idx][txh_idx], 2);
+ transpose_8x8(out, in);
+ write_buffer_8x8(in, coeff);
+ break;
+ case IDTX:
+ load_buffer_8x8(input, in, stride, 0, 0, shift[0]);
+ idtx8x8_sse4_1(in, out, av1_fwd_cos_bit_col[txw_idx][txh_idx], 2);
+ col_txfm_8x8_rounding(out, -shift[1]);
+ transpose_8x8(out, in);
+ idtx8x8_sse4_1(in, out, av1_fwd_cos_bit_col[txw_idx][txh_idx], 2);
+ transpose_8x8(out, in);
+ write_buffer_8x8(in, coeff);
+ break;
+ case V_DCT:
+ load_buffer_8x8(input, in, stride, 0, 0, shift[0]);
+ fdct8x8_sse4_1(in, out, av1_fwd_cos_bit_col[txw_idx][txh_idx], 2);
+ col_txfm_8x8_rounding(out, -shift[1]);
+ transpose_8x8(out, in);
+ idtx8x8_sse4_1(in, out, av1_fwd_cos_bit_col[txw_idx][txh_idx], 2);
+ transpose_8x8(out, in);
+ write_buffer_8x8(in, coeff);
+ break;
+ case H_DCT:
+ load_buffer_8x8(input, in, stride, 0, 0, shift[0]);
+ idtx8x8_sse4_1(in, out, av1_fwd_cos_bit_col[txw_idx][txh_idx], 2);
col_txfm_8x8_rounding(out, -shift[1]);
transpose_8x8(out, in);
- fadst8x8_sse4_1(in, out, fwd_cos_bit_row[txw_idx][txh_idx], 0);
+ fdct8x8_sse4_1(in, out, av1_fwd_cos_bit_col[txw_idx][txh_idx], 2);
+ transpose_8x8(out, in);
+ write_buffer_8x8(in, coeff);
+ break;
+ case V_ADST:
+ load_buffer_8x8(input, in, stride, 0, 0, shift[0]);
+ fadst8x8_sse4_1(in, out, av1_fwd_cos_bit_col[txw_idx][txh_idx], 2);
+ col_txfm_8x8_rounding(out, -shift[1]);
+ transpose_8x8(out, in);
+ idtx8x8_sse4_1(in, out, av1_fwd_cos_bit_col[txw_idx][txh_idx], 2);
+ transpose_8x8(out, in);
+ write_buffer_8x8(in, coeff);
+ break;
+ case H_ADST:
+ load_buffer_8x8(input, in, stride, 0, 0, shift[0]);
+ idtx8x8_sse4_1(in, out, av1_fwd_cos_bit_col[txw_idx][txh_idx], 2);
+ col_txfm_8x8_rounding(out, -shift[1]);
+ transpose_8x8(out, in);
+ fadst8x8_sse4_1(in, out, av1_fwd_cos_bit_col[txw_idx][txh_idx], 2);
+ transpose_8x8(out, in);
+ write_buffer_8x8(in, coeff);
+ break;
+ case V_FLIPADST:
+ load_buffer_8x8(input, in, stride, 1, 0, shift[0]);
+ fadst8x8_sse4_1(in, out, av1_fwd_cos_bit_col[txw_idx][txh_idx], 2);
+ col_txfm_8x8_rounding(out, -shift[1]);
+ transpose_8x8(out, in);
+ idtx8x8_sse4_1(in, out, av1_fwd_cos_bit_col[txw_idx][txh_idx], 2);
+ transpose_8x8(out, in);
+ write_buffer_8x8(in, coeff);
+ break;
+ case H_FLIPADST:
+ load_buffer_8x8(input, in, stride, 0, 1, shift[0]);
+ idtx8x8_sse4_1(in, out, av1_fwd_cos_bit_col[txw_idx][txh_idx], 2);
+ col_txfm_8x8_rounding(out, -shift[1]);
+ transpose_8x8(out, in);
+ fadst8x8_sse4_1(in, out, av1_fwd_cos_bit_col[txw_idx][txh_idx], 2);
transpose_8x8(out, in);
write_buffer_8x8(in, coeff);
break;
@@ -986,6 +1092,90 @@ static INLINE void load_buffer_8x16(const int16_t *input, __m128i *out,
load_buffer_8x8(botL, out + 16, stride, flipud, fliplr, shift);
}
+static INLINE void load_buffer_8x4(const int16_t *input, __m128i *out,
+ int stride, int flipud, int fliplr,
+ int shift) {
+ const int16_t *topL = input;
+ const int16_t *topR = input + 4;
+
+ const int16_t *tmp;
+
+ if (fliplr) {
+ tmp = topL;
+ topL = topR;
+ topR = tmp;
+ }
+
+ load_buffer_4x4(topL, out, stride, flipud, fliplr, shift);
+ load_buffer_4x4(topR, out + 4, stride, flipud, fliplr, shift);
+}
+
+static INLINE void load_buffer_16x4(const int16_t *input, __m128i *out,
+ int stride, int flipud, int fliplr,
+ int shift) {
+ const int16_t *topL = input;
+ const int16_t *topR = input + 8;
+
+ const int16_t *tmp;
+
+ if (fliplr) {
+ tmp = topL;
+ topL = topR;
+ topR = tmp;
+ }
+
+ load_buffer_8x4(topL, out, stride, flipud, fliplr, shift);
+ load_buffer_8x4(topR, out + 8, stride, flipud, fliplr, shift);
+}
+
+static INLINE void load_buffer_4x8(const int16_t *input, __m128i *out,
+ int stride, int flipud, int fliplr,
+ int shift) {
+ const int16_t *topL = input;
+ const int16_t *botL = input + 4 * stride;
+
+ const int16_t *tmp;
+
+ if (flipud) {
+ tmp = topL;
+ topL = botL;
+ botL = tmp;
+ }
+
+ load_buffer_4x4(topL, out, stride, flipud, fliplr, shift);
+ load_buffer_4x4(botL, out + 4, stride, flipud, fliplr, shift);
+}
+
+static INLINE void load_buffer_4x16(const int16_t *input, __m128i *out,
+ const int stride, const int flipud,
+ const int fliplr, const int shift) {
+ const int16_t *topL = input;
+ const int16_t *botL = input + 8 * stride;
+
+ const int16_t *tmp;
+
+ if (flipud) {
+ tmp = topL;
+ topL = botL;
+ botL = tmp;
+ }
+ load_buffer_4x8(topL, out, stride, flipud, fliplr, shift);
+ load_buffer_4x8(botL, out + 8, stride, flipud, fliplr, shift);
+}
+
+static INLINE void load_buffer_32x8n(const int16_t *input, __m128i *out,
+ int stride, int flipud, int fliplr,
+ int shift, const int height) {
+ const int16_t *in = input;
+ __m128i *output = out;
+ for (int col = 0; col < height; col++) {
+ in = input + col * stride;
+ output = out + col * 8;
+ load_buffer_4x4(in, output, 4, flipud, fliplr, shift);
+ load_buffer_4x4((in + 16), (output + 4), 4, flipud, fliplr, shift);
+ }
+}
+
static void fdct16x16_sse4_1(__m128i *in, __m128i *out, int bit,
const int col_num) {
const int32_t *cospi = cospi_arr(bit);
@@ -1544,93 +1734,184 @@ static void write_buffer_16x16(const __m128i *in, int32_t *output) {
output += size_8x8;
write_buffer_8x8(&in[48], output);
}
-
+static void idtx16x16_sse4_1(__m128i *in, __m128i *out, int bit, int col_num) {
+ (void)bit;
+ __m128i fact = _mm_set1_epi32(2 * NewSqrt2);
+ __m128i offset = _mm_set1_epi32(1 << (NewSqrt2Bits - 1));
+ __m128i a_low;
+
+ int num_iters = 16 * col_num;
+ for (int i = 0; i < num_iters; i++) {
+ a_low = _mm_mullo_epi32(in[i], fact);
+ a_low = _mm_add_epi32(a_low, offset);
+ out[i] = _mm_srai_epi32(a_low, NewSqrt2Bits);
+ }
+}
void av1_fwd_txfm2d_16x16_sse4_1(const int16_t *input, int32_t *coeff,
int stride, TX_TYPE tx_type, int bd) {
__m128i in[64], out[64];
- const int8_t *shift = fwd_txfm_shift_ls[TX_16X16];
+ const int8_t *shift = av1_fwd_txfm_shift_ls[TX_16X16];
const int txw_idx = get_txw_idx(TX_16X16);
const int txh_idx = get_txh_idx(TX_16X16);
const int col_num = 4;
switch (tx_type) {
case DCT_DCT:
load_buffer_16x16(input, in, stride, 0, 0, shift[0]);
- fdct16x16_sse4_1(in, out, fwd_cos_bit_col[txw_idx][txh_idx], col_num);
+ fdct16x16_sse4_1(in, out, av1_fwd_cos_bit_col[txw_idx][txh_idx], col_num);
col_txfm_16x16_rounding(out, -shift[1]);
transpose_16x16(out, in);
- fdct16x16_sse4_1(in, out, fwd_cos_bit_row[txw_idx][txh_idx], col_num);
+ fdct16x16_sse4_1(in, out, av1_fwd_cos_bit_row[txw_idx][txh_idx], col_num);
transpose_16x16(out, in);
write_buffer_16x16(in, coeff);
break;
case ADST_DCT:
load_buffer_16x16(input, in, stride, 0, 0, shift[0]);
- fadst16x16_sse4_1(in, out, fwd_cos_bit_col[txw_idx][txh_idx], col_num);
+ fadst16x16_sse4_1(in, out, av1_fwd_cos_bit_col[txw_idx][txh_idx],
+ col_num);
col_txfm_16x16_rounding(out, -shift[1]);
transpose_16x16(out, in);
- fdct16x16_sse4_1(in, out, fwd_cos_bit_row[txw_idx][txh_idx], col_num);
+ fdct16x16_sse4_1(in, out, av1_fwd_cos_bit_row[txw_idx][txh_idx], col_num);
transpose_16x16(out, in);
write_buffer_16x16(in, coeff);
break;
case DCT_ADST:
load_buffer_16x16(input, in, stride, 0, 0, shift[0]);
- fdct16x16_sse4_1(in, out, fwd_cos_bit_col[txw_idx][txh_idx], col_num);
+ fdct16x16_sse4_1(in, out, av1_fwd_cos_bit_col[txw_idx][txh_idx], col_num);
col_txfm_16x16_rounding(out, -shift[1]);
transpose_16x16(out, in);
- fadst16x16_sse4_1(in, out, fwd_cos_bit_row[txw_idx][txh_idx], col_num);
+ fadst16x16_sse4_1(in, out, av1_fwd_cos_bit_row[txw_idx][txh_idx],
+ col_num);
transpose_16x16(out, in);
write_buffer_16x16(in, coeff);
break;
case ADST_ADST:
load_buffer_16x16(input, in, stride, 0, 0, shift[0]);
- fadst16x16_sse4_1(in, out, fwd_cos_bit_col[txw_idx][txh_idx], col_num);
+ fadst16x16_sse4_1(in, out, av1_fwd_cos_bit_col[txw_idx][txh_idx],
+ col_num);
col_txfm_16x16_rounding(out, -shift[1]);
transpose_16x16(out, in);
- fadst16x16_sse4_1(in, out, fwd_cos_bit_row[txw_idx][txh_idx], col_num);
+ fadst16x16_sse4_1(in, out, av1_fwd_cos_bit_row[txw_idx][txh_idx],
+ col_num);
transpose_16x16(out, in);
write_buffer_16x16(in, coeff);
break;
case FLIPADST_DCT:
load_buffer_16x16(input, in, stride, 1, 0, shift[0]);
- fadst16x16_sse4_1(in, out, fwd_cos_bit_col[txw_idx][txh_idx], col_num);
+ fadst16x16_sse4_1(in, out, av1_fwd_cos_bit_col[txw_idx][txh_idx],
+ col_num);
col_txfm_16x16_rounding(out, -shift[1]);
transpose_16x16(out, in);
- fdct16x16_sse4_1(in, out, fwd_cos_bit_row[txw_idx][txh_idx], col_num);
+ fdct16x16_sse4_1(in, out, av1_fwd_cos_bit_row[txw_idx][txh_idx], col_num);
transpose_16x16(out, in);
write_buffer_16x16(in, coeff);
break;
case DCT_FLIPADST:
load_buffer_16x16(input, in, stride, 0, 1, shift[0]);
- fdct16x16_sse4_1(in, out, fwd_cos_bit_col[txw_idx][txh_idx], col_num);
+ fdct16x16_sse4_1(in, out, av1_fwd_cos_bit_col[txw_idx][txh_idx], col_num);
col_txfm_16x16_rounding(out, -shift[1]);
transpose_16x16(out, in);
- fadst16x16_sse4_1(in, out, fwd_cos_bit_row[txw_idx][txh_idx], col_num);
+ fadst16x16_sse4_1(in, out, av1_fwd_cos_bit_row[txw_idx][txh_idx],
+ col_num);
transpose_16x16(out, in);
write_buffer_16x16(in, coeff);
break;
case FLIPADST_FLIPADST:
load_buffer_16x16(input, in, stride, 1, 1, shift[0]);
- fadst16x16_sse4_1(in, out, fwd_cos_bit_col[txw_idx][txh_idx], col_num);
+ fadst16x16_sse4_1(in, out, av1_fwd_cos_bit_col[txw_idx][txh_idx],
+ col_num);
col_txfm_16x16_rounding(out, -shift[1]);
transpose_16x16(out, in);
- fadst16x16_sse4_1(in, out, fwd_cos_bit_row[txw_idx][txh_idx], col_num);
+ fadst16x16_sse4_1(in, out, av1_fwd_cos_bit_row[txw_idx][txh_idx],
+ col_num);
transpose_16x16(out, in);
write_buffer_16x16(in, coeff);
break;
case ADST_FLIPADST:
load_buffer_16x16(input, in, stride, 0, 1, shift[0]);
- fadst16x16_sse4_1(in, out, fwd_cos_bit_col[txw_idx][txh_idx], col_num);
+ fadst16x16_sse4_1(in, out, av1_fwd_cos_bit_col[txw_idx][txh_idx],
+ col_num);
col_txfm_16x16_rounding(out, -shift[1]);
transpose_16x16(out, in);
- fadst16x16_sse4_1(in, out, fwd_cos_bit_row[txw_idx][txh_idx], col_num);
+ fadst16x16_sse4_1(in, out, av1_fwd_cos_bit_row[txw_idx][txh_idx],
+ col_num);
transpose_16x16(out, in);
write_buffer_16x16(in, coeff);
break;
case FLIPADST_ADST:
load_buffer_16x16(input, in, stride, 1, 0, shift[0]);
- fadst16x16_sse4_1(in, out, fwd_cos_bit_col[txw_idx][txh_idx], col_num);
+ fadst16x16_sse4_1(in, out, av1_fwd_cos_bit_col[txw_idx][txh_idx],
+ col_num);
+ col_txfm_16x16_rounding(out, -shift[1]);
+ transpose_16x16(out, in);
+ fadst16x16_sse4_1(in, out, av1_fwd_cos_bit_row[txw_idx][txh_idx],
+ col_num);
+ transpose_16x16(out, in);
+ write_buffer_16x16(in, coeff);
+ break;
+ case IDTX:
+ load_buffer_16x16(input, in, stride, 0, 0, shift[0]);
+ idtx16x16_sse4_1(in, out, av1_fwd_cos_bit_col[txw_idx][txh_idx], col_num);
+ col_txfm_16x16_rounding(out, -shift[1]);
+ transpose_16x16(out, in);
+ idtx16x16_sse4_1(in, out, av1_fwd_cos_bit_row[txw_idx][txh_idx], col_num);
+ transpose_16x16(out, in);
+ write_buffer_16x16(in, coeff);
+ break;
+ case V_DCT:
+ load_buffer_16x16(input, in, stride, 0, 0, shift[0]);
+ fdct16x16_sse4_1(in, out, av1_fwd_cos_bit_col[txw_idx][txh_idx], col_num);
+ col_txfm_16x16_rounding(out, -shift[1]);
+ transpose_16x16(out, in);
+ idtx16x16_sse4_1(in, out, av1_fwd_cos_bit_row[txw_idx][txh_idx], col_num);
+ transpose_16x16(out, in);
+ write_buffer_16x16(in, coeff);
+ break;
+ case H_DCT:
+ load_buffer_16x16(input, in, stride, 0, 0, shift[0]);
+ idtx16x16_sse4_1(in, out, av1_fwd_cos_bit_col[txw_idx][txh_idx], col_num);
+ col_txfm_16x16_rounding(out, -shift[1]);
+ transpose_16x16(out, in);
+ fdct16x16_sse4_1(in, out, av1_fwd_cos_bit_row[txw_idx][txh_idx], col_num);
+ transpose_16x16(out, in);
+ write_buffer_16x16(in, coeff);
+ break;
+ case V_ADST:
+ load_buffer_16x16(input, in, stride, 0, 0, shift[0]);
+ fadst16x16_sse4_1(in, out, av1_fwd_cos_bit_col[txw_idx][txh_idx],
+ col_num);
+ col_txfm_16x16_rounding(out, -shift[1]);
+ transpose_16x16(out, in);
+ idtx16x16_sse4_1(in, out, av1_fwd_cos_bit_row[txw_idx][txh_idx], col_num);
+ transpose_16x16(out, in);
+ write_buffer_16x16(in, coeff);
+ break;
+ case H_ADST:
+ load_buffer_16x16(input, in, stride, 0, 0, shift[0]);
+ idtx16x16_sse4_1(in, out, av1_fwd_cos_bit_col[txw_idx][txh_idx], col_num);
+ col_txfm_16x16_rounding(out, -shift[1]);
+ transpose_16x16(out, in);
+ fadst16x16_sse4_1(in, out, av1_fwd_cos_bit_row[txw_idx][txh_idx],
+ col_num);
+ transpose_16x16(out, in);
+ write_buffer_16x16(in, coeff);
+ break;
+ case V_FLIPADST:
+ load_buffer_16x16(input, in, stride, 1, 0, shift[0]);
+ fadst16x16_sse4_1(in, out, av1_fwd_cos_bit_col[txw_idx][txh_idx],
+ col_num);
col_txfm_16x16_rounding(out, -shift[1]);
transpose_16x16(out, in);
- fadst16x16_sse4_1(in, out, fwd_cos_bit_row[txw_idx][txh_idx], col_num);
+ idtx16x16_sse4_1(in, out, av1_fwd_cos_bit_row[txw_idx][txh_idx], col_num);
+ transpose_16x16(out, in);
+ write_buffer_16x16(in, coeff);
+ break;
+ case H_FLIPADST:
+ load_buffer_16x16(input, in, stride, 0, 1, shift[0]);
+ idtx16x16_sse4_1(in, out, av1_fwd_cos_bit_col[txw_idx][txh_idx], col_num);
+ col_txfm_16x16_rounding(out, -shift[1]);
+ transpose_16x16(out, in);
+ fadst16x16_sse4_1(in, out, av1_fwd_cos_bit_row[txw_idx][txh_idx],
+ col_num);
transpose_16x16(out, in);
write_buffer_16x16(in, coeff);
break;
@@ -1654,13 +1935,49 @@ static const fwd_transform_1d_sse4_1 col_highbd_txfm8x8_arr[TX_TYPES] = {
fadst8x8_sse4_1, // FLIPADST_FLIPADST
fadst8x8_sse4_1, // ADST_FLIPADST
fadst8x8_sse4_1, // FLIPADST_ADST
- NULL, // IDTX
+ idtx8x8_sse4_1, // IDTX
+ fdct8x8_sse4_1, // V_DCT
+ idtx8x8_sse4_1, // H_DCT
+ fadst8x8_sse4_1, // V_ADST
+ idtx8x8_sse4_1, // H_ADST
+ fadst8x8_sse4_1, // V_FLIPADST
+ idtx8x8_sse4_1 // H_FLIPADST
+};
+static const fwd_transform_1d_sse4_1 row_highbd_txfm32x8_arr[TX_TYPES] = {
+ fdct8x8_sse4_1, // DCT_DCT
+ NULL, // ADST_DCT
+ NULL, // DCT_ADST
+ NULL, // ADST_ADST
+ NULL, // FLIPADST_DCT
+ NULL, // DCT_FLIPADST
+ NULL, // FLIPADST_FLIPADST
+ NULL, // ADST_FLIPADST
+ NULL, // FLIPADST-ADST
+ idtx32x8_sse4_1, // IDTX
NULL, // V_DCT
NULL, // H_DCT
NULL, // V_ADST
NULL, // H_ADST
NULL, // V_FLIPADST
- NULL // H_FLIPADST
+ NULL, // H_FLIPADST
+};
+static const fwd_transform_1d_sse4_1 col_highbd_txfm4x8_arr[TX_TYPES] = {
+ fdct4x8_sse4_1, // DCT_DCT
+ fadst8x8_sse4_1, // ADST_DCT
+ fdct4x8_sse4_1, // DCT_ADST
+ fadst8x8_sse4_1, // ADST_ADST
+ fadst8x8_sse4_1, // FLIPADST_DCT
+ fdct4x8_sse4_1, // DCT_FLIPADST
+ fadst8x8_sse4_1, // FLIPADST_FLIPADST
+ fadst8x8_sse4_1, // ADST_FLIPADST
+ fadst8x8_sse4_1, // FLIPADST_ADST
+ idtx8x8_sse4_1, // IDTX
+ fdct4x8_sse4_1, // V_DCT
+ idtx8x8_sse4_1, // H_DCT
+ fadst8x8_sse4_1, // V_ADST
+ idtx8x8_sse4_1, // H_ADST
+ fadst8x8_sse4_1, // V_FLIPADST
+ idtx8x8_sse4_1 // H_FLIPADST
};
static const fwd_transform_1d_sse4_1 row_highbd_txfm8x16_arr[TX_TYPES] = {
@@ -1673,13 +1990,13 @@ static const fwd_transform_1d_sse4_1 row_highbd_txfm8x16_arr[TX_TYPES] = {
fadst16x16_sse4_1, // FLIPADST_FLIPADST
fadst16x16_sse4_1, // ADST_FLIPADST
fadst16x16_sse4_1, // FLIPADST_ADST
- NULL, // IDTX
- NULL, // V_DCT
- NULL, // H_DCT
- NULL, // V_ADST
- NULL, // H_ADST
- NULL, // V_FLIPADST
- NULL // H_FLIPADST
+ idtx16x16_sse4_1, // IDTX
+ idtx16x16_sse4_1, // V_DCT
+ fdct16x16_sse4_1, // H_DCT
+ idtx16x16_sse4_1, // V_ADST
+ fadst16x16_sse4_1, // H_ADST
+ idtx16x16_sse4_1, // V_FLIPADST
+ fadst16x16_sse4_1 // H_FLIPADST
};
static const fwd_transform_1d_sse4_1 col_highbd_txfm8x16_arr[TX_TYPES] = {
@@ -1692,13 +2009,13 @@ static const fwd_transform_1d_sse4_1 col_highbd_txfm8x16_arr[TX_TYPES] = {
fadst16x16_sse4_1, // FLIPADST_FLIPADST
fadst16x16_sse4_1, // ADST_FLIPADST
fadst16x16_sse4_1, // FLIPADST_ADST
- NULL, // IDTX
- NULL, // V_DCT
- NULL, // H_DCT
- NULL, // V_ADST
- NULL, // H_ADST
- NULL, // V_FLIPADST
- NULL // H_FLIPADST
+ idtx16x16_sse4_1, // IDTX
+ fdct16x16_sse4_1, // V_DCT
+ idtx16x16_sse4_1, // H_DCT
+ fadst16x16_sse4_1, // V_ADST
+ idtx16x16_sse4_1, // H_ADST
+ fadst16x16_sse4_1, // V_FLIPADST
+ idtx16x16_sse4_1 // H_FLIPADST
};
static const fwd_transform_1d_sse4_1 row_highbd_txfm8x8_arr[TX_TYPES] = {
fdct8x8_sse4_1, // DCT_DCT
@@ -1710,30 +2027,125 @@ static const fwd_transform_1d_sse4_1 row_highbd_txfm8x8_arr[TX_TYPES] = {
fadst8x8_sse4_1, // FLIPADST_FLIPADST
fadst8x8_sse4_1, // ADST_FLIPADST
fadst8x8_sse4_1, // FLIPADST_ADST
- NULL, // IDTX
- NULL, // V_DCT
- NULL, // H_DCT
- NULL, // V_ADST
- NULL, // H_ADST
- NULL, // V_FLIPADST
- NULL // H_FLIPADST
+ idtx8x8_sse4_1, // IDTX
+ idtx8x8_sse4_1, // V_DCT
+ fdct8x8_sse4_1, // H_DCT
+ idtx8x8_sse4_1, // V_ADST
+ fadst8x8_sse4_1, // H_ADST
+ idtx8x8_sse4_1, // V_FLIPADST
+ fadst8x8_sse4_1 // H_FLIPADST
+};
+
+static const fwd_transform_1d_sse4_1 row_highbd_txfm4x8_arr[TX_TYPES] = {
+ fdct4x8_sse4_1, // DCT_DCT
+ fdct4x8_sse4_1, // ADST_DCT
+ fadst8x8_sse4_1, // DCT_ADST
+ fadst8x8_sse4_1, // ADST_ADST
+ fdct4x8_sse4_1, // FLIPADST_DCT
+ fadst8x8_sse4_1, // DCT_FLIPADST
+ fadst8x8_sse4_1, // FLIPADST_FLIPADST
+ fadst8x8_sse4_1, // ADST_FLIPADST
+ fadst8x8_sse4_1, // FLIPADST_ADST
+ idtx8x8_sse4_1, // IDTX
+ idtx8x8_sse4_1, // V_DCT
+ fdct4x8_sse4_1, // H_DCT
+ idtx8x8_sse4_1, // V_ADST
+ fadst8x8_sse4_1, // H_ADST
+ idtx8x8_sse4_1, // V_FLIPADST
+ fadst8x8_sse4_1 // H_FLIPADST
+};
+
+static const fwd_transform_1d_sse4_1 row_highbd_txfm4x4_arr[TX_TYPES] = {
+ fdct4x4_sse4_1, // DCT_DCT
+ fdct4x4_sse4_1, // ADST_DCT
+ fadst4x4_sse4_1, // DCT_ADST
+ fadst4x4_sse4_1, // ADST_ADST
+ fdct4x4_sse4_1, // FLIPADST_DCT
+ fadst4x4_sse4_1, // DCT_FLIPADST
+ fadst4x4_sse4_1, // FLIPADST_FLIPADST
+ fadst4x4_sse4_1, // ADST_FLIPADST
+ fadst4x4_sse4_1, // FLIPADST_ADST
+ idtx4x4_sse4_1, // IDTX
+ idtx4x4_sse4_1, // V_DCT
+ fdct4x4_sse4_1, // H_DCT
+ idtx4x4_sse4_1, // V_ADST
+ fadst4x4_sse4_1, // H_ADST
+ idtx4x4_sse4_1, // V_FLIPADST
+ fadst4x4_sse4_1 // H_FLIPADST
+};
+
+static const fwd_transform_1d_sse4_1 col_highbd_txfm4x4_arr[TX_TYPES] = {
+ fdct4x4_sse4_1, // DCT_DCT
+ fadst4x4_sse4_1, // ADST_DCT
+ fdct4x4_sse4_1, // DCT_ADST
+ fadst4x4_sse4_1, // ADST_ADST
+ fadst4x4_sse4_1, // FLIPADST_DCT
+ fdct4x4_sse4_1, // DCT_FLIPADST
+ fadst4x4_sse4_1, // FLIPADST_FLIPADST
+ fadst4x4_sse4_1, // ADST_FLIPADST
+ fadst4x4_sse4_1, // FLIPADST_ADST
+ idtx4x4_sse4_1, // IDTX
+ fdct4x4_sse4_1, // V_DCT
+ idtx4x4_sse4_1, // H_DCT
+ fadst4x4_sse4_1, // V_ADST
+ idtx4x4_sse4_1, // H_ADST
+ fadst4x4_sse4_1, // V_FLIPADST
+ idtx4x4_sse4_1 // H_FLIPADST
+};
+
+static const fwd_transform_1d_sse4_1 col_highbd_txfm8x32_arr[TX_TYPES] = {
+ av1_fdct32_sse4_1, // DCT_DCT
+ NULL, // ADST_DCT
+ NULL, // DCT_ADST
+ NULL, // ADST_ADST
+ NULL, // FLIPADST_DCT
+ NULL, // DCT_FLIPADST
+ NULL, // FLIPADST_FLIPADST
+ NULL, // ADST_FLIPADST
+ NULL, // FLIPADST_ADST
+ av1_idtx32_sse4_1, // IDTX
+ NULL, // V_DCT
+ NULL, // H_DCT
+ NULL, // V_ADST
+ NULL, // H_ADST
+ NULL, // V_FLIPADST
+ NULL // H_FLIPADST
+};
+
+static const fwd_transform_1d_sse4_1 row_highbd_txfm8x32_arr[TX_TYPES] = {
+ fdct16x16_sse4_1, // DCT_DCT
+ NULL, // ADST_DCT
+ NULL, // DCT_ADST
+ NULL, // ADST_ADST
+ NULL, // FLIPADST_DCT
+ NULL, // DCT_FLIPADST
+ NULL, // FLIPADST_FLIPADST
+ NULL, // ADST_FLIPADST
+ NULL, // FLIPADST_ADST
+ idtx16x16_sse4_1, // IDTX
+ NULL, // V_DCT
+ NULL, // H_DCT
+ NULL, // V_ADST
+ NULL, // H_ADST
+ NULL, // V_FLIPADST
+ NULL // H_FLIPADST
};
void av1_fwd_txfm2d_16x8_sse4_1(const int16_t *input, int32_t *coeff,
int stride, TX_TYPE tx_type, int bd) {
__m128i in[32], out[32];
- const int8_t *shift = fwd_txfm_shift_ls[TX_16X8];
+ const int8_t *shift = av1_fwd_txfm_shift_ls[TX_16X8];
const int txw_idx = get_txw_idx(TX_16X8);
const int txh_idx = get_txh_idx(TX_16X8);
const fwd_transform_1d_sse4_1 col_txfm = col_highbd_txfm8x8_arr[tx_type];
const fwd_transform_1d_sse4_1 row_txfm = row_highbd_txfm8x16_arr[tx_type];
- int bit = fwd_cos_bit_col[txw_idx][txh_idx];
+ int bit = av1_fwd_cos_bit_col[txw_idx][txh_idx];
int ud_flip, lr_flip;
get_flip_cfg(tx_type, &ud_flip, &lr_flip);
for (int i = 0; i < 2; i++) {
load_buffer_8x8(input + i * 8, in, stride, ud_flip, 0, shift[0]);
- col_txfm(in, in, bit, 0);
+ col_txfm(in, in, bit, 2);
col_txfm_8x8_rounding(in, -shift[1]);
transpose_8x8(in, out + i * 16);
}
@@ -1757,12 +2169,12 @@ void av1_fwd_txfm2d_16x8_sse4_1(const int16_t *input, int32_t *coeff,
void av1_fwd_txfm2d_8x16_sse4_1(const int16_t *input, int32_t *coeff,
int stride, TX_TYPE tx_type, int bd) {
__m128i in[32], out[32];
- const int8_t *shift = fwd_txfm_shift_ls[TX_8X16];
+ const int8_t *shift = av1_fwd_txfm_shift_ls[TX_8X16];
const int txw_idx = get_txw_idx(TX_8X16);
const int txh_idx = get_txh_idx(TX_8X16);
const fwd_transform_1d_sse4_1 col_txfm = col_highbd_txfm8x16_arr[tx_type];
const fwd_transform_1d_sse4_1 row_txfm = row_highbd_txfm8x8_arr[tx_type];
- int bit = fwd_cos_bit_col[txw_idx][txh_idx];
+ int bit = av1_fwd_cos_bit_col[txw_idx][txh_idx];
int ud_flip, lr_flip;
get_flip_cfg(tx_type, &ud_flip, &lr_flip);
@@ -1773,7 +2185,7 @@ void av1_fwd_txfm2d_8x16_sse4_1(const int16_t *input, int32_t *coeff,
transpose_8x8(in + 16, out + 16);
for (int i = 0; i < 2; i++) {
- row_txfm(out + i * 16, out, bit, 0);
+ row_txfm(out + i * 16, out, bit, 2);
transpose_8x8(out, in);
av1_round_shift_rect_array_32_sse4_1(in, in, 16, -shift[2], NewSqrt2);
write_buffer_8x8(in, coeff + i * 64);
@@ -1781,3 +2193,412 @@ void av1_fwd_txfm2d_8x16_sse4_1(const int16_t *input, int32_t *coeff,
(void)bd;
}
+
+void av1_fwd_txfm2d_4x16_sse4_1(const int16_t *input, int32_t *coeff,
+ int stride, TX_TYPE tx_type, int bd) {
+ __m128i in[16];
+ __m128i *outcoeff128 = (__m128i *)coeff;
+ const int8_t *shift = av1_fwd_txfm_shift_ls[TX_4X16];
+ const int txw_idx = get_txw_idx(TX_4X16);
+ const int txh_idx = get_txh_idx(TX_4X16);
+ const int txfm_size_col = tx_size_wide[TX_4X16];
+ const int txfm_size_row = tx_size_high[TX_4X16];
+ int bitcol = av1_fwd_cos_bit_col[txw_idx][txh_idx];
+ int bitrow = av1_fwd_cos_bit_row[txw_idx][txh_idx];
+ const fwd_transform_1d_sse4_1 col_txfm = col_highbd_txfm8x16_arr[tx_type];
+ const fwd_transform_1d_sse4_1 row_txfm = row_highbd_txfm4x4_arr[tx_type];
+
+ int ud_flip, lr_flip;
+ get_flip_cfg(tx_type, &ud_flip, &lr_flip);
+ // col transform
+ load_buffer_4x16(input, in, stride, ud_flip, lr_flip, shift[0]);
+ col_txfm(in, outcoeff128, bitcol, 1);
+ col_txfm_8x8_rounding(outcoeff128, -shift[1]);
+ transpose_8nx8n(outcoeff128, in, txfm_size_col, txfm_size_row);
+
+ // row transform
+ for (int i = 0; i < txfm_size_col; i++) {
+ row_txfm(in + i, outcoeff128 + i * txfm_size_col, bitrow, txfm_size_col);
+ }
+ (void)bd;
+}
+
+void av1_fwd_txfm2d_16x4_sse4_1(const int16_t *input, int32_t *coeff,
+ int stride, TX_TYPE tx_type, int bd) {
+ __m128i in[16];
+ __m128i *outcoeff128 = (__m128i *)coeff;
+ const int8_t *shift = av1_fwd_txfm_shift_ls[TX_16X4];
+ const int txw_idx = get_txw_idx(TX_16X4);
+ const int txh_idx = get_txh_idx(TX_16X4);
+ const int txfm_size_col = tx_size_wide[TX_16X4];
+ const int txfm_size_row = tx_size_high[TX_16X4];
+ int bitcol = av1_fwd_cos_bit_col[txw_idx][txh_idx];
+ int bitrow = av1_fwd_cos_bit_row[txw_idx][txh_idx];
+ const fwd_transform_1d_sse4_1 col_txfm = col_highbd_txfm4x4_arr[tx_type];
+ const fwd_transform_1d_sse4_1 row_txfm = row_highbd_txfm8x16_arr[tx_type];
+ int ud_flip, lr_flip;
+ get_flip_cfg(tx_type, &ud_flip, &lr_flip);
+
+ // col transform
+ load_buffer_16x4(input, in, stride, ud_flip, lr_flip, shift[0]);
+
+ for (int i = 0; i < txfm_size_row; i++) {
+ col_txfm(in + i * txfm_size_row, outcoeff128 + i * txfm_size_row, bitcol,
+ 1);
+ }
+ col_txfm_8x8_rounding(outcoeff128, -shift[1]);
+
+ // row transform
+ row_txfm(outcoeff128, in, bitrow, 1);
+ transpose_8nx8n(in, outcoeff128, txfm_size_row, txfm_size_col);
+ (void)bd;
+}
+
+void av1_fwd_txfm2d_16x32_sse4_1(const int16_t *input, int32_t *coeff,
+ int stride, TX_TYPE tx_type, int bd) {
+ __m128i in[128];
+ __m128i *outcoef128 = (__m128i *)coeff;
+ const int8_t *shift = av1_fwd_txfm_shift_ls[TX_16X32];
+ const int txw_idx = get_txw_idx(TX_16X32);
+ const int txh_idx = get_txh_idx(TX_16X32);
+ const fwd_transform_1d_sse4_1 col_txfm = col_highbd_txfm8x32_arr[tx_type];
+ const fwd_transform_1d_sse4_1 row_txfm = row_highbd_txfm8x32_arr[tx_type];
+ int bitcol = av1_fwd_cos_bit_col[txw_idx][txh_idx];
+ int bitrow = av1_fwd_cos_bit_row[txw_idx][txh_idx];
+
+ // column transform
+ load_buffer_16x16(input, in, stride, 0, 0, shift[0]);
+ load_buffer_16x16(input + 16 * stride, in + 64, stride, 0, 0, shift[0]);
+
+ for (int i = 0; i < 4; i++) {
+ col_txfm((in + i), (in + i), bitcol, 4);
+ }
+ col_txfm_16x16_rounding(&in[0], -shift[1]);
+ col_txfm_16x16_rounding(&in[64], -shift[1]);
+ transpose_8nx8n(in, outcoef128, 16, 32);
+
+ // row transform
+ row_txfm(outcoef128, in, bitrow, 8);
+ transpose_8nx8n(in, outcoef128, 32, 16);
+ av1_round_shift_rect_array_32_sse4_1(outcoef128, outcoef128, 128, -shift[2],
+ NewSqrt2);
+ (void)bd;
+}
+
+void av1_fwd_txfm2d_32x64_sse4_1(const int16_t *input, int32_t *coeff,
+ int stride, TX_TYPE tx_type, int bd) {
+ (void)tx_type;
+ __m128i in[512];
+ __m128i *outcoef128 = (__m128i *)coeff;
+ const int8_t *shift = av1_fwd_txfm_shift_ls[TX_32X64];
+ const int txw_idx = get_txw_idx(TX_32X64);
+ const int txh_idx = get_txh_idx(TX_32X64);
+ const int txfm_size_col = tx_size_wide[TX_32X64];
+ const int txfm_size_row = tx_size_high[TX_32X64];
+ int bitcol = av1_fwd_cos_bit_col[txw_idx][txh_idx];
+ int bitrow = av1_fwd_cos_bit_row[txw_idx][txh_idx];
+ const int num_row = txfm_size_row >> 2;
+ const int num_col = txfm_size_col >> 2;
+
+ // column transform
+ load_buffer_32x8n(input, in, stride, 0, 0, shift[0], txfm_size_row);
+ for (int i = 0; i < num_col; i++) {
+ av1_fdct64_sse4_1((in + i), (in + i), bitcol, num_col, num_col);
+ }
+ for (int i = 0; i < num_col; i++) {
+ col_txfm_16x16_rounding((in + i * txfm_size_row), -shift[1]);
+ }
+ transpose_8nx8n(in, outcoef128, txfm_size_col, txfm_size_row);
+
+ // row transform
+ for (int i = 0; i < num_row; i++) {
+ av1_fdct32_sse4_1((outcoef128 + i), (in + i), bitrow, num_row);
+ }
+ transpose_8nx8n(in, outcoef128, txfm_size_row, txfm_size_col);
+ av1_round_shift_rect_array_32_sse4_1(outcoef128, outcoef128, 512, -shift[2],
+ NewSqrt2);
+ (void)bd;
+}
+
+void av1_fwd_txfm2d_64x32_sse4_1(const int16_t *input, int32_t *coeff,
+ int stride, TX_TYPE tx_type, int bd) {
+ (void)tx_type;
+ __m128i in[512];
+ __m128i *outcoef128 = (__m128i *)coeff;
+ const int8_t *shift = av1_fwd_txfm_shift_ls[TX_64X32];
+ const int txw_idx = get_txw_idx(TX_64X32);
+ const int txh_idx = get_txh_idx(TX_64X32);
+ const int txfm_size_col = tx_size_wide[TX_64X32];
+ const int txfm_size_row = tx_size_high[TX_64X32];
+ int bitcol = av1_fwd_cos_bit_col[txw_idx][txh_idx];
+ int bitrow = av1_fwd_cos_bit_row[txw_idx][txh_idx];
+ const int num_row = txfm_size_row >> 2;
+ const int num_col = txfm_size_col >> 2;
+
+ // column transform
+ for (int i = 0; i < 32; i++) {
+ load_buffer_4x4(input + 0 + i * stride, in + 0 + i * 16, 4, 0, 0, shift[0]);
+ load_buffer_4x4(input + 16 + i * stride, in + 4 + i * 16, 4, 0, 0,
+ shift[0]);
+ load_buffer_4x4(input + 32 + i * stride, in + 8 + i * 16, 4, 0, 0,
+ shift[0]);
+ load_buffer_4x4(input + 48 + i * stride, in + 12 + i * 16, 4, 0, 0,
+ shift[0]);
+ }
+
+ for (int i = 0; i < num_col; i++) {
+ av1_fdct32_sse4_1((in + i), (in + i), bitcol, num_col);
+ }
+
+ for (int i = 0; i < num_row; i++) {
+ col_txfm_16x16_rounding((in + i * txfm_size_col), -shift[1]);
+ }
+ transpose_8nx8n(in, outcoef128, txfm_size_col, txfm_size_row);
+
+ // row transform
+ for (int i = 0; i < num_row; i++) {
+ av1_fdct64_sse4_1((outcoef128 + i), (in + i), bitrow, num_row, num_row);
+ }
+ transpose_8nx8n(in, outcoef128, txfm_size_row, txfm_size_col >> 1);
+ av1_round_shift_rect_array_32_sse4_1(outcoef128, outcoef128, 512 >> 1,
+ -shift[2], NewSqrt2);
+ (void)bd;
+}
+
+void av1_fwd_txfm2d_32x16_sse4_1(const int16_t *input, int32_t *coeff,
+ int stride, TX_TYPE tx_type, int bd) {
+ __m128i in[128];
+ __m128i *outcoef128 = (__m128i *)coeff;
+ const int8_t *shift = av1_fwd_txfm_shift_ls[TX_32X16];
+ const int txw_idx = get_txw_idx(TX_32X16);
+ const int txh_idx = get_txh_idx(TX_32X16);
+ const fwd_transform_1d_sse4_1 col_txfm = row_highbd_txfm8x32_arr[tx_type];
+ const fwd_transform_1d_sse4_1 row_txfm = col_highbd_txfm8x32_arr[tx_type];
+ int bitcol = av1_fwd_cos_bit_col[txw_idx][txh_idx];
+ int bitrow = av1_fwd_cos_bit_row[txw_idx][txh_idx];
+
+ // column transform
+ load_buffer_32x8n(input, in, stride, 0, 0, shift[0], 16);
+ col_txfm(in, in, bitcol, 8);
+ col_txfm_16x16_rounding(&in[0], -shift[1]);
+ col_txfm_16x16_rounding(&in[64], -shift[1]);
+ transpose_8nx8n(in, outcoef128, 32, 16);
+
+ // row transform
+ for (int i = 0; i < 4; i++) {
+ row_txfm((outcoef128 + i), (in + i), bitrow, 4);
+ }
+ transpose_8nx8n(in, outcoef128, 16, 32);
+ av1_round_shift_rect_array_32_sse4_1(outcoef128, outcoef128, 128, -shift[2],
+ NewSqrt2);
+ (void)bd;
+}
+
+void av1_fwd_txfm2d_8x32_sse4_1(const int16_t *input, int32_t *coeff,
+ int stride, TX_TYPE tx_type, int bd) {
+ __m128i in[64];
+ __m128i *outcoef128 = (__m128i *)coeff;
+ const int8_t *shift = av1_fwd_txfm_shift_ls[TX_8X32];
+ const int txw_idx = get_txw_idx(TX_8X32);
+ const int txh_idx = get_txh_idx(TX_8X32);
+ const fwd_transform_1d_sse4_1 col_txfm = col_highbd_txfm8x32_arr[tx_type];
+ const fwd_transform_1d_sse4_1 row_txfm = row_highbd_txfm32x8_arr[tx_type];
+ int bitcol = av1_fwd_cos_bit_col[txw_idx][txh_idx];
+ int bitrow = av1_fwd_cos_bit_row[txw_idx][txh_idx];
+
+ const int txfm_size_col = tx_size_wide[TX_8X32];
+ const int txfm_size_row = tx_size_high[TX_8X32];
+ const int num_col = txfm_size_col >> 2;
+
+ // column transform
+ load_buffer_8x16(input, in, stride, 0, 0, shift[0]);
+ load_buffer_8x16(input + (txfm_size_row >> 1) * stride, in + txfm_size_row,
+ stride, 0, 0, shift[0]);
+
+ for (int i = 0; i < num_col; i++) {
+ col_txfm((in + i), (in + i), bitcol, num_col);
+ }
+ col_txfm_16x16_rounding(in, -shift[1]);
+ transpose_8nx8n(in, outcoef128, txfm_size_col, txfm_size_row);
+
+ // row transform
+ for (int i = 0; i < txfm_size_col; i += 2) {
+ row_txfm((outcoef128 + i), (in + i), bitrow, txfm_size_col);
+ }
+ transpose_8nx8n(in, outcoef128, txfm_size_row, txfm_size_col);
+ (void)bd;
+}
+
+void av1_fwd_txfm2d_32x8_sse4_1(const int16_t *input, int32_t *coeff,
+ int stride, TX_TYPE tx_type, int bd) {
+ __m128i in[64];
+ __m128i *outcoef128 = (__m128i *)coeff;
+ const int8_t *shift = av1_fwd_txfm_shift_ls[TX_32X8];
+ const int txw_idx = get_txw_idx(TX_32X8);
+ const int txh_idx = get_txh_idx(TX_32X8);
+ const fwd_transform_1d_sse4_1 col_txfm = row_highbd_txfm32x8_arr[tx_type];
+ const fwd_transform_1d_sse4_1 row_txfm = col_highbd_txfm8x32_arr[tx_type];
+ int bitcol = av1_fwd_cos_bit_col[txw_idx][txh_idx];
+ int bitrow = av1_fwd_cos_bit_row[txw_idx][txh_idx];
+
+ const int txfm_size_col = tx_size_wide[TX_32X8];
+ const int txfm_size_row = tx_size_high[TX_32X8];
+ const int num_col = txfm_size_row >> 2;
+
+ // column transform
+ load_buffer_32x8n(input, in, stride, 0, 0, shift[0], 8);
+ for (int i = 0; i < txfm_size_row; i += 2) {
+ col_txfm((in + i), (in + i), bitcol, txfm_size_row);
+ }
+
+ col_txfm_16x16_rounding(&in[0], -shift[1]);
+ transpose_8nx8n(in, outcoef128, txfm_size_col, txfm_size_row);
+
+ // row transform
+ for (int i = 0; i < num_col; i++) {
+ row_txfm((outcoef128 + i), (in + i), bitrow, num_col);
+ }
+ transpose_8nx8n(in, outcoef128, txfm_size_row, txfm_size_col);
+ (void)bd;
+}
+
+void av1_fwd_txfm2d_4x8_sse4_1(const int16_t *input, int32_t *coeff, int stride,
+ TX_TYPE tx_type, int bd) {
+ __m128i in[8];
+ __m128i *outcoeff128 = (__m128i *)coeff;
+ const int8_t *shift = av1_fwd_txfm_shift_ls[TX_4X8];
+ const int txw_idx = get_txw_idx(TX_4X8);
+ const int txh_idx = get_txh_idx(TX_4X8);
+ const int txfm_size_col = tx_size_wide[TX_4X8];
+ const int txfm_size_row = tx_size_high[TX_4X8];
+ int bitcol = av1_fwd_cos_bit_col[txw_idx][txh_idx];
+ int bitrow = av1_fwd_cos_bit_row[txw_idx][txh_idx];
+ const fwd_transform_1d_sse4_1 col_txfm = col_highbd_txfm4x8_arr[tx_type];
+ const fwd_transform_1d_sse4_1 row_txfm = row_highbd_txfm4x4_arr[tx_type];
+
+ int ud_flip, lr_flip;
+ get_flip_cfg(tx_type, &ud_flip, &lr_flip);
+
+ load_buffer_4x8(input, in, stride, ud_flip, lr_flip, shift[0]);
+ col_txfm(in, in, bitcol, 1);
+ col_txfm_4x8_rounding(in, -shift[1]);
+ transpose_8nx8n(in, outcoeff128, txfm_size_col, txfm_size_row);
+
+ for (int i = 0; i < 2; i++) {
+ row_txfm(outcoeff128 + i, in + i * txfm_size_col, bitrow, 2);
+ }
+ av1_round_shift_rect_array_32_sse4_1(in, outcoeff128, txfm_size_row,
+ -shift[2], NewSqrt2);
+ (void)bd;
+}
+
+void av1_fwd_txfm2d_8x4_sse4_1(const int16_t *input, int32_t *coeff, int stride,
+ TX_TYPE tx_type, int bd) {
+ __m128i in[8];
+ __m128i *outcoeff128 = (__m128i *)coeff;
+ const int8_t *shift = av1_fwd_txfm_shift_ls[TX_8X4];
+ const int txw_idx = get_txw_idx(TX_8X4);
+ const int txh_idx = get_txh_idx(TX_8X4);
+ const int txfm_size_col = tx_size_wide[TX_8X4];
+ const int txfm_size_row = tx_size_high[TX_8X4];
+ int bitcol = av1_fwd_cos_bit_col[txw_idx][txh_idx];
+ int bitrow = av1_fwd_cos_bit_row[txw_idx][txh_idx];
+ const fwd_transform_1d_sse4_1 col_txfm = col_highbd_txfm4x4_arr[tx_type];
+ const fwd_transform_1d_sse4_1 row_txfm = row_highbd_txfm4x8_arr[tx_type];
+ int ud_flip, lr_flip;
+ get_flip_cfg(tx_type, &ud_flip, &lr_flip);
+ // col tranform
+ load_buffer_8x4(input, in, stride, ud_flip, lr_flip, shift[0]);
+ for (int i = 0; i < 2; i++) {
+ col_txfm(in + i * txfm_size_row, in + i * txfm_size_row, bitcol, 1);
+ }
+ col_txfm_4x8_rounding(in, -shift[1]);
+
+ // row tranform
+ row_txfm(in, outcoeff128, bitrow, 1);
+ av1_round_shift_rect_array_32_sse4_1(outcoeff128, in, txfm_size_col,
+ -shift[2], NewSqrt2);
+ transpose_8nx8n(in, outcoeff128, txfm_size_row, txfm_size_col);
+ (void)bd;
+}
+
+void av1_fwd_txfm2d_16x64_sse4_1(const int16_t *input, int32_t *coeff,
+ int stride, TX_TYPE tx_type, int bd) {
+ __m128i in[256];
+ __m128i *outcoeff128 = (__m128i *)coeff;
+ const int8_t *shift = av1_fwd_txfm_shift_ls[TX_16X64];
+ const int txw_idx = get_txw_idx(TX_16X64);
+ const int txh_idx = get_txh_idx(TX_16X64);
+ const int txfm_size_col = tx_size_wide[TX_16X64];
+ const int txfm_size_row = tx_size_high[TX_16X64];
+ int bitcol = av1_fwd_cos_bit_col[txw_idx][txh_idx];
+ int bitrow = av1_fwd_cos_bit_row[txw_idx][txh_idx];
+ int ud_flip, lr_flip;
+ get_flip_cfg(tx_type, &ud_flip, &lr_flip);
+ const int num_col = txfm_size_col >> 2;
+ // col tranform
+ for (int i = 0; i < txfm_size_row; i += num_col) {
+ load_buffer_4x4(input + (i + 0) * stride, in + (i + 0) * num_col, num_col,
+ ud_flip, lr_flip, shift[0]);
+ load_buffer_4x4(input + (i + 1) * stride, in + (i + 1) * num_col, num_col,
+ ud_flip, lr_flip, shift[0]);
+ load_buffer_4x4(input + (i + 2) * stride, in + (i + 2) * num_col, num_col,
+ ud_flip, lr_flip, shift[0]);
+ load_buffer_4x4(input + (i + 3) * stride, in + (i + 3) * num_col, num_col,
+ ud_flip, lr_flip, shift[0]);
+ }
+
+ for (int i = 0; i < num_col; i++) {
+ av1_fdct64_sse4_1(in + i, outcoeff128 + i, bitcol, num_col, num_col);
+ }
+
+ col_txfm_16x16_rounding(outcoeff128, -shift[1]);
+ col_txfm_16x16_rounding(outcoeff128 + 64, -shift[1]);
+ col_txfm_16x16_rounding(outcoeff128 + 128, -shift[1]);
+ col_txfm_16x16_rounding(outcoeff128 + 192, -shift[1]);
+
+ transpose_8nx8n(outcoeff128, in, txfm_size_col, 32);
+ fdct16x16_sse4_1(in, in, bitrow, 8);
+ transpose_8nx8n(in, outcoeff128, 32, txfm_size_col);
+ memset(coeff + txfm_size_col * 32, 0, txfm_size_col * 32 * sizeof(*coeff));
+ (void)bd;
+}
+
+void av1_fwd_txfm2d_64x16_sse4_1(const int16_t *input, int32_t *coeff,
+ int stride, TX_TYPE tx_type, int bd) {
+ __m128i in[256];
+ __m128i *outcoeff128 = (__m128i *)coeff;
+ const int8_t *shift = av1_fwd_txfm_shift_ls[TX_64X16];
+ const int txw_idx = get_txw_idx(TX_64X16);
+ const int txh_idx = get_txh_idx(TX_64X16);
+ const int txfm_size_col = tx_size_wide[TX_64X16];
+ const int txfm_size_row = tx_size_high[TX_64X16];
+ int bitcol = av1_fwd_cos_bit_col[txw_idx][txh_idx];
+ int bitrow = av1_fwd_cos_bit_row[txw_idx][txh_idx];
+ int ud_flip, lr_flip;
+ get_flip_cfg(tx_type, &ud_flip, &lr_flip);
+ // col tranform
+ for (int i = 0; i < txfm_size_row; i++) {
+ load_buffer_4x4(input + 0 + i * stride, in + 0 + i * txfm_size_row, 4,
+ ud_flip, lr_flip, shift[0]);
+ load_buffer_4x4(input + 16 + i * stride, in + 4 + i * txfm_size_row, 4,
+ ud_flip, lr_flip, shift[0]);
+ load_buffer_4x4(input + 32 + i * stride, in + 8 + i * txfm_size_row, 4,
+ ud_flip, lr_flip, shift[0]);
+ load_buffer_4x4(input + 48 + i * stride, in + 12 + i * txfm_size_row, 4,
+ ud_flip, lr_flip, shift[0]);
+ }
+
+ fdct16x16_sse4_1(in, outcoeff128, bitcol, txfm_size_row);
+ col_txfm_16x16_rounding(outcoeff128, -shift[1]);
+ col_txfm_16x16_rounding(outcoeff128 + 64, -shift[1]);
+ col_txfm_16x16_rounding(outcoeff128 + 128, -shift[1]);
+ col_txfm_16x16_rounding(outcoeff128 + 192, -shift[1]);
+
+ transpose_8nx8n(outcoeff128, in, txfm_size_col, txfm_size_row);
+ for (int i = 0; i < 4; i++) {
+ av1_fdct64_sse4_1(in + i, in + i, bitrow, 4, 4);
+ }
+ transpose_8nx8n(in, outcoeff128, txfm_size_row, 32);
+ (void)bd;
+}
diff --git a/media/libaom/src/av1/encoder/x86/ml_sse3.c b/media/libaom/src/av1/encoder/x86/ml_sse3.c
new file mode 100644
index 0000000000..89b1e6a05b
--- /dev/null
+++ b/media/libaom/src/av1/encoder/x86/ml_sse3.c
@@ -0,0 +1,244 @@
+/*
+ * Copyright (c) 2018, Alliance for Open Media. All rights reserved
+ *
+ * This source code is subject to the terms of the BSD 2 Clause License and
+ * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
+ * was not distributed with this source code in the LICENSE file, you can
+ * obtain it at www.aomedia.org/license/software. If the Alliance for Open
+ * Media Patent License 1.0 was not distributed with this source code in the
+ * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
+ */
+
+#include <stdbool.h>
+#include <assert.h>
+#include <pmmintrin.h>
+
+#include "config/av1_rtcd.h"
+#include "av1/encoder/ml.h"
+
+// In order to avoid the high-latency of swapping between FPU and SIMD
+// operations, we keep the result in a 128-bit register even though we only
+// care about a single value.
+static void nn_propagate_8to1(const float *const inputs,
+ const float *const weights,
+ __m128 *const output) {
+ const __m128 inputs_h = _mm_loadu_ps(&inputs[4]);
+ const __m128 inputs_l = _mm_loadu_ps(inputs);
+
+ const __m128 weights_h = _mm_loadu_ps(&weights[4]);
+ const __m128 weights_l = _mm_loadu_ps(weights);
+
+ const __m128 mul_h = _mm_mul_ps(inputs_h, weights_h);
+ const __m128 mul_l = _mm_mul_ps(inputs_l, weights_l);
+ // [7 6 5 4] [3 2 1 0] (weight and input indices)
+
+ const __m128 vadd = _mm_add_ps(mul_l, mul_h);
+ // [7+3 6+2 5+1 4+0]
+ const __m128 hadd1 = _mm_hadd_ps(vadd, vadd);
+ // [7+6+3+2 5+4+1+0 7+6+3+2 5+4+1+0]
+ const __m128 hadd2 = _mm_hadd_ps(hadd1, hadd1);
+ // [7+6+5+4+3+2+1+0 7+6+5+4+3+2+1+0 7+6+5+4+3+2+1+0 7+6+5+4+3+2+1+0]
+ *output = _mm_add_ps(*output, hadd2);
+}
+
+static void nn_propagate_4to1(const float *const inputs,
+ const float *const weights,
+ __m128 *const output) {
+ const __m128 inputs128 = _mm_loadu_ps(inputs);
+
+ const __m128 weights128 = _mm_loadu_ps(weights);
+
+ const __m128 mul = _mm_mul_ps(inputs128, weights128);
+ // [3 2 1 0] (weight and input indices)
+
+ const __m128 hadd1 = _mm_hadd_ps(mul, mul);
+ // [3+2 1+0 3+2 1+0]
+ const __m128 hadd2 = _mm_hadd_ps(hadd1, hadd1);
+ // [3+2+1+0 3+2+1+0 3+2+1+0 3+2+1+0]
+ *output = _mm_add_ps(*output, hadd2);
+}
+
+static void nn_propagate_4to4(const float *const inputs,
+ const float *const weights, __m128 *const outputs,
+ const int num_inputs) {
+ const __m128 inputs128 = _mm_loadu_ps(inputs);
+
+ __m128 hadd[2];
+ for (int i = 0; i < 2; i++) { // For each pair of outputs
+ const __m128 weight0 = _mm_loadu_ps(&weights[2 * i * num_inputs]);
+ const __m128 mul0 = _mm_mul_ps(weight0, inputs128);
+ const __m128 weight1 = _mm_loadu_ps(&weights[(2 * i + 1) * num_inputs]);
+ const __m128 mul1 = _mm_mul_ps(weight1, inputs128);
+ hadd[i] = _mm_hadd_ps(mul0, mul1);
+ }
+ // hadd[0] = [7+6 5+4 3+2 1+0] (weight indices)
+ // hadd[1] = [15+14 13+12 11+10 9+8]
+
+ const __m128 hh = _mm_hadd_ps(hadd[0], hadd[1]);
+ // [15+14+13+12 11+10+9+8 7+6+5+4 3+2+1+0]
+
+ *outputs = _mm_add_ps(*outputs, hh);
+}
+
+static void nn_propagate_4to8(const float *const inputs,
+ const float *const weights, __m128 *const out_h,
+ __m128 *const out_l, const int num_inputs) {
+ const __m128 inputs128 = _mm_loadu_ps(inputs);
+
+ __m128 hadd[4];
+ for (int i = 0; i < 4; i++) { // For each pair of outputs
+ const __m128 weight0 = _mm_loadu_ps(&weights[2 * i * num_inputs]);
+ const __m128 weight1 = _mm_loadu_ps(&weights[(2 * i + 1) * num_inputs]);
+ const __m128 mul0 = _mm_mul_ps(inputs128, weight0);
+ const __m128 mul1 = _mm_mul_ps(inputs128, weight1);
+ hadd[i] = _mm_hadd_ps(mul0, mul1);
+ }
+ // hadd[0] = [7+6 5+4 3+2 1+0] (weight indices)
+ // hadd[1] = [15+14 13+12 11+10 9+8]
+ // hadd[2] = [23+22 21+20 19+18 17+16]
+ // hadd[3] = [31+30 29+28 27+26 25+24]
+
+ const __m128 hh0 = _mm_hadd_ps(hadd[0], hadd[1]);
+ // [15+14+13+12 11+10+9+8 7+6+5+4 3+2+1+0]
+ const __m128 hh1 = _mm_hadd_ps(hadd[2], hadd[3]);
+ // [31+30+29+28 27+26+25+24 23+22+21+20 19+18+17+16]
+
+ *out_h = _mm_add_ps(*out_h, hh1);
+ *out_l = _mm_add_ps(*out_l, hh0);
+}
+
+static void nn_propagate_8to4(const float *const inputs,
+ const float *const weights, __m128 *const outputs,
+ const int num_inputs) {
+ const __m128 inputs_h = _mm_loadu_ps(inputs + 4);
+ const __m128 inputs_l = _mm_loadu_ps(inputs);
+ // [7 6 5 4] [3 2 1 0] (input indices)
+
+ __m128 add[4];
+ for (int i = 0; i < 4; i++) { // For each output:
+ const __m128 weight_h = _mm_loadu_ps(&weights[i * num_inputs + 4]);
+ const __m128 weight_l = _mm_loadu_ps(&weights[i * num_inputs]);
+ const __m128 mul_h = _mm_mul_ps(inputs_h, weight_h);
+ const __m128 mul_l = _mm_mul_ps(inputs_l, weight_l);
+ add[i] = _mm_add_ps(mul_l, mul_h);
+ }
+ // add[0] = [7+3 6+2 5+1 4+0]
+ // add[1] = [15+11 14+10 13+9 12+8]
+ // add[2] = [23+19 22+18 21+17 20+16]
+ // add[3] = [31+27 30+26 29+25 28+24]
+
+ const __m128 hadd_h = _mm_hadd_ps(add[2], add[3]);
+ // [31+30+27+26 29+28+25+24 23+22+19+18 21+20+17+16]
+ const __m128 hadd_l = _mm_hadd_ps(add[0], add[1]);
+ // [15+14+11+10 13+12+9+8 7+6+3+2 5+4+1+0]
+
+ const __m128 haddhadd = _mm_hadd_ps(hadd_l, hadd_h);
+ // [31+30+29+28+27+26+25+24 23+22+21+20+19+18+17+16
+ // 15+14+13+12+11+10+9+8 7+6+5+4+3+2+1+0]
+
+ *outputs = _mm_add_ps(*outputs, haddhadd);
+}
+
+static void nn_activate8(__m128 *out_h, __m128 *out_l) {
+ const __m128 zero = _mm_setzero_ps();
+ *out_h = _mm_max_ps(*out_h, zero);
+ *out_l = _mm_max_ps(*out_l, zero);
+}
+
+static void nn_activate4(__m128 *x) { *x = _mm_max_ps(*x, _mm_setzero_ps()); }
+
+// Calculate prediction based on the given input features and neural net config.
+// Assume there are no more than NN_MAX_NODES_PER_LAYER nodes in each hidden
+// layer.
+void av1_nn_predict_sse3(const float *input_nodes,
+ const NN_CONFIG *const nn_config, int reduce_prec,
+ float *const output) {
+ float buf[2][NN_MAX_NODES_PER_LAYER];
+ int buf_index = 0;
+ int num_inputs = nn_config->num_inputs;
+
+ // Hidden layers, except the final iteration is the output layer.
+ for (int layer = 0; layer <= nn_config->num_hidden_layers; layer++) {
+ const float *layer_weights = nn_config->weights[layer];
+ const float *layer_bias = nn_config->bias[layer];
+ bool output_layer = (layer == nn_config->num_hidden_layers);
+ float *const output_nodes = output_layer ? output : &buf[buf_index][0];
+ const int num_outputs = output_layer ? nn_config->num_outputs
+ : nn_config->num_hidden_nodes[layer];
+
+ if (num_inputs % 4 == 0 && num_outputs % 8 == 0) {
+ for (int out = 0; out < num_outputs; out += 8) {
+ __m128 out_h = _mm_loadu_ps(&layer_bias[out + 4]);
+ __m128 out_l = _mm_loadu_ps(&layer_bias[out]);
+ for (int in = 0; in < num_inputs; in += 4) {
+ nn_propagate_4to8(&input_nodes[in],
+ &layer_weights[out * num_inputs + in], &out_h,
+ &out_l, num_inputs);
+ }
+ if (!output_layer) nn_activate8(&out_h, &out_l);
+ _mm_storeu_ps(&output_nodes[out + 4], out_h);
+ _mm_storeu_ps(&output_nodes[out], out_l);
+ }
+ } else if (num_inputs % 8 == 0 && num_outputs % 4 == 0) {
+ for (int out = 0; out < num_outputs; out += 4) {
+ __m128 outputs = _mm_loadu_ps(&layer_bias[out]);
+ for (int in = 0; in < num_inputs; in += 8) {
+ nn_propagate_8to4(&input_nodes[in],
+ &layer_weights[out * num_inputs + in], &outputs,
+ num_inputs);
+ }
+ if (!output_layer) nn_activate4(&outputs);
+ _mm_storeu_ps(&output_nodes[out], outputs);
+ }
+ } else if (num_inputs % 4 == 0 && num_outputs % 4 == 0) {
+ for (int out = 0; out < num_outputs; out += 4) {
+ __m128 outputs = _mm_loadu_ps(&layer_bias[out]);
+ for (int in = 0; in < num_inputs; in += 4) {
+ nn_propagate_4to4(&input_nodes[in],
+ &layer_weights[out * num_inputs + in], &outputs,
+ num_inputs);
+ }
+ if (!output_layer) nn_activate4(&outputs);
+ _mm_storeu_ps(&output_nodes[out], outputs);
+ }
+ } else if (num_inputs % 8 == 0) {
+ for (int out = 0; out < num_outputs; out++) {
+ __m128 total = _mm_load1_ps(&layer_bias[out]);
+ for (int in = 0; in < num_inputs; in += 8) {
+ nn_propagate_8to1(&input_nodes[in],
+ &layer_weights[out * num_inputs + in], &total);
+ }
+ if (!output_layer) nn_activate4(&total);
+ output_nodes[out] = _mm_cvtss_f32(total);
+ }
+ } else if (num_inputs % 4 == 0) {
+ for (int out = 0; out < num_outputs; out++) {
+ __m128 total = _mm_load1_ps(&layer_bias[out]);
+ for (int in = 0; in < num_inputs; in += 4) {
+ nn_propagate_4to1(&input_nodes[in],
+ &layer_weights[out * num_inputs + in], &total);
+ }
+ if (!output_layer) nn_activate4(&total);
+ output_nodes[out] = _mm_cvtss_f32(total);
+ }
+ } else {
+ // Use SSE instructions for scalar operations to avoid the latency of
+ // swapping between SIMD and FPU modes.
+ for (int out = 0; out < num_outputs; out++) {
+ __m128 total = _mm_load1_ps(&layer_bias[out]);
+ for (int in_node = 0; in_node < num_inputs; in_node++) {
+ __m128 input = _mm_load1_ps(&input_nodes[in_node]);
+ __m128 weight =
+ _mm_load1_ps(&layer_weights[num_inputs * out + in_node]);
+ total = _mm_add_ps(total, _mm_mul_ps(input, weight));
+ }
+ if (!output_layer) nn_activate4(&total);
+ output_nodes[out] = _mm_cvtss_f32(total);
+ }
+ }
+ input_nodes = output_nodes;
+ num_inputs = num_outputs;
+ buf_index = 1 - buf_index;
+ }
+ if (reduce_prec) av1_nn_output_prec_reduce(output, nn_config->num_outputs);
+}
diff --git a/media/libaom/src/av1/encoder/x86/pickrst_avx2.c b/media/libaom/src/av1/encoder/x86/pickrst_avx2.c
index 06aaaa7eee..f8703a23ca 100644
--- a/media/libaom/src/av1/encoder/x86/pickrst_avx2.c
+++ b/media/libaom/src/av1/encoder/x86/pickrst_avx2.c
@@ -22,9 +22,9 @@ static INLINE void acc_stat_avx2(int32_t *dst, const uint8_t *src,
const __m128i *shuffle, const __m256i *kl) {
const __m128i s = _mm_shuffle_epi8(xx_loadu_128(src), *shuffle);
const __m256i d0 = _mm256_madd_epi16(*kl, _mm256_cvtepu8_epi16(s));
- const __m256i dst0 = yy_loadu_256(dst);
+ const __m256i dst0 = yy_load_256(dst);
const __m256i r0 = _mm256_add_epi32(dst0, d0);
- yy_storeu_256(dst, r0);
+ yy_store_256(dst, r0);
}
static INLINE void acc_stat_win7_one_line_avx2(
@@ -64,18 +64,19 @@ static INLINE void acc_stat_win7_one_line_avx2(
static INLINE void compute_stats_win7_opt_avx2(
const uint8_t *dgd, const uint8_t *src, int h_start, int h_end, int v_start,
- int v_end, int dgd_stride, int src_stride, double *M, double *H) {
+ int v_end, int dgd_stride, int src_stride, int64_t *M, int64_t *H) {
int i, j, k, l, m, n;
const int wiener_win = WIENER_WIN;
const int pixel_count = (h_end - h_start) * (v_end - v_start);
const int wiener_win2 = wiener_win * wiener_win;
const int wiener_halfwin = (wiener_win >> 1);
- const double avg =
- find_average(dgd, h_start, h_end, v_start, v_end, dgd_stride);
+ uint8_t avg = find_average(dgd, h_start, h_end, v_start, v_end, dgd_stride);
int32_t M_int32[WIENER_WIN][WIENER_WIN] = { { 0 } };
int64_t M_int64[WIENER_WIN][WIENER_WIN] = { { 0 } };
- int32_t H_int32[WIENER_WIN2][WIENER_WIN * 8] = { { 0 } };
+
+ DECLARE_ALIGNED(32, int32_t,
+ H_int32[WIENER_WIN2][WIENER_WIN * 8]) = { { 0 } };
int64_t H_int64[WIENER_WIN2][WIENER_WIN * 8] = { { 0 } };
int32_t sumY[WIENER_WIN][WIENER_WIN] = { { 0 } };
int32_t sumX = 0;
@@ -103,23 +104,285 @@ static INLINE void compute_stats_win7_opt_avx2(
}
}
- const double avg_square_sum = avg * avg * pixel_count;
+ const int64_t avg_square_sum = (int64_t)avg * (int64_t)avg * pixel_count;
for (k = 0; k < wiener_win; k++) {
for (l = 0; l < wiener_win; l++) {
const int32_t idx0 = l * wiener_win + k;
- M[idx0] = M_int64[k][l] + avg_square_sum - avg * (sumX + sumY[k][l]);
- double *H_ = H + idx0 * wiener_win2;
+ M[idx0] =
+ M_int64[k][l] + (avg_square_sum - (int64_t)avg * (sumX + sumY[k][l]));
+ int64_t *H_ = H + idx0 * wiener_win2;
int64_t *H_int_ = &H_int64[idx0][0];
for (m = 0; m < wiener_win; m++) {
for (n = 0; n < wiener_win; n++) {
H_[m * wiener_win + n] = H_int_[n * 8 + m] + avg_square_sum -
- avg * (sumY[k][l] + sumY[n][m]);
+ (int64_t)avg * (sumY[k][l] + sumY[n][m]);
+ }
+ }
+ }
+ }
+}
+
+#if CONFIG_AV1_HIGHBITDEPTH
+static INLINE void acc_stat_highbd_avx2(int64_t *dst, const uint16_t *dgd,
+ const __m256i *shuffle,
+ const __m256i *dgd_ijkl) {
+ // Load two 128-bit chunks from dgd
+ const __m256i s0 = _mm256_inserti128_si256(
+ _mm256_castsi128_si256(_mm_loadu_si128((__m128i *)dgd)),
+ _mm_loadu_si128((__m128i *)(dgd + 4)), 1);
+ // s0 = [11 10 9 8 7 6 5 4] [7 6 5 4 3 2 1 0] as u16 (values are dgd indices)
+ // The weird order is so the shuffle stays within 128-bit lanes
+
+ // Shuffle 16x u16 values within lanes according to the mask:
+ // [0 1 1 2 2 3 3 4] [0 1 1 2 2 3 3 4]
+ // (Actually we shuffle u8 values as there's no 16-bit shuffle)
+ const __m256i s1 = _mm256_shuffle_epi8(s0, *shuffle);
+ // s1 = [8 7 7 6 6 5 5 4] [4 3 3 2 2 1 1 0] as u16 (values are dgd indices)
+
+ // Multiply 16x 16-bit integers in dgd_ijkl and s1, resulting in 16x 32-bit
+ // integers then horizontally add pairs of these integers resulting in 8x
+ // 32-bit integers
+ const __m256i d0 = _mm256_madd_epi16(*dgd_ijkl, s1);
+ // d0 = [a b c d] [e f g h] as u32
+
+ // Take the lower-half of d0, extend to u64, add it on to dst (H)
+ const __m256i d0l = _mm256_cvtepu32_epi64(_mm256_extracti128_si256(d0, 0));
+ // d0l = [a b] [c d] as u64
+ const __m256i dst0 = yy_load_256(dst);
+ yy_store_256(dst, _mm256_add_epi64(d0l, dst0));
+
+ // Take the upper-half of d0, extend to u64, add it on to dst (H)
+ const __m256i d0h = _mm256_cvtepu32_epi64(_mm256_extracti128_si256(d0, 1));
+ // d0h = [e f] [g h] as u64
+ const __m256i dst1 = yy_load_256(dst + 4);
+ yy_store_256(dst + 4, _mm256_add_epi64(d0h, dst1));
+}
+
+static INLINE void acc_stat_highbd_win7_one_line_avx2(
+ const uint16_t *dgd, const uint16_t *src, int h_start, int h_end,
+ int dgd_stride, const __m256i *shuffle, int32_t *sumX,
+ int32_t sumY[WIENER_WIN][WIENER_WIN], int64_t M_int[WIENER_WIN][WIENER_WIN],
+ int64_t H_int[WIENER_WIN2][WIENER_WIN * 8]) {
+ int j, k, l;
+ const int wiener_win = WIENER_WIN;
+ for (j = h_start; j < h_end; j += 2) {
+ const uint16_t X1 = src[j];
+ const uint16_t X2 = src[j + 1];
+ *sumX += X1 + X2;
+ const uint16_t *dgd_ij = dgd + j;
+ for (k = 0; k < wiener_win; k++) {
+ const uint16_t *dgd_ijk = dgd_ij + k * dgd_stride;
+ for (l = 0; l < wiener_win; l++) {
+ int64_t *H_ = &H_int[(l * wiener_win + k)][0];
+ const uint16_t D1 = dgd_ijk[l];
+ const uint16_t D2 = dgd_ijk[l + 1];
+ sumY[k][l] += D1 + D2;
+ M_int[k][l] += D1 * X1 + D2 * X2;
+
+ // Load two u16 values from dgd_ijkl combined as a u32,
+ // then broadcast to 8x u32 slots of a 256
+ const __m256i dgd_ijkl =
+ _mm256_set1_epi32(*((uint32_t *)(dgd_ijk + l)));
+ // dgd_ijkl = [y x y x y x y x] [y x y x y x y x] where each is a u16
+
+ acc_stat_highbd_avx2(H_ + 0 * 8, dgd_ij + 0 * dgd_stride, shuffle,
+ &dgd_ijkl);
+ acc_stat_highbd_avx2(H_ + 1 * 8, dgd_ij + 1 * dgd_stride, shuffle,
+ &dgd_ijkl);
+ acc_stat_highbd_avx2(H_ + 2 * 8, dgd_ij + 2 * dgd_stride, shuffle,
+ &dgd_ijkl);
+ acc_stat_highbd_avx2(H_ + 3 * 8, dgd_ij + 3 * dgd_stride, shuffle,
+ &dgd_ijkl);
+ acc_stat_highbd_avx2(H_ + 4 * 8, dgd_ij + 4 * dgd_stride, shuffle,
+ &dgd_ijkl);
+ acc_stat_highbd_avx2(H_ + 5 * 8, dgd_ij + 5 * dgd_stride, shuffle,
+ &dgd_ijkl);
+ acc_stat_highbd_avx2(H_ + 6 * 8, dgd_ij + 6 * dgd_stride, shuffle,
+ &dgd_ijkl);
+ }
+ }
+ }
+}
+
+static INLINE void compute_stats_highbd_win7_opt_avx2(
+ const uint8_t *dgd8, const uint8_t *src8, int h_start, int h_end,
+ int v_start, int v_end, int dgd_stride, int src_stride, int64_t *M,
+ int64_t *H, aom_bit_depth_t bit_depth) {
+ int i, j, k, l, m, n;
+ const int wiener_win = WIENER_WIN;
+ const int pixel_count = (h_end - h_start) * (v_end - v_start);
+ const int wiener_win2 = wiener_win * wiener_win;
+ const int wiener_halfwin = (wiener_win >> 1);
+ const uint16_t *src = CONVERT_TO_SHORTPTR(src8);
+ const uint16_t *dgd = CONVERT_TO_SHORTPTR(dgd8);
+ const uint16_t avg =
+ find_average_highbd(dgd, h_start, h_end, v_start, v_end, dgd_stride);
+
+ int64_t M_int[WIENER_WIN][WIENER_WIN] = { { 0 } };
+ DECLARE_ALIGNED(32, int64_t, H_int[WIENER_WIN2][WIENER_WIN * 8]) = { { 0 } };
+ int32_t sumY[WIENER_WIN][WIENER_WIN] = { { 0 } };
+ int32_t sumX = 0;
+ const uint16_t *dgd_win = dgd - wiener_halfwin * dgd_stride - wiener_halfwin;
+
+ const __m256i shuffle = yy_loadu_256(g_shuffle_stats_highbd_data);
+ for (j = v_start; j < v_end; j += 64) {
+ const int vert_end = AOMMIN(64, v_end - j) + j;
+ for (i = j; i < vert_end; i++) {
+ acc_stat_highbd_win7_one_line_avx2(
+ dgd_win + i * dgd_stride, src + i * src_stride, h_start, h_end,
+ dgd_stride, &shuffle, &sumX, sumY, M_int, H_int);
+ }
+ }
+
+ uint8_t bit_depth_divider = 1;
+ if (bit_depth == AOM_BITS_12)
+ bit_depth_divider = 16;
+ else if (bit_depth == AOM_BITS_10)
+ bit_depth_divider = 4;
+
+ const int64_t avg_square_sum = (int64_t)avg * (int64_t)avg * pixel_count;
+ for (k = 0; k < wiener_win; k++) {
+ for (l = 0; l < wiener_win; l++) {
+ const int32_t idx0 = l * wiener_win + k;
+ M[idx0] = (M_int[k][l] +
+ (avg_square_sum - (int64_t)avg * (sumX + sumY[k][l]))) /
+ bit_depth_divider;
+ int64_t *H_ = H + idx0 * wiener_win2;
+ int64_t *H_int_ = &H_int[idx0][0];
+ for (m = 0; m < wiener_win; m++) {
+ for (n = 0; n < wiener_win; n++) {
+ H_[m * wiener_win + n] =
+ (H_int_[n * 8 + m] +
+ (avg_square_sum - (int64_t)avg * (sumY[k][l] + sumY[n][m]))) /
+ bit_depth_divider;
}
}
}
}
}
+static INLINE void acc_stat_highbd_win5_one_line_avx2(
+ const uint16_t *dgd, const uint16_t *src, int h_start, int h_end,
+ int dgd_stride, const __m256i *shuffle, int32_t *sumX,
+ int32_t sumY[WIENER_WIN_CHROMA][WIENER_WIN_CHROMA],
+ int64_t M_int[WIENER_WIN_CHROMA][WIENER_WIN_CHROMA],
+ int64_t H_int[WIENER_WIN2_CHROMA][WIENER_WIN_CHROMA * 8]) {
+ int j, k, l;
+ const int wiener_win = WIENER_WIN_CHROMA;
+ for (j = h_start; j < h_end; j += 2) {
+ const uint16_t X1 = src[j];
+ const uint16_t X2 = src[j + 1];
+ *sumX += X1 + X2;
+ const uint16_t *dgd_ij = dgd + j;
+ for (k = 0; k < wiener_win; k++) {
+ const uint16_t *dgd_ijk = dgd_ij + k * dgd_stride;
+ for (l = 0; l < wiener_win; l++) {
+ int64_t *H_ = &H_int[(l * wiener_win + k)][0];
+ const uint16_t D1 = dgd_ijk[l];
+ const uint16_t D2 = dgd_ijk[l + 1];
+ sumY[k][l] += D1 + D2;
+ M_int[k][l] += D1 * X1 + D2 * X2;
+
+ // Load two u16 values from dgd_ijkl combined as a u32,
+ // then broadcast to 8x u32 slots of a 256
+ const __m256i dgd_ijkl =
+ _mm256_set1_epi32(*((uint32_t *)(dgd_ijk + l)));
+ // dgd_ijkl = [x y x y x y x y] [x y x y x y x y] where each is a u16
+
+ acc_stat_highbd_avx2(H_ + 0 * 8, dgd_ij + 0 * dgd_stride, shuffle,
+ &dgd_ijkl);
+ acc_stat_highbd_avx2(H_ + 1 * 8, dgd_ij + 1 * dgd_stride, shuffle,
+ &dgd_ijkl);
+ acc_stat_highbd_avx2(H_ + 2 * 8, dgd_ij + 2 * dgd_stride, shuffle,
+ &dgd_ijkl);
+ acc_stat_highbd_avx2(H_ + 3 * 8, dgd_ij + 3 * dgd_stride, shuffle,
+ &dgd_ijkl);
+ acc_stat_highbd_avx2(H_ + 4 * 8, dgd_ij + 4 * dgd_stride, shuffle,
+ &dgd_ijkl);
+ }
+ }
+ }
+}
+
+static INLINE void compute_stats_highbd_win5_opt_avx2(
+ const uint8_t *dgd8, const uint8_t *src8, int h_start, int h_end,
+ int v_start, int v_end, int dgd_stride, int src_stride, int64_t *M,
+ int64_t *H, aom_bit_depth_t bit_depth) {
+ int i, j, k, l, m, n;
+ const int wiener_win = WIENER_WIN_CHROMA;
+ const int pixel_count = (h_end - h_start) * (v_end - v_start);
+ const int wiener_win2 = wiener_win * wiener_win;
+ const int wiener_halfwin = (wiener_win >> 1);
+ const uint16_t *src = CONVERT_TO_SHORTPTR(src8);
+ const uint16_t *dgd = CONVERT_TO_SHORTPTR(dgd8);
+ const uint16_t avg =
+ find_average_highbd(dgd, h_start, h_end, v_start, v_end, dgd_stride);
+
+ int64_t M_int64[WIENER_WIN_CHROMA][WIENER_WIN_CHROMA] = { { 0 } };
+ DECLARE_ALIGNED(
+ 32, int64_t,
+ H_int64[WIENER_WIN2_CHROMA][WIENER_WIN_CHROMA * 8]) = { { 0 } };
+ int32_t sumY[WIENER_WIN_CHROMA][WIENER_WIN_CHROMA] = { { 0 } };
+ int32_t sumX = 0;
+ const uint16_t *dgd_win = dgd - wiener_halfwin * dgd_stride - wiener_halfwin;
+
+ const __m256i shuffle = yy_loadu_256(g_shuffle_stats_highbd_data);
+ for (j = v_start; j < v_end; j += 64) {
+ const int vert_end = AOMMIN(64, v_end - j) + j;
+ for (i = j; i < vert_end; i++) {
+ acc_stat_highbd_win5_one_line_avx2(
+ dgd_win + i * dgd_stride, src + i * src_stride, h_start, h_end,
+ dgd_stride, &shuffle, &sumX, sumY, M_int64, H_int64);
+ }
+ }
+
+ uint8_t bit_depth_divider = 1;
+ if (bit_depth == AOM_BITS_12)
+ bit_depth_divider = 16;
+ else if (bit_depth == AOM_BITS_10)
+ bit_depth_divider = 4;
+
+ const int64_t avg_square_sum = (int64_t)avg * (int64_t)avg * pixel_count;
+ for (k = 0; k < wiener_win; k++) {
+ for (l = 0; l < wiener_win; l++) {
+ const int32_t idx0 = l * wiener_win + k;
+ M[idx0] = (M_int64[k][l] +
+ (avg_square_sum - (int64_t)avg * (sumX + sumY[k][l]))) /
+ bit_depth_divider;
+ int64_t *H_ = H + idx0 * wiener_win2;
+ int64_t *H_int_ = &H_int64[idx0][0];
+ for (m = 0; m < wiener_win; m++) {
+ for (n = 0; n < wiener_win; n++) {
+ H_[m * wiener_win + n] =
+ (H_int_[n * 8 + m] +
+ (avg_square_sum - (int64_t)avg * (sumY[k][l] + sumY[n][m]))) /
+ bit_depth_divider;
+ }
+ }
+ }
+ }
+}
+
+void av1_compute_stats_highbd_avx2(int wiener_win, const uint8_t *dgd8,
+ const uint8_t *src8, int h_start, int h_end,
+ int v_start, int v_end, int dgd_stride,
+ int src_stride, int64_t *M, int64_t *H,
+ aom_bit_depth_t bit_depth) {
+ if (wiener_win == WIENER_WIN) {
+ compute_stats_highbd_win7_opt_avx2(dgd8, src8, h_start, h_end, v_start,
+ v_end, dgd_stride, src_stride, M, H,
+ bit_depth);
+ } else if (wiener_win == WIENER_WIN_CHROMA) {
+ compute_stats_highbd_win5_opt_avx2(dgd8, src8, h_start, h_end, v_start,
+ v_end, dgd_stride, src_stride, M, H,
+ bit_depth);
+ } else {
+ av1_compute_stats_highbd_c(wiener_win, dgd8, src8, h_start, h_end, v_start,
+ v_end, dgd_stride, src_stride, M, H, bit_depth);
+ }
+}
+#endif // CONFIG_AV1_HIGHBITDEPTH
+
static INLINE void acc_stat_win5_one_line_avx2(
const uint8_t *dgd, const uint8_t *src, int h_start, int h_end,
int dgd_stride, const __m128i *shuffle, int32_t *sumX,
@@ -156,18 +419,19 @@ static INLINE void acc_stat_win5_one_line_avx2(
static INLINE void compute_stats_win5_opt_avx2(
const uint8_t *dgd, const uint8_t *src, int h_start, int h_end, int v_start,
- int v_end, int dgd_stride, int src_stride, double *M, double *H) {
+ int v_end, int dgd_stride, int src_stride, int64_t *M, int64_t *H) {
int i, j, k, l, m, n;
const int wiener_win = WIENER_WIN_CHROMA;
const int pixel_count = (h_end - h_start) * (v_end - v_start);
const int wiener_win2 = wiener_win * wiener_win;
const int wiener_halfwin = (wiener_win >> 1);
- const double avg =
- find_average(dgd, h_start, h_end, v_start, v_end, dgd_stride);
+ uint8_t avg = find_average(dgd, h_start, h_end, v_start, v_end, dgd_stride);
int32_t M_int32[WIENER_WIN_CHROMA][WIENER_WIN_CHROMA] = { { 0 } };
int64_t M_int64[WIENER_WIN_CHROMA][WIENER_WIN_CHROMA] = { { 0 } };
- int32_t H_int32[WIENER_WIN2_CHROMA][WIENER_WIN_CHROMA * 8] = { { 0 } };
+ DECLARE_ALIGNED(
+ 32, int32_t,
+ H_int32[WIENER_WIN2_CHROMA][WIENER_WIN_CHROMA * 8]) = { { 0 } };
int64_t H_int64[WIENER_WIN2_CHROMA][WIENER_WIN_CHROMA * 8] = { { 0 } };
int32_t sumY[WIENER_WIN_CHROMA][WIENER_WIN_CHROMA] = { { 0 } };
int32_t sumX = 0;
@@ -195,17 +459,18 @@ static INLINE void compute_stats_win5_opt_avx2(
}
}
- const double avg_square_sum = avg * avg * pixel_count;
+ const int64_t avg_square_sum = (int64_t)avg * (int64_t)avg * pixel_count;
for (k = 0; k < wiener_win; k++) {
for (l = 0; l < wiener_win; l++) {
const int32_t idx0 = l * wiener_win + k;
- M[idx0] = M_int64[k][l] + avg_square_sum - avg * (sumX + sumY[k][l]);
- double *H_ = H + idx0 * wiener_win2;
+ M[idx0] =
+ M_int64[k][l] + (avg_square_sum - (int64_t)avg * (sumX + sumY[k][l]));
+ int64_t *H_ = H + idx0 * wiener_win2;
int64_t *H_int_ = &H_int64[idx0][0];
for (m = 0; m < wiener_win; m++) {
for (n = 0; n < wiener_win; n++) {
H_[m * wiener_win + n] = H_int_[n * 8 + m] + avg_square_sum -
- avg * (sumY[k][l] + sumY[n][m]);
+ (int64_t)avg * (sumY[k][l] + sumY[n][m]);
}
}
}
@@ -215,7 +480,7 @@ static INLINE void compute_stats_win5_opt_avx2(
void av1_compute_stats_avx2(int wiener_win, const uint8_t *dgd,
const uint8_t *src, int h_start, int h_end,
int v_start, int v_end, int dgd_stride,
- int src_stride, double *M, double *H) {
+ int src_stride, int64_t *M, int64_t *H) {
if (wiener_win == WIENER_WIN) {
compute_stats_win7_opt_avx2(dgd, src, h_start, h_end, v_start, v_end,
dgd_stride, src_stride, M, H);
@@ -228,7 +493,7 @@ void av1_compute_stats_avx2(int wiener_win, const uint8_t *dgd,
}
}
-static INLINE __m256i pair_set_epi16(uint16_t a, uint16_t b) {
+static INLINE __m256i pair_set_epi16(int a, int b) {
return _mm256_set1_epi32(
(int32_t)(((uint16_t)(a)) | (((uint32_t)(b)) << 16)));
}
@@ -279,7 +544,7 @@ int64_t av1_lowbd_pixel_proj_error_avx2(
const int32_t u = (int32_t)(dat[k] << SGRPROJ_RST_BITS);
int32_t v = xq[0] * (flt0[k] - u) + xq[1] * (flt1[k] - u);
const int32_t e = ROUND_POWER_OF_TWO(v, shift) + dat[k] - src[k];
- err += e * e;
+ err += ((int64_t)e * e);
}
dat += dat_stride;
src += src_stride;
@@ -292,22 +557,25 @@ int64_t av1_lowbd_pixel_proj_error_avx2(
sum64 = _mm256_add_epi64(sum64, sum64_0);
sum64 = _mm256_add_epi64(sum64, sum64_1);
}
- } else if (params->r[0] > 0) {
- __m256i xq_coeff =
- pair_set_epi16(xq[0], (-xq[0] * (1 << SGRPROJ_RST_BITS)));
+ } else if (params->r[0] > 0 || params->r[1] > 0) {
+ const int xq_active = (params->r[0] > 0) ? xq[0] : xq[1];
+ const __m256i xq_coeff =
+ pair_set_epi16(xq_active, (-xq_active * (1 << SGRPROJ_RST_BITS)));
+ const int32_t *flt = (params->r[0] > 0) ? flt0 : flt1;
+ const int flt_stride = (params->r[0] > 0) ? flt0_stride : flt1_stride;
for (i = 0; i < height; ++i) {
__m256i sum32 = _mm256_setzero_si256();
for (j = 0; j <= width - 16; j += 16) {
const __m256i d0 = _mm256_cvtepu8_epi16(xx_loadu_128(dat + j));
const __m256i s0 = _mm256_cvtepu8_epi16(xx_loadu_128(src + j));
- const __m256i flt0_16b = _mm256_permute4x64_epi64(
- _mm256_packs_epi32(yy_loadu_256(flt0 + j),
- yy_loadu_256(flt0 + j + 8)),
+ const __m256i flt_16b = _mm256_permute4x64_epi64(
+ _mm256_packs_epi32(yy_loadu_256(flt + j),
+ yy_loadu_256(flt + j + 8)),
0xd8);
const __m256i v0 =
- _mm256_madd_epi16(xq_coeff, _mm256_unpacklo_epi16(flt0_16b, d0));
+ _mm256_madd_epi16(xq_coeff, _mm256_unpacklo_epi16(flt_16b, d0));
const __m256i v1 =
- _mm256_madd_epi16(xq_coeff, _mm256_unpackhi_epi16(flt0_16b, d0));
+ _mm256_madd_epi16(xq_coeff, _mm256_unpackhi_epi16(flt_16b, d0));
const __m256i vr0 =
_mm256_srai_epi32(_mm256_add_epi32(v0, rounding), shift);
const __m256i vr1 =
@@ -319,13 +587,13 @@ int64_t av1_lowbd_pixel_proj_error_avx2(
}
for (k = j; k < width; ++k) {
const int32_t u = (int32_t)(dat[k] << SGRPROJ_RST_BITS);
- int32_t v = xq[0] * (flt0[k] - u);
+ int32_t v = xq_active * (flt[k] - u);
const int32_t e = ROUND_POWER_OF_TWO(v, shift) + dat[k] - src[k];
- err += e * e;
+ err += ((int64_t)e * e);
}
dat += dat_stride;
src += src_stride;
- flt0 += flt0_stride;
+ flt += flt_stride;
const __m256i sum64_0 =
_mm256_cvtepi32_epi64(_mm256_castsi256_si128(sum32));
const __m256i sum64_1 =
@@ -333,71 +601,484 @@ int64_t av1_lowbd_pixel_proj_error_avx2(
sum64 = _mm256_add_epi64(sum64, sum64_0);
sum64 = _mm256_add_epi64(sum64, sum64_1);
}
- } else if (params->r[1] > 0) {
- __m256i xq_coeff = pair_set_epi16(xq[1], -(xq[1] << SGRPROJ_RST_BITS));
+ } else {
+ __m256i sum32 = _mm256_setzero_si256();
for (i = 0; i < height; ++i) {
- __m256i sum32 = _mm256_setzero_si256();
for (j = 0; j <= width - 16; j += 16) {
const __m256i d0 = _mm256_cvtepu8_epi16(xx_loadu_128(dat + j));
const __m256i s0 = _mm256_cvtepu8_epi16(xx_loadu_128(src + j));
- const __m256i flt1_16b = _mm256_permute4x64_epi64(
- _mm256_packs_epi32(yy_loadu_256(flt1 + j),
- yy_loadu_256(flt1 + j + 8)),
- 0xd8);
- const __m256i v0 =
- _mm256_madd_epi16(xq_coeff, _mm256_unpacklo_epi16(flt1_16b, d0));
- const __m256i v1 =
- _mm256_madd_epi16(xq_coeff, _mm256_unpackhi_epi16(flt1_16b, d0));
- const __m256i vr0 =
- _mm256_srai_epi32(_mm256_add_epi32(v0, rounding), shift);
- const __m256i vr1 =
- _mm256_srai_epi32(_mm256_add_epi32(v1, rounding), shift);
- const __m256i e0 = _mm256_sub_epi16(
- _mm256_add_epi16(_mm256_packs_epi32(vr0, vr1), d0), s0);
+ const __m256i diff0 = _mm256_sub_epi16(d0, s0);
+ const __m256i err0 = _mm256_madd_epi16(diff0, diff0);
+ sum32 = _mm256_add_epi32(sum32, err0);
+ }
+ for (k = j; k < width; ++k) {
+ const int32_t e = (int32_t)(dat[k]) - src[k];
+ err += ((int64_t)e * e);
+ }
+ dat += dat_stride;
+ src += src_stride;
+ }
+ const __m256i sum64_0 =
+ _mm256_cvtepi32_epi64(_mm256_castsi256_si128(sum32));
+ const __m256i sum64_1 =
+ _mm256_cvtepi32_epi64(_mm256_extracti128_si256(sum32, 1));
+ sum64 = _mm256_add_epi64(sum64_0, sum64_1);
+ }
+ int64_t sum[4];
+ yy_storeu_256(sum, sum64);
+ err += sum[0] + sum[1] + sum[2] + sum[3];
+ return err;
+}
+
+// When params->r[0] > 0 and params->r[1] > 0. In this case all elements of
+// C and H need to be computed.
+static AOM_INLINE void calc_proj_params_r0_r1_avx2(
+ const uint8_t *src8, int width, int height, int src_stride,
+ const uint8_t *dat8, int dat_stride, int32_t *flt0, int flt0_stride,
+ int32_t *flt1, int flt1_stride, int64_t H[2][2], int64_t C[2]) {
+ const int size = width * height;
+ const uint8_t *src = src8;
+ const uint8_t *dat = dat8;
+ __m256i h00, h01, h11, c0, c1;
+ const __m256i zero = _mm256_setzero_si256();
+ h01 = h11 = c0 = c1 = h00 = zero;
+
+ for (int i = 0; i < height; ++i) {
+ for (int j = 0; j < width; j += 8) {
+ const __m256i u_load = _mm256_cvtepu8_epi32(
+ _mm_loadl_epi64((__m128i *)(dat + i * dat_stride + j)));
+ const __m256i s_load = _mm256_cvtepu8_epi32(
+ _mm_loadl_epi64((__m128i *)(src + i * src_stride + j)));
+ __m256i f1 = _mm256_loadu_si256((__m256i *)(flt0 + i * flt0_stride + j));
+ __m256i f2 = _mm256_loadu_si256((__m256i *)(flt1 + i * flt1_stride + j));
+ __m256i d = _mm256_slli_epi32(u_load, SGRPROJ_RST_BITS);
+ __m256i s = _mm256_slli_epi32(s_load, SGRPROJ_RST_BITS);
+ s = _mm256_sub_epi32(s, d);
+ f1 = _mm256_sub_epi32(f1, d);
+ f2 = _mm256_sub_epi32(f2, d);
+
+ const __m256i h00_even = _mm256_mul_epi32(f1, f1);
+ const __m256i h00_odd = _mm256_mul_epi32(_mm256_srli_epi64(f1, 32),
+ _mm256_srli_epi64(f1, 32));
+ h00 = _mm256_add_epi64(h00, h00_even);
+ h00 = _mm256_add_epi64(h00, h00_odd);
+
+ const __m256i h01_even = _mm256_mul_epi32(f1, f2);
+ const __m256i h01_odd = _mm256_mul_epi32(_mm256_srli_epi64(f1, 32),
+ _mm256_srli_epi64(f2, 32));
+ h01 = _mm256_add_epi64(h01, h01_even);
+ h01 = _mm256_add_epi64(h01, h01_odd);
+
+ const __m256i h11_even = _mm256_mul_epi32(f2, f2);
+ const __m256i h11_odd = _mm256_mul_epi32(_mm256_srli_epi64(f2, 32),
+ _mm256_srli_epi64(f2, 32));
+ h11 = _mm256_add_epi64(h11, h11_even);
+ h11 = _mm256_add_epi64(h11, h11_odd);
+
+ const __m256i c0_even = _mm256_mul_epi32(f1, s);
+ const __m256i c0_odd =
+ _mm256_mul_epi32(_mm256_srli_epi64(f1, 32), _mm256_srli_epi64(s, 32));
+ c0 = _mm256_add_epi64(c0, c0_even);
+ c0 = _mm256_add_epi64(c0, c0_odd);
+
+ const __m256i c1_even = _mm256_mul_epi32(f2, s);
+ const __m256i c1_odd =
+ _mm256_mul_epi32(_mm256_srli_epi64(f2, 32), _mm256_srli_epi64(s, 32));
+ c1 = _mm256_add_epi64(c1, c1_even);
+ c1 = _mm256_add_epi64(c1, c1_odd);
+ }
+ }
+
+ __m256i c_low = _mm256_unpacklo_epi64(c0, c1);
+ const __m256i c_high = _mm256_unpackhi_epi64(c0, c1);
+ c_low = _mm256_add_epi64(c_low, c_high);
+ const __m128i c_128bit = _mm_add_epi64(_mm256_extracti128_si256(c_low, 1),
+ _mm256_castsi256_si128(c_low));
+
+ __m256i h0x_low = _mm256_unpacklo_epi64(h00, h01);
+ const __m256i h0x_high = _mm256_unpackhi_epi64(h00, h01);
+ h0x_low = _mm256_add_epi64(h0x_low, h0x_high);
+ const __m128i h0x_128bit = _mm_add_epi64(_mm256_extracti128_si256(h0x_low, 1),
+ _mm256_castsi256_si128(h0x_low));
+
+ // Using the symmetric properties of H, calculations of H[1][0] are not
+ // needed.
+ __m256i h1x_low = _mm256_unpacklo_epi64(zero, h11);
+ const __m256i h1x_high = _mm256_unpackhi_epi64(zero, h11);
+ h1x_low = _mm256_add_epi64(h1x_low, h1x_high);
+ const __m128i h1x_128bit = _mm_add_epi64(_mm256_extracti128_si256(h1x_low, 1),
+ _mm256_castsi256_si128(h1x_low));
+
+ xx_storeu_128(C, c_128bit);
+ xx_storeu_128(H[0], h0x_128bit);
+ xx_storeu_128(H[1], h1x_128bit);
+
+ H[0][0] /= size;
+ H[0][1] /= size;
+ H[1][1] /= size;
+
+ // Since H is a symmetric matrix
+ H[1][0] = H[0][1];
+ C[0] /= size;
+ C[1] /= size;
+}
+
+// When only params->r[0] > 0. In this case only H[0][0] and C[0] are
+// non-zero and need to be computed.
+static AOM_INLINE void calc_proj_params_r0_avx2(const uint8_t *src8, int width,
+ int height, int src_stride,
+ const uint8_t *dat8,
+ int dat_stride, int32_t *flt0,
+ int flt0_stride,
+ int64_t H[2][2], int64_t C[2]) {
+ const int size = width * height;
+ const uint8_t *src = src8;
+ const uint8_t *dat = dat8;
+ __m256i h00, c0;
+ const __m256i zero = _mm256_setzero_si256();
+ c0 = h00 = zero;
+
+ for (int i = 0; i < height; ++i) {
+ for (int j = 0; j < width; j += 8) {
+ const __m256i u_load = _mm256_cvtepu8_epi32(
+ _mm_loadl_epi64((__m128i *)(dat + i * dat_stride + j)));
+ const __m256i s_load = _mm256_cvtepu8_epi32(
+ _mm_loadl_epi64((__m128i *)(src + i * src_stride + j)));
+ __m256i f1 = _mm256_loadu_si256((__m256i *)(flt0 + i * flt0_stride + j));
+ __m256i d = _mm256_slli_epi32(u_load, SGRPROJ_RST_BITS);
+ __m256i s = _mm256_slli_epi32(s_load, SGRPROJ_RST_BITS);
+ s = _mm256_sub_epi32(s, d);
+ f1 = _mm256_sub_epi32(f1, d);
+
+ const __m256i h00_even = _mm256_mul_epi32(f1, f1);
+ const __m256i h00_odd = _mm256_mul_epi32(_mm256_srli_epi64(f1, 32),
+ _mm256_srli_epi64(f1, 32));
+ h00 = _mm256_add_epi64(h00, h00_even);
+ h00 = _mm256_add_epi64(h00, h00_odd);
+
+ const __m256i c0_even = _mm256_mul_epi32(f1, s);
+ const __m256i c0_odd =
+ _mm256_mul_epi32(_mm256_srli_epi64(f1, 32), _mm256_srli_epi64(s, 32));
+ c0 = _mm256_add_epi64(c0, c0_even);
+ c0 = _mm256_add_epi64(c0, c0_odd);
+ }
+ }
+ const __m128i h00_128bit = _mm_add_epi64(_mm256_extracti128_si256(h00, 1),
+ _mm256_castsi256_si128(h00));
+ const __m128i h00_val =
+ _mm_add_epi64(h00_128bit, _mm_srli_si128(h00_128bit, 8));
+
+ const __m128i c0_128bit = _mm_add_epi64(_mm256_extracti128_si256(c0, 1),
+ _mm256_castsi256_si128(c0));
+ const __m128i c0_val = _mm_add_epi64(c0_128bit, _mm_srli_si128(c0_128bit, 8));
+
+ const __m128i c = _mm_unpacklo_epi64(c0_val, _mm256_castsi256_si128(zero));
+ const __m128i h0x = _mm_unpacklo_epi64(h00_val, _mm256_castsi256_si128(zero));
+
+ xx_storeu_128(C, c);
+ xx_storeu_128(H[0], h0x);
+
+ H[0][0] /= size;
+ C[0] /= size;
+}
+
+// When only params->r[1] > 0. In this case only H[1][1] and C[1] are
+// non-zero and need to be computed.
+static AOM_INLINE void calc_proj_params_r1_avx2(const uint8_t *src8, int width,
+ int height, int src_stride,
+ const uint8_t *dat8,
+ int dat_stride, int32_t *flt1,
+ int flt1_stride,
+ int64_t H[2][2], int64_t C[2]) {
+ const int size = width * height;
+ const uint8_t *src = src8;
+ const uint8_t *dat = dat8;
+ __m256i h11, c1;
+ const __m256i zero = _mm256_setzero_si256();
+ c1 = h11 = zero;
+
+ for (int i = 0; i < height; ++i) {
+ for (int j = 0; j < width; j += 8) {
+ const __m256i u_load = _mm256_cvtepu8_epi32(
+ _mm_loadl_epi64((__m128i *)(dat + i * dat_stride + j)));
+ const __m256i s_load = _mm256_cvtepu8_epi32(
+ _mm_loadl_epi64((__m128i *)(src + i * src_stride + j)));
+ __m256i f2 = _mm256_loadu_si256((__m256i *)(flt1 + i * flt1_stride + j));
+ __m256i d = _mm256_slli_epi32(u_load, SGRPROJ_RST_BITS);
+ __m256i s = _mm256_slli_epi32(s_load, SGRPROJ_RST_BITS);
+ s = _mm256_sub_epi32(s, d);
+ f2 = _mm256_sub_epi32(f2, d);
+
+ const __m256i h11_even = _mm256_mul_epi32(f2, f2);
+ const __m256i h11_odd = _mm256_mul_epi32(_mm256_srli_epi64(f2, 32),
+ _mm256_srli_epi64(f2, 32));
+ h11 = _mm256_add_epi64(h11, h11_even);
+ h11 = _mm256_add_epi64(h11, h11_odd);
+
+ const __m256i c1_even = _mm256_mul_epi32(f2, s);
+ const __m256i c1_odd =
+ _mm256_mul_epi32(_mm256_srli_epi64(f2, 32), _mm256_srli_epi64(s, 32));
+ c1 = _mm256_add_epi64(c1, c1_even);
+ c1 = _mm256_add_epi64(c1, c1_odd);
+ }
+ }
+
+ const __m128i h11_128bit = _mm_add_epi64(_mm256_extracti128_si256(h11, 1),
+ _mm256_castsi256_si128(h11));
+ const __m128i h11_val =
+ _mm_add_epi64(h11_128bit, _mm_srli_si128(h11_128bit, 8));
+
+ const __m128i c1_128bit = _mm_add_epi64(_mm256_extracti128_si256(c1, 1),
+ _mm256_castsi256_si128(c1));
+ const __m128i c1_val = _mm_add_epi64(c1_128bit, _mm_srli_si128(c1_128bit, 8));
+
+ const __m128i c = _mm_unpacklo_epi64(_mm256_castsi256_si128(zero), c1_val);
+ const __m128i h1x = _mm_unpacklo_epi64(_mm256_castsi256_si128(zero), h11_val);
+
+ xx_storeu_128(C, c);
+ xx_storeu_128(H[1], h1x);
+
+ H[1][1] /= size;
+ C[1] /= size;
+}
+
+// AVX2 variant of av1_calc_proj_params_c.
+void av1_calc_proj_params_avx2(const uint8_t *src8, int width, int height,
+ int src_stride, const uint8_t *dat8,
+ int dat_stride, int32_t *flt0, int flt0_stride,
+ int32_t *flt1, int flt1_stride, int64_t H[2][2],
+ int64_t C[2], const sgr_params_type *params) {
+ if ((params->r[0] > 0) && (params->r[1] > 0)) {
+ calc_proj_params_r0_r1_avx2(src8, width, height, src_stride, dat8,
+ dat_stride, flt0, flt0_stride, flt1,
+ flt1_stride, H, C);
+ } else if (params->r[0] > 0) {
+ calc_proj_params_r0_avx2(src8, width, height, src_stride, dat8, dat_stride,
+ flt0, flt0_stride, H, C);
+ } else if (params->r[1] > 0) {
+ calc_proj_params_r1_avx2(src8, width, height, src_stride, dat8, dat_stride,
+ flt1, flt1_stride, H, C);
+ }
+}
+
+#if CONFIG_AV1_HIGHBITDEPTH
+int64_t av1_highbd_pixel_proj_error_avx2(
+ const uint8_t *src8, int width, int height, int src_stride,
+ const uint8_t *dat8, int dat_stride, int32_t *flt0, int flt0_stride,
+ int32_t *flt1, int flt1_stride, int xq[2], const sgr_params_type *params) {
+ int i, j, k;
+ const int32_t shift = SGRPROJ_RST_BITS + SGRPROJ_PRJ_BITS;
+ const __m256i rounding = _mm256_set1_epi32(1 << (shift - 1));
+ __m256i sum64 = _mm256_setzero_si256();
+ const uint16_t *src = CONVERT_TO_SHORTPTR(src8);
+ const uint16_t *dat = CONVERT_TO_SHORTPTR(dat8);
+ int64_t err = 0;
+ if (params->r[0] > 0 && params->r[1] > 0) { // Both filters are enabled
+ const __m256i xq0 = _mm256_set1_epi32(xq[0]);
+ const __m256i xq1 = _mm256_set1_epi32(xq[1]);
+ for (i = 0; i < height; ++i) {
+ __m256i sum32 = _mm256_setzero_si256();
+ for (j = 0; j <= width - 16; j += 16) { // Process 16 pixels at a time
+ // Load 16 pixels each from source image and corrupted image
+ const __m256i s0 = yy_loadu_256(src + j);
+ const __m256i d0 = yy_loadu_256(dat + j);
+ // s0 = [15 14 13 12 11 10 9 8] [7 6 5 4 3 2 1 0] as u16 (indices)
+
+ // Shift-up each pixel to match filtered image scaling
+ const __m256i u0 = _mm256_slli_epi16(d0, SGRPROJ_RST_BITS);
+
+ // Split u0 into two halves and pad each from u16 to i32
+ const __m256i u0l = _mm256_cvtepu16_epi32(_mm256_castsi256_si128(u0));
+ const __m256i u0h =
+ _mm256_cvtepu16_epi32(_mm256_extracti128_si256(u0, 1));
+ // u0h, u0l = [15 14 13 12] [11 10 9 8], [7 6 5 4] [3 2 1 0] as u32
+
+ // Load 16 pixels from each filtered image
+ const __m256i flt0l = yy_loadu_256(flt0 + j);
+ const __m256i flt0h = yy_loadu_256(flt0 + j + 8);
+ const __m256i flt1l = yy_loadu_256(flt1 + j);
+ const __m256i flt1h = yy_loadu_256(flt1 + j + 8);
+ // flt?l, flt?h = [15 14 13 12] [11 10 9 8], [7 6 5 4] [3 2 1 0] as u32
+
+ // Subtract shifted corrupt image from each filtered image
+ const __m256i flt0l_subu = _mm256_sub_epi32(flt0l, u0l);
+ const __m256i flt0h_subu = _mm256_sub_epi32(flt0h, u0h);
+ const __m256i flt1l_subu = _mm256_sub_epi32(flt1l, u0l);
+ const __m256i flt1h_subu = _mm256_sub_epi32(flt1h, u0h);
+
+ // Multiply basis vectors by appropriate coefficients
+ const __m256i v0l = _mm256_mullo_epi32(flt0l_subu, xq0);
+ const __m256i v0h = _mm256_mullo_epi32(flt0h_subu, xq0);
+ const __m256i v1l = _mm256_mullo_epi32(flt1l_subu, xq1);
+ const __m256i v1h = _mm256_mullo_epi32(flt1h_subu, xq1);
+
+ // Add together the contributions from the two basis vectors
+ const __m256i vl = _mm256_add_epi32(v0l, v1l);
+ const __m256i vh = _mm256_add_epi32(v0h, v1h);
+
+ // Right-shift v with appropriate rounding
+ const __m256i vrl =
+ _mm256_srai_epi32(_mm256_add_epi32(vl, rounding), shift);
+ const __m256i vrh =
+ _mm256_srai_epi32(_mm256_add_epi32(vh, rounding), shift);
+ // vrh, vrl = [15 14 13 12] [11 10 9 8], [7 6 5 4] [3 2 1 0]
+
+ // Saturate each i32 to an i16 then combine both halves
+ // The permute (control=[3 1 2 0]) fixes weird ordering from AVX lanes
+ const __m256i vr =
+ _mm256_permute4x64_epi64(_mm256_packs_epi32(vrl, vrh), 0xd8);
+ // intermediate = [15 14 13 12 7 6 5 4] [11 10 9 8 3 2 1 0]
+ // vr = [15 14 13 12 11 10 9 8] [7 6 5 4 3 2 1 0]
+
+ // Add twin-subspace-sgr-filter to corrupt image then subtract source
+ const __m256i e0 = _mm256_sub_epi16(_mm256_add_epi16(vr, d0), s0);
+
+ // Calculate squared error and add adjacent values
const __m256i err0 = _mm256_madd_epi16(e0, e0);
+
sum32 = _mm256_add_epi32(sum32, err0);
}
+
+ const __m256i sum32l =
+ _mm256_cvtepu32_epi64(_mm256_castsi256_si128(sum32));
+ sum64 = _mm256_add_epi64(sum64, sum32l);
+ const __m256i sum32h =
+ _mm256_cvtepu32_epi64(_mm256_extracti128_si256(sum32, 1));
+ sum64 = _mm256_add_epi64(sum64, sum32h);
+
+ // Process remaining pixels in this row (modulo 16)
for (k = j; k < width; ++k) {
const int32_t u = (int32_t)(dat[k] << SGRPROJ_RST_BITS);
- int32_t v = xq[1] * (flt1[k] - u);
+ int32_t v = xq[0] * (flt0[k] - u) + xq[1] * (flt1[k] - u);
const int32_t e = ROUND_POWER_OF_TWO(v, shift) + dat[k] - src[k];
- err += e * e;
+ err += ((int64_t)e * e);
}
dat += dat_stride;
src += src_stride;
+ flt0 += flt0_stride;
flt1 += flt1_stride;
- const __m256i sum64_0 =
- _mm256_cvtepi32_epi64(_mm256_castsi256_si128(sum32));
- const __m256i sum64_1 =
- _mm256_cvtepi32_epi64(_mm256_extracti128_si256(sum32, 1));
- sum64 = _mm256_add_epi64(sum64, sum64_0);
- sum64 = _mm256_add_epi64(sum64, sum64_1);
}
- } else {
- __m256i sum32 = _mm256_setzero_si256();
+ } else if (params->r[0] > 0 || params->r[1] > 0) { // Only one filter enabled
+ const int32_t xq_on = (params->r[0] > 0) ? xq[0] : xq[1];
+ const __m256i xq_active = _mm256_set1_epi32(xq_on);
+ const __m256i xq_inactive =
+ _mm256_set1_epi32(-xq_on * (1 << SGRPROJ_RST_BITS));
+ const int32_t *flt = (params->r[0] > 0) ? flt0 : flt1;
+ const int flt_stride = (params->r[0] > 0) ? flt0_stride : flt1_stride;
for (i = 0; i < height; ++i) {
+ __m256i sum32 = _mm256_setzero_si256();
for (j = 0; j <= width - 16; j += 16) {
- const __m256i d0 = _mm256_cvtepu8_epi16(xx_loadu_128(dat + j));
- const __m256i s0 = _mm256_cvtepu8_epi16(xx_loadu_128(src + j));
- const __m256i diff0 = _mm256_sub_epi16(d0, s0);
- const __m256i err0 = _mm256_madd_epi16(diff0, diff0);
+ // Load 16 pixels from source image
+ const __m256i s0 = yy_loadu_256(src + j);
+ // s0 = [15 14 13 12 11 10 9 8] [7 6 5 4 3 2 1 0] as u16
+
+ // Load 16 pixels from corrupted image and pad each u16 to i32
+ const __m256i d0 = yy_loadu_256(dat + j);
+ const __m256i d0h =
+ _mm256_cvtepu16_epi32(_mm256_extracti128_si256(d0, 1));
+ const __m256i d0l = _mm256_cvtepu16_epi32(_mm256_castsi256_si128(d0));
+ // d0 = [15 14 13 12 11 10 9 8] [7 6 5 4 3 2 1 0] as u16
+ // d0h, d0l = [15 14 13 12] [11 10 9 8], [7 6 5 4] [3 2 1 0] as i32
+
+ // Load 16 pixels from the filtered image
+ const __m256i flth = yy_loadu_256(flt + j + 8);
+ const __m256i fltl = yy_loadu_256(flt + j);
+ // flth, fltl = [15 14 13 12] [11 10 9 8], [7 6 5 4] [3 2 1 0] as i32
+
+ const __m256i flth_xq = _mm256_mullo_epi32(flth, xq_active);
+ const __m256i fltl_xq = _mm256_mullo_epi32(fltl, xq_active);
+ const __m256i d0h_xq = _mm256_mullo_epi32(d0h, xq_inactive);
+ const __m256i d0l_xq = _mm256_mullo_epi32(d0l, xq_inactive);
+
+ const __m256i vh = _mm256_add_epi32(flth_xq, d0h_xq);
+ const __m256i vl = _mm256_add_epi32(fltl_xq, d0l_xq);
+
+ // Shift this down with appropriate rounding
+ const __m256i vrh =
+ _mm256_srai_epi32(_mm256_add_epi32(vh, rounding), shift);
+ const __m256i vrl =
+ _mm256_srai_epi32(_mm256_add_epi32(vl, rounding), shift);
+ // vrh, vrl = [15 14 13 12] [11 10 9 8], [7 6 5 4] [3 2 1 0] as i32
+
+ // Saturate each i32 to an i16 then combine both halves
+ // The permute (control=[3 1 2 0]) fixes weird ordering from AVX lanes
+ const __m256i vr =
+ _mm256_permute4x64_epi64(_mm256_packs_epi32(vrl, vrh), 0xd8);
+ // intermediate = [15 14 13 12 7 6 5 4] [11 10 9 8 3 2 1 0] as u16
+ // vr = [15 14 13 12 11 10 9 8] [7 6 5 4 3 2 1 0] as u16
+
+ // Subtract twin-subspace-sgr filtered from source image to get error
+ const __m256i e0 = _mm256_sub_epi16(_mm256_add_epi16(vr, d0), s0);
+
+ // Calculate squared error and add adjacent values
+ const __m256i err0 = _mm256_madd_epi16(e0, e0);
+
sum32 = _mm256_add_epi32(sum32, err0);
}
+
+ const __m256i sum32l =
+ _mm256_cvtepu32_epi64(_mm256_castsi256_si128(sum32));
+ sum64 = _mm256_add_epi64(sum64, sum32l);
+ const __m256i sum32h =
+ _mm256_cvtepu32_epi64(_mm256_extracti128_si256(sum32, 1));
+ sum64 = _mm256_add_epi64(sum64, sum32h);
+
+ // Process remaining pixels in this row (modulo 16)
+ for (k = j; k < width; ++k) {
+ const int32_t u = (int32_t)(dat[k] << SGRPROJ_RST_BITS);
+ int32_t v = xq_on * (flt[k] - u);
+ const int32_t e = ROUND_POWER_OF_TWO(v, shift) + dat[k] - src[k];
+ err += ((int64_t)e * e);
+ }
+ dat += dat_stride;
+ src += src_stride;
+ flt += flt_stride;
+ }
+ } else { // Neither filter is enabled
+ for (i = 0; i < height; ++i) {
+ __m256i sum32 = _mm256_setzero_si256();
+ for (j = 0; j <= width - 32; j += 32) {
+ // Load 2x16 u16 from source image
+ const __m256i s0l = yy_loadu_256(src + j);
+ const __m256i s0h = yy_loadu_256(src + j + 16);
+
+ // Load 2x16 u16 from corrupted image
+ const __m256i d0l = yy_loadu_256(dat + j);
+ const __m256i d0h = yy_loadu_256(dat + j + 16);
+
+ // Subtract corrupted image from source image
+ const __m256i diffl = _mm256_sub_epi16(d0l, s0l);
+ const __m256i diffh = _mm256_sub_epi16(d0h, s0h);
+
+ // Square error and add adjacent values
+ const __m256i err0l = _mm256_madd_epi16(diffl, diffl);
+ const __m256i err0h = _mm256_madd_epi16(diffh, diffh);
+
+ sum32 = _mm256_add_epi32(sum32, err0l);
+ sum32 = _mm256_add_epi32(sum32, err0h);
+ }
+
+ const __m256i sum32l =
+ _mm256_cvtepu32_epi64(_mm256_castsi256_si128(sum32));
+ sum64 = _mm256_add_epi64(sum64, sum32l);
+ const __m256i sum32h =
+ _mm256_cvtepu32_epi64(_mm256_extracti128_si256(sum32, 1));
+ sum64 = _mm256_add_epi64(sum64, sum32h);
+
+ // Process remaining pixels (modulu 16)
for (k = j; k < width; ++k) {
const int32_t e = (int32_t)(dat[k]) - src[k];
- err += e * e;
+ err += ((int64_t)e * e);
}
dat += dat_stride;
src += src_stride;
}
- const __m256i sum64_0 =
- _mm256_cvtepi32_epi64(_mm256_castsi256_si128(sum32));
- const __m256i sum64_1 =
- _mm256_cvtepi32_epi64(_mm256_extracti128_si256(sum32, 1));
- sum64 = _mm256_add_epi64(sum64_0, sum64_1);
}
+
+ // Sum 4 values from sum64l and sum64h into err
int64_t sum[4];
yy_storeu_256(sum, sum64);
err += sum[0] + sum[1] + sum[2] + sum[3];
return err;
}
+#endif // CONFIG_AV1_HIGHBITDEPTH
diff --git a/media/libaom/src/av1/encoder/x86/pickrst_sse4.c b/media/libaom/src/av1/encoder/x86/pickrst_sse4.c
index 04e4d1afc4..a2f65a50c1 100644
--- a/media/libaom/src/av1/encoder/x86/pickrst_sse4.c
+++ b/media/libaom/src/av1/encoder/x86/pickrst_sse4.c
@@ -68,13 +68,13 @@ static INLINE void acc_stat_win7_one_line_sse4_1(
static INLINE void compute_stats_win7_opt_sse4_1(
const uint8_t *dgd, const uint8_t *src, int h_start, int h_end, int v_start,
- int v_end, int dgd_stride, int src_stride, double *M, double *H) {
+ int v_end, int dgd_stride, int src_stride, int64_t *M, int64_t *H) {
int i, j, k, l, m, n;
const int wiener_win = WIENER_WIN;
const int pixel_count = (h_end - h_start) * (v_end - v_start);
const int wiener_win2 = wiener_win * wiener_win;
const int wiener_halfwin = (wiener_win >> 1);
- const double avg =
+ const uint8_t avg =
find_average(dgd, h_start, h_end, v_start, v_end, dgd_stride);
int32_t M_int32[WIENER_WIN][WIENER_WIN] = { { 0 } };
@@ -107,23 +107,288 @@ static INLINE void compute_stats_win7_opt_sse4_1(
}
}
- const double avg_square_sum = avg * avg * pixel_count;
+ const int64_t avg_square_sum = (int64_t)avg * (int64_t)avg * pixel_count;
for (k = 0; k < wiener_win; k++) {
for (l = 0; l < wiener_win; l++) {
const int32_t idx0 = l * wiener_win + k;
- M[idx0] = M_int64[k][l] + avg_square_sum - avg * (sumX + sumY[k][l]);
- double *H_ = H + idx0 * wiener_win2;
+ M[idx0] =
+ M_int64[k][l] + (avg_square_sum - (int64_t)avg * (sumX + sumY[k][l]));
+ int64_t *H_ = H + idx0 * wiener_win2;
int64_t *H_int_ = &H_int64[idx0][0];
for (m = 0; m < wiener_win; m++) {
for (n = 0; n < wiener_win; n++) {
H_[m * wiener_win + n] = H_int_[n * 8 + m] + avg_square_sum -
- avg * (sumY[k][l] + sumY[n][m]);
+ (int64_t)avg * (sumY[k][l] + sumY[n][m]);
}
}
}
}
}
+#if CONFIG_AV1_HIGHBITDEPTH
+static INLINE void acc_stat_highbd_sse41(int64_t *dst, const uint16_t *dgd,
+ const __m128i *shuffle,
+ const __m128i *dgd_ijkl) {
+ // Load 256 bits from dgd in two chunks
+ const __m128i s0l = xx_loadu_128(dgd);
+ const __m128i s0h = xx_loadu_128(dgd + 4);
+ // s0l = [7 6 5 4 3 2 1 0] as u16 values (dgd indices)
+ // s0h = [11 10 9 8 7 6 5 4] as u16 values (dgd indices)
+ // (Slightly strange order so we can apply the same shuffle to both halves)
+
+ // Shuffle the u16 values in each half (actually using 8-bit shuffle mask)
+ const __m128i s1l = _mm_shuffle_epi8(s0l, *shuffle);
+ const __m128i s1h = _mm_shuffle_epi8(s0h, *shuffle);
+ // s1l = [4 3 3 2 2 1 1 0] as u16 values (dgd indices)
+ // s1h = [8 7 7 6 6 5 5 4] as u16 values (dgd indices)
+
+ // Multiply s1 by dgd_ijkl resulting in 8x u32 values
+ // Horizontally add pairs of u32 resulting in 4x u32
+ const __m128i dl = _mm_madd_epi16(*dgd_ijkl, s1l);
+ const __m128i dh = _mm_madd_epi16(*dgd_ijkl, s1h);
+ // dl = [d c b a] as u32 values
+ // dh = [h g f e] as u32 values
+
+ // Add these 8x u32 results on to dst in four parts
+ const __m128i dll = _mm_cvtepu32_epi64(dl);
+ const __m128i dlh = _mm_cvtepu32_epi64(_mm_srli_si128(dl, 8));
+ const __m128i dhl = _mm_cvtepu32_epi64(dh);
+ const __m128i dhh = _mm_cvtepu32_epi64(_mm_srli_si128(dh, 8));
+ // dll = [b a] as u64 values, etc.
+
+ const __m128i rll = _mm_add_epi64(xx_loadu_128(dst), dll);
+ xx_storeu_128(dst, rll);
+ const __m128i rlh = _mm_add_epi64(xx_loadu_128(dst + 2), dlh);
+ xx_storeu_128(dst + 2, rlh);
+ const __m128i rhl = _mm_add_epi64(xx_loadu_128(dst + 4), dhl);
+ xx_storeu_128(dst + 4, rhl);
+ const __m128i rhh = _mm_add_epi64(xx_loadu_128(dst + 6), dhh);
+ xx_storeu_128(dst + 6, rhh);
+}
+
+static INLINE void acc_stat_highbd_win7_one_line_sse4_1(
+ const uint16_t *dgd, const uint16_t *src, int h_start, int h_end,
+ int dgd_stride, const __m128i *shuffle, int32_t *sumX,
+ int32_t sumY[WIENER_WIN][WIENER_WIN], int64_t M_int[WIENER_WIN][WIENER_WIN],
+ int64_t H_int[WIENER_WIN2][WIENER_WIN * 8]) {
+ int j, k, l;
+ const int wiener_win = WIENER_WIN;
+ for (j = h_start; j < h_end; j += 2) {
+ const uint16_t X1 = src[j];
+ const uint16_t X2 = src[j + 1];
+ *sumX += X1 + X2;
+ const uint16_t *dgd_ij = dgd + j;
+ for (k = 0; k < wiener_win; k++) {
+ const uint16_t *dgd_ijk = dgd_ij + k * dgd_stride;
+ for (l = 0; l < wiener_win; l++) {
+ int64_t *H_ = &H_int[(l * wiener_win + k)][0];
+ const uint16_t D1 = dgd_ijk[l];
+ const uint16_t D2 = dgd_ijk[l + 1];
+ sumY[k][l] += D1 + D2;
+ M_int[k][l] += D1 * X1 + D2 * X2;
+
+ // Load two u16 values from dgd as a single u32
+ // Then broadcast to 4x u32 slots of a 128
+ const __m128i dgd_ijkl = _mm_set1_epi32(*((uint32_t *)(dgd_ijk + l)));
+ // dgd_ijkl = [y x y x y x y x] as u16
+
+ acc_stat_highbd_sse41(H_ + 0 * 8, dgd_ij + 0 * dgd_stride, shuffle,
+ &dgd_ijkl);
+ acc_stat_highbd_sse41(H_ + 1 * 8, dgd_ij + 1 * dgd_stride, shuffle,
+ &dgd_ijkl);
+ acc_stat_highbd_sse41(H_ + 2 * 8, dgd_ij + 2 * dgd_stride, shuffle,
+ &dgd_ijkl);
+ acc_stat_highbd_sse41(H_ + 3 * 8, dgd_ij + 3 * dgd_stride, shuffle,
+ &dgd_ijkl);
+ acc_stat_highbd_sse41(H_ + 4 * 8, dgd_ij + 4 * dgd_stride, shuffle,
+ &dgd_ijkl);
+ acc_stat_highbd_sse41(H_ + 5 * 8, dgd_ij + 5 * dgd_stride, shuffle,
+ &dgd_ijkl);
+ acc_stat_highbd_sse41(H_ + 6 * 8, dgd_ij + 6 * dgd_stride, shuffle,
+ &dgd_ijkl);
+ }
+ }
+ }
+}
+
+static INLINE void compute_stats_highbd_win7_opt_sse4_1(
+ const uint8_t *dgd8, const uint8_t *src8, int h_start, int h_end,
+ int v_start, int v_end, int dgd_stride, int src_stride, int64_t *M,
+ int64_t *H, aom_bit_depth_t bit_depth) {
+ int i, j, k, l, m, n;
+ const int wiener_win = WIENER_WIN;
+ const int pixel_count = (h_end - h_start) * (v_end - v_start);
+ const int wiener_win2 = wiener_win * wiener_win;
+ const int wiener_halfwin = (wiener_win >> 1);
+ const uint16_t *src = CONVERT_TO_SHORTPTR(src8);
+ const uint16_t *dgd = CONVERT_TO_SHORTPTR(dgd8);
+ const uint16_t avg =
+ find_average_highbd(dgd, h_start, h_end, v_start, v_end, dgd_stride);
+
+ int64_t M_int[WIENER_WIN][WIENER_WIN] = { { 0 } };
+ int64_t H_int[WIENER_WIN2][WIENER_WIN * 8] = { { 0 } };
+ int32_t sumY[WIENER_WIN][WIENER_WIN] = { { 0 } };
+ int32_t sumX = 0;
+ const uint16_t *dgd_win = dgd - wiener_halfwin * dgd_stride - wiener_halfwin;
+
+ // Load just half of the 256-bit shuffle control used for the AVX2 version
+ const __m128i shuffle = xx_loadu_128(g_shuffle_stats_highbd_data);
+ for (j = v_start; j < v_end; j += 64) {
+ const int vert_end = AOMMIN(64, v_end - j) + j;
+ for (i = j; i < vert_end; i++) {
+ acc_stat_highbd_win7_one_line_sse4_1(
+ dgd_win + i * dgd_stride, src + i * src_stride, h_start, h_end,
+ dgd_stride, &shuffle, &sumX, sumY, M_int, H_int);
+ }
+ }
+
+ uint8_t bit_depth_divider = 1;
+ if (bit_depth == AOM_BITS_12)
+ bit_depth_divider = 16;
+ else if (bit_depth == AOM_BITS_10)
+ bit_depth_divider = 4;
+
+ const int64_t avg_square_sum = (int64_t)avg * (int64_t)avg * pixel_count;
+ for (k = 0; k < wiener_win; k++) {
+ for (l = 0; l < wiener_win; l++) {
+ const int32_t idx0 = l * wiener_win + k;
+ M[idx0] = (M_int[k][l] +
+ (avg_square_sum - (int64_t)avg * (sumX + sumY[k][l]))) /
+ bit_depth_divider;
+ int64_t *H_ = H + idx0 * wiener_win2;
+ int64_t *H_int_ = &H_int[idx0][0];
+ for (m = 0; m < wiener_win; m++) {
+ for (n = 0; n < wiener_win; n++) {
+ H_[m * wiener_win + n] =
+ (H_int_[n * 8 + m] +
+ (avg_square_sum - (int64_t)avg * (sumY[k][l] + sumY[n][m]))) /
+ bit_depth_divider;
+ }
+ }
+ }
+ }
+}
+
+static INLINE void acc_stat_highbd_win5_one_line_sse4_1(
+ const uint16_t *dgd, const uint16_t *src, int h_start, int h_end,
+ int dgd_stride, const __m128i *shuffle, int32_t *sumX,
+ int32_t sumY[WIENER_WIN_CHROMA][WIENER_WIN_CHROMA],
+ int64_t M_int[WIENER_WIN_CHROMA][WIENER_WIN_CHROMA],
+ int64_t H_int[WIENER_WIN2_CHROMA][WIENER_WIN_CHROMA * 8]) {
+ int j, k, l;
+ const int wiener_win = WIENER_WIN_CHROMA;
+ for (j = h_start; j < h_end; j += 2) {
+ const uint16_t X1 = src[j];
+ const uint16_t X2 = src[j + 1];
+ *sumX += X1 + X2;
+ const uint16_t *dgd_ij = dgd + j;
+ for (k = 0; k < wiener_win; k++) {
+ const uint16_t *dgd_ijk = dgd_ij + k * dgd_stride;
+ for (l = 0; l < wiener_win; l++) {
+ int64_t *H_ = &H_int[(l * wiener_win + k)][0];
+ const uint16_t D1 = dgd_ijk[l];
+ const uint16_t D2 = dgd_ijk[l + 1];
+ sumY[k][l] += D1 + D2;
+ M_int[k][l] += D1 * X1 + D2 * X2;
+
+ // Load two u16 values from dgd as a single u32
+ // then broadcast to 4x u32 slots of a 128
+ const __m128i dgd_ijkl = _mm_set1_epi32(*((uint32_t *)(dgd_ijk + l)));
+ // dgd_ijkl = [y x y x y x y x] as u16
+
+ acc_stat_highbd_sse41(H_ + 0 * 8, dgd_ij + 0 * dgd_stride, shuffle,
+ &dgd_ijkl);
+ acc_stat_highbd_sse41(H_ + 1 * 8, dgd_ij + 1 * dgd_stride, shuffle,
+ &dgd_ijkl);
+ acc_stat_highbd_sse41(H_ + 2 * 8, dgd_ij + 2 * dgd_stride, shuffle,
+ &dgd_ijkl);
+ acc_stat_highbd_sse41(H_ + 3 * 8, dgd_ij + 3 * dgd_stride, shuffle,
+ &dgd_ijkl);
+ acc_stat_highbd_sse41(H_ + 4 * 8, dgd_ij + 4 * dgd_stride, shuffle,
+ &dgd_ijkl);
+ }
+ }
+ }
+}
+
+static INLINE void compute_stats_highbd_win5_opt_sse4_1(
+ const uint8_t *dgd8, const uint8_t *src8, int h_start, int h_end,
+ int v_start, int v_end, int dgd_stride, int src_stride, int64_t *M,
+ int64_t *H, aom_bit_depth_t bit_depth) {
+ int i, j, k, l, m, n;
+ const int wiener_win = WIENER_WIN_CHROMA;
+ const int pixel_count = (h_end - h_start) * (v_end - v_start);
+ const int wiener_win2 = wiener_win * wiener_win;
+ const int wiener_halfwin = (wiener_win >> 1);
+ const uint16_t *src = CONVERT_TO_SHORTPTR(src8);
+ const uint16_t *dgd = CONVERT_TO_SHORTPTR(dgd8);
+ const uint16_t avg =
+ find_average_highbd(dgd, h_start, h_end, v_start, v_end, dgd_stride);
+
+ int64_t M_int[WIENER_WIN_CHROMA][WIENER_WIN_CHROMA] = { { 0 } };
+ int64_t H_int[WIENER_WIN2_CHROMA][WIENER_WIN_CHROMA * 8] = { { 0 } };
+ int32_t sumY[WIENER_WIN_CHROMA][WIENER_WIN_CHROMA] = { { 0 } };
+ int32_t sumX = 0;
+ const uint16_t *dgd_win = dgd - wiener_halfwin * dgd_stride - wiener_halfwin;
+
+ // Load just half of the 256-bit shuffle control used for the AVX2 version
+ const __m128i shuffle = xx_loadu_128(g_shuffle_stats_highbd_data);
+ for (j = v_start; j < v_end; j += 64) {
+ const int vert_end = AOMMIN(64, v_end - j) + j;
+ for (i = j; i < vert_end; i++) {
+ acc_stat_highbd_win5_one_line_sse4_1(
+ dgd_win + i * dgd_stride, src + i * src_stride, h_start, h_end,
+ dgd_stride, &shuffle, &sumX, sumY, M_int, H_int);
+ }
+ }
+
+ uint8_t bit_depth_divider = 1;
+ if (bit_depth == AOM_BITS_12)
+ bit_depth_divider = 16;
+ else if (bit_depth == AOM_BITS_10)
+ bit_depth_divider = 4;
+
+ const int64_t avg_square_sum = (int64_t)avg * (int64_t)avg * pixel_count;
+ for (k = 0; k < wiener_win; k++) {
+ for (l = 0; l < wiener_win; l++) {
+ const int32_t idx0 = l * wiener_win + k;
+ M[idx0] = (M_int[k][l] +
+ (avg_square_sum - (int64_t)avg * (sumX + sumY[k][l]))) /
+ bit_depth_divider;
+ int64_t *H_ = H + idx0 * wiener_win2;
+ int64_t *H_int_ = &H_int[idx0][0];
+ for (m = 0; m < wiener_win; m++) {
+ for (n = 0; n < wiener_win; n++) {
+ H_[m * wiener_win + n] =
+ (H_int_[n * 8 + m] +
+ (avg_square_sum - (int64_t)avg * (sumY[k][l] + sumY[n][m]))) /
+ bit_depth_divider;
+ }
+ }
+ }
+ }
+}
+
+void av1_compute_stats_highbd_sse4_1(int wiener_win, const uint8_t *dgd8,
+ const uint8_t *src8, int h_start,
+ int h_end, int v_start, int v_end,
+ int dgd_stride, int src_stride, int64_t *M,
+ int64_t *H, aom_bit_depth_t bit_depth) {
+ if (wiener_win == WIENER_WIN) {
+ compute_stats_highbd_win7_opt_sse4_1(dgd8, src8, h_start, h_end, v_start,
+ v_end, dgd_stride, src_stride, M, H,
+ bit_depth);
+ } else if (wiener_win == WIENER_WIN_CHROMA) {
+ compute_stats_highbd_win5_opt_sse4_1(dgd8, src8, h_start, h_end, v_start,
+ v_end, dgd_stride, src_stride, M, H,
+ bit_depth);
+ } else {
+ av1_compute_stats_highbd_c(wiener_win, dgd8, src8, h_start, h_end, v_start,
+ v_end, dgd_stride, src_stride, M, H, bit_depth);
+ }
+}
+#endif // CONFIG_AV1_HIGHBITDEPTH
+
static INLINE void acc_stat_win5_one_line_sse4_1(
const uint8_t *dgd, const uint8_t *src, int h_start, int h_end,
int dgd_stride, const __m128i *shuffle, int32_t *sumX,
@@ -160,13 +425,13 @@ static INLINE void acc_stat_win5_one_line_sse4_1(
static INLINE void compute_stats_win5_opt_sse4_1(
const uint8_t *dgd, const uint8_t *src, int h_start, int h_end, int v_start,
- int v_end, int dgd_stride, int src_stride, double *M, double *H) {
+ int v_end, int dgd_stride, int src_stride, int64_t *M, int64_t *H) {
int i, j, k, l, m, n;
const int wiener_win = WIENER_WIN_CHROMA;
const int pixel_count = (h_end - h_start) * (v_end - v_start);
const int wiener_win2 = wiener_win * wiener_win;
const int wiener_halfwin = (wiener_win >> 1);
- const double avg =
+ const uint8_t avg =
find_average(dgd, h_start, h_end, v_start, v_end, dgd_stride);
int32_t M_int32[WIENER_WIN_CHROMA][WIENER_WIN_CHROMA] = { { 0 } };
@@ -199,17 +464,18 @@ static INLINE void compute_stats_win5_opt_sse4_1(
}
}
- const double avg_square_sum = avg * avg * pixel_count;
+ const int64_t avg_square_sum = (int64_t)avg * (int64_t)avg * pixel_count;
for (k = 0; k < wiener_win; k++) {
for (l = 0; l < wiener_win; l++) {
const int32_t idx0 = l * wiener_win + k;
- M[idx0] = M_int64[k][l] + avg_square_sum - avg * (sumX + sumY[k][l]);
- double *H_ = H + idx0 * wiener_win2;
+ M[idx0] =
+ M_int64[k][l] + (avg_square_sum - (int64_t)avg * (sumX + sumY[k][l]));
+ int64_t *H_ = H + idx0 * wiener_win2;
int64_t *H_int_ = &H_int64[idx0][0];
for (m = 0; m < wiener_win; m++) {
for (n = 0; n < wiener_win; n++) {
H_[m * wiener_win + n] = H_int_[n * 8 + m] + avg_square_sum -
- avg * (sumY[k][l] + sumY[n][m]);
+ (int64_t)avg * (sumY[k][l] + sumY[n][m]);
}
}
}
@@ -218,7 +484,7 @@ static INLINE void compute_stats_win5_opt_sse4_1(
void av1_compute_stats_sse4_1(int wiener_win, const uint8_t *dgd,
const uint8_t *src, int h_start, int h_end,
int v_start, int v_end, int dgd_stride,
- int src_stride, double *M, double *H) {
+ int src_stride, int64_t *M, int64_t *H) {
if (wiener_win == WIENER_WIN) {
compute_stats_win7_opt_sse4_1(dgd, src, h_start, h_end, v_start, v_end,
dgd_stride, src_stride, M, H);
@@ -231,7 +497,7 @@ void av1_compute_stats_sse4_1(int wiener_win, const uint8_t *dgd,
}
}
-static INLINE __m128i pair_set_epi16(uint16_t a, uint16_t b) {
+static INLINE __m128i pair_set_epi16(int a, int b) {
return _mm_set1_epi32((int32_t)(((uint16_t)(a)) | (((uint32_t)(b)) << 16)));
}
@@ -250,7 +516,7 @@ int64_t av1_lowbd_pixel_proj_error_sse4_1(
__m128i xq_coeff = pair_set_epi16(xq[0], xq[1]);
for (i = 0; i < height; ++i) {
__m128i sum32 = _mm_setzero_si128();
- for (j = 0; j < width - 8; j += 8) {
+ for (j = 0; j <= width - 8; j += 8) {
const __m128i d0 = _mm_cvtepu8_epi16(xx_loadl_64(dat + j));
const __m128i s0 = _mm_cvtepu8_epi16(xx_loadl_64(src + j));
const __m128i flt0_16b =
@@ -275,7 +541,7 @@ int64_t av1_lowbd_pixel_proj_error_sse4_1(
const int32_t u = (int32_t)(dat[k] << SGRPROJ_RST_BITS);
int32_t v = xq[0] * (flt0[k] - u) + xq[1] * (flt1[k] - u);
const int32_t e = ROUND_POWER_OF_TWO(v, shift) + dat[k] - src[k];
- err += e * e;
+ err += ((int64_t)e * e);
}
dat += dat_stride;
src += src_stride;
@@ -286,19 +552,23 @@ int64_t av1_lowbd_pixel_proj_error_sse4_1(
sum64 = _mm_add_epi64(sum64, sum64_0);
sum64 = _mm_add_epi64(sum64, sum64_1);
}
- } else if (params->r[0] > 0) {
- __m128i xq_coeff = pair_set_epi16(xq[0], -(xq[0] << SGRPROJ_RST_BITS));
+ } else if (params->r[0] > 0 || params->r[1] > 0) {
+ const int xq_active = (params->r[0] > 0) ? xq[0] : xq[1];
+ const __m128i xq_coeff =
+ pair_set_epi16(xq_active, -(xq_active << SGRPROJ_RST_BITS));
+ const int32_t *flt = (params->r[0] > 0) ? flt0 : flt1;
+ const int flt_stride = (params->r[0] > 0) ? flt0_stride : flt1_stride;
for (i = 0; i < height; ++i) {
__m128i sum32 = _mm_setzero_si128();
- for (j = 0; j < width - 8; j += 8) {
+ for (j = 0; j <= width - 8; j += 8) {
const __m128i d0 = _mm_cvtepu8_epi16(xx_loadl_64(dat + j));
const __m128i s0 = _mm_cvtepu8_epi16(xx_loadl_64(src + j));
- const __m128i flt0_16b =
- _mm_packs_epi32(xx_loadu_128(flt0 + j), xx_loadu_128(flt0 + j + 4));
+ const __m128i flt_16b =
+ _mm_packs_epi32(xx_loadu_128(flt + j), xx_loadu_128(flt + j + 4));
const __m128i v0 =
- _mm_madd_epi16(xq_coeff, _mm_unpacklo_epi16(flt0_16b, d0));
+ _mm_madd_epi16(xq_coeff, _mm_unpacklo_epi16(flt_16b, d0));
const __m128i v1 =
- _mm_madd_epi16(xq_coeff, _mm_unpackhi_epi16(flt0_16b, d0));
+ _mm_madd_epi16(xq_coeff, _mm_unpackhi_epi16(flt_16b, d0));
const __m128i vr0 = _mm_srai_epi32(_mm_add_epi32(v0, rounding), shift);
const __m128i vr1 = _mm_srai_epi32(_mm_add_epi32(v1, rounding), shift);
const __m128i e0 =
@@ -308,82 +578,256 @@ int64_t av1_lowbd_pixel_proj_error_sse4_1(
}
for (k = j; k < width; ++k) {
const int32_t u = (int32_t)(dat[k] << SGRPROJ_RST_BITS);
- int32_t v = xq[0] * (flt0[k] - u);
+ int32_t v = xq_active * (flt[k] - u);
const int32_t e = ROUND_POWER_OF_TWO(v, shift) + dat[k] - src[k];
- err += e * e;
+ err += ((int64_t)e * e);
}
dat += dat_stride;
src += src_stride;
- flt0 += flt0_stride;
+ flt += flt_stride;
const __m128i sum64_0 = _mm_cvtepi32_epi64(sum32);
const __m128i sum64_1 = _mm_cvtepi32_epi64(_mm_srli_si128(sum32, 8));
sum64 = _mm_add_epi64(sum64, sum64_0);
sum64 = _mm_add_epi64(sum64, sum64_1);
}
- } else if (params->r[1] > 0) {
- __m128i xq_coeff = pair_set_epi16(xq[1], -(xq[1] << SGRPROJ_RST_BITS));
+ } else {
+ __m128i sum32 = _mm_setzero_si128();
+ for (i = 0; i < height; ++i) {
+ for (j = 0; j <= width - 16; j += 16) {
+ const __m128i d = xx_loadu_128(dat + j);
+ const __m128i s = xx_loadu_128(src + j);
+ const __m128i d0 = _mm_cvtepu8_epi16(d);
+ const __m128i d1 = _mm_cvtepu8_epi16(_mm_srli_si128(d, 8));
+ const __m128i s0 = _mm_cvtepu8_epi16(s);
+ const __m128i s1 = _mm_cvtepu8_epi16(_mm_srli_si128(s, 8));
+ const __m128i diff0 = _mm_sub_epi16(d0, s0);
+ const __m128i diff1 = _mm_sub_epi16(d1, s1);
+ const __m128i err0 = _mm_madd_epi16(diff0, diff0);
+ const __m128i err1 = _mm_madd_epi16(diff1, diff1);
+ sum32 = _mm_add_epi32(sum32, err0);
+ sum32 = _mm_add_epi32(sum32, err1);
+ }
+ for (k = j; k < width; ++k) {
+ const int32_t e = (int32_t)(dat[k]) - src[k];
+ err += ((int64_t)e * e);
+ }
+ dat += dat_stride;
+ src += src_stride;
+ }
+ const __m128i sum64_0 = _mm_cvtepi32_epi64(sum32);
+ const __m128i sum64_1 = _mm_cvtepi32_epi64(_mm_srli_si128(sum32, 8));
+ sum64 = _mm_add_epi64(sum64_0, sum64_1);
+ }
+ int64_t sum[2];
+ xx_storeu_128(sum, sum64);
+ err += sum[0] + sum[1];
+ return err;
+}
+
+#if CONFIG_AV1_HIGHBITDEPTH
+int64_t av1_highbd_pixel_proj_error_sse4_1(
+ const uint8_t *src8, int width, int height, int src_stride,
+ const uint8_t *dat8, int dat_stride, int32_t *flt0, int flt0_stride,
+ int32_t *flt1, int flt1_stride, int xq[2], const sgr_params_type *params) {
+ int i, j, k;
+ const int32_t shift = SGRPROJ_RST_BITS + SGRPROJ_PRJ_BITS;
+ const __m128i rounding = _mm_set1_epi32(1 << (shift - 1));
+ __m128i sum64 = _mm_setzero_si128();
+ const uint16_t *src = CONVERT_TO_SHORTPTR(src8);
+ const uint16_t *dat = CONVERT_TO_SHORTPTR(dat8);
+ int64_t err = 0;
+ if (params->r[0] > 0 && params->r[1] > 0) { // Both filters are enabled
+ const __m128i xq0 = _mm_set1_epi32(xq[0]);
+ const __m128i xq1 = _mm_set1_epi32(xq[1]);
+
for (i = 0; i < height; ++i) {
__m128i sum32 = _mm_setzero_si128();
- for (j = 0; j < width - 8; j += 8) {
- const __m128i d0 = _mm_cvtepu8_epi16(xx_loadl_64(dat + j));
- const __m128i s0 = _mm_cvtepu8_epi16(xx_loadl_64(src + j));
- const __m128i flt1_16b =
- _mm_packs_epi32(xx_loadu_128(flt1 + j), xx_loadu_128(flt1 + j + 4));
- const __m128i v0 =
- _mm_madd_epi16(xq_coeff, _mm_unpacklo_epi16(flt1_16b, d0));
- const __m128i v1 =
- _mm_madd_epi16(xq_coeff, _mm_unpackhi_epi16(flt1_16b, d0));
- const __m128i vr0 = _mm_srai_epi32(_mm_add_epi32(v0, rounding), shift);
- const __m128i vr1 = _mm_srai_epi32(_mm_add_epi32(v1, rounding), shift);
- const __m128i e0 =
- _mm_sub_epi16(_mm_add_epi16(_mm_packs_epi32(vr0, vr1), d0), s0);
+ for (j = 0; j <= width - 8; j += 8) {
+ // Load 8x pixels from source image
+ const __m128i s0 = xx_loadu_128(src + j);
+ // s0 = [7 6 5 4 3 2 1 0] as i16 (indices of src[])
+
+ // Load 8x pixels from corrupted image
+ const __m128i d0 = xx_loadu_128(dat + j);
+ // d0 = [7 6 5 4 3 2 1 0] as i16 (indices of dat[])
+
+ // Shift each pixel value up by SGRPROJ_RST_BITS
+ const __m128i u0 = _mm_slli_epi16(d0, SGRPROJ_RST_BITS);
+
+ // Split u0 into two halves and pad each from u16 to i32
+ const __m128i u0l = _mm_cvtepu16_epi32(u0);
+ const __m128i u0h = _mm_cvtepu16_epi32(_mm_srli_si128(u0, 8));
+ // u0h = [7 6 5 4] as i32, u0l = [3 2 1 0] as i32, all dat[] indices
+
+ // Load 8 pixels from first and second filtered images
+ const __m128i flt0l = xx_loadu_128(flt0 + j);
+ const __m128i flt0h = xx_loadu_128(flt0 + j + 4);
+ const __m128i flt1l = xx_loadu_128(flt1 + j);
+ const __m128i flt1h = xx_loadu_128(flt1 + j + 4);
+ // flt0 = [7 6 5 4] [3 2 1 0] as i32 (indices of flt0+j)
+ // flt1 = [7 6 5 4] [3 2 1 0] as i32 (indices of flt1+j)
+
+ // Subtract shifted corrupt image from each filtered image
+ // This gives our two basis vectors for the projection
+ const __m128i flt0l_subu = _mm_sub_epi32(flt0l, u0l);
+ const __m128i flt0h_subu = _mm_sub_epi32(flt0h, u0h);
+ const __m128i flt1l_subu = _mm_sub_epi32(flt1l, u0l);
+ const __m128i flt1h_subu = _mm_sub_epi32(flt1h, u0h);
+ // flt?h_subu = [ f[7]-u[7] f[6]-u[6] f[5]-u[5] f[4]-u[4] ] as i32
+ // flt?l_subu = [ f[3]-u[3] f[2]-u[2] f[1]-u[1] f[0]-u[0] ] as i32
+
+ // Multiply each basis vector by the corresponding coefficient
+ const __m128i v0l = _mm_mullo_epi32(flt0l_subu, xq0);
+ const __m128i v0h = _mm_mullo_epi32(flt0h_subu, xq0);
+ const __m128i v1l = _mm_mullo_epi32(flt1l_subu, xq1);
+ const __m128i v1h = _mm_mullo_epi32(flt1h_subu, xq1);
+
+ // Add together the contribution from each scaled basis vector
+ const __m128i vl = _mm_add_epi32(v0l, v1l);
+ const __m128i vh = _mm_add_epi32(v0h, v1h);
+
+ // Right-shift v with appropriate rounding
+ const __m128i vrl = _mm_srai_epi32(_mm_add_epi32(vl, rounding), shift);
+ const __m128i vrh = _mm_srai_epi32(_mm_add_epi32(vh, rounding), shift);
+
+ // Saturate each i32 value to i16 and combine lower and upper halves
+ const __m128i vr = _mm_packs_epi32(vrl, vrh);
+
+ // Add twin-subspace-sgr-filter to corrupt image then subtract source
+ const __m128i e0 = _mm_sub_epi16(_mm_add_epi16(vr, d0), s0);
+
+ // Calculate squared error and add adjacent values
const __m128i err0 = _mm_madd_epi16(e0, e0);
+
sum32 = _mm_add_epi32(sum32, err0);
}
+
+ const __m128i sum32l = _mm_cvtepu32_epi64(sum32);
+ sum64 = _mm_add_epi64(sum64, sum32l);
+ const __m128i sum32h = _mm_cvtepu32_epi64(_mm_srli_si128(sum32, 8));
+ sum64 = _mm_add_epi64(sum64, sum32h);
+
+ // Process remaining pixels in this row (modulo 8)
for (k = j; k < width; ++k) {
const int32_t u = (int32_t)(dat[k] << SGRPROJ_RST_BITS);
- int32_t v = xq[1] * (flt1[k] - u);
+ int32_t v = xq[0] * (flt0[k] - u) + xq[1] * (flt1[k] - u);
const int32_t e = ROUND_POWER_OF_TWO(v, shift) + dat[k] - src[k];
- err += e * e;
+ err += ((int64_t)e * e);
}
dat += dat_stride;
src += src_stride;
+ flt0 += flt0_stride;
flt1 += flt1_stride;
- const __m128i sum64_0 = _mm_cvtepi32_epi64(sum32);
- const __m128i sum64_1 = _mm_cvtepi32_epi64(_mm_srli_si128(sum32, 8));
- sum64 = _mm_add_epi64(sum64, sum64_0);
- sum64 = _mm_add_epi64(sum64, sum64_1);
}
- } else {
- __m128i sum32 = _mm_setzero_si128();
+ } else if (params->r[0] > 0 || params->r[1] > 0) { // Only one filter enabled
+ const int32_t xq_on = (params->r[0] > 0) ? xq[0] : xq[1];
+ const __m128i xq_active = _mm_set1_epi32(xq_on);
+ const __m128i xq_inactive =
+ _mm_set1_epi32(-xq_on * (1 << SGRPROJ_RST_BITS));
+ const int32_t *flt = (params->r[0] > 0) ? flt0 : flt1;
+ const int flt_stride = (params->r[0] > 0) ? flt0_stride : flt1_stride;
for (i = 0; i < height; ++i) {
- for (j = 0; j < width - 16; j += 16) {
- const __m128i d = xx_loadu_128(dat + j);
- const __m128i s = xx_loadu_128(src + j);
- const __m128i d0 = _mm_cvtepu8_epi16(d);
- const __m128i d1 = _mm_cvtepu8_epi16(_mm_srli_si128(d, 8));
- const __m128i s0 = _mm_cvtepu8_epi16(s);
- const __m128i s1 = _mm_cvtepu8_epi16(_mm_srli_si128(s, 8));
+ __m128i sum32 = _mm_setzero_si128();
+ for (j = 0; j <= width - 8; j += 8) {
+ // Load 8x pixels from source image
+ const __m128i s0 = xx_loadu_128(src + j);
+ // s0 = [7 6 5 4 3 2 1 0] as u16 (indices of src[])
+
+ // Load 8x pixels from corrupted image and pad each u16 to i32
+ const __m128i d0 = xx_loadu_128(dat + j);
+ const __m128i d0h = _mm_cvtepu16_epi32(_mm_srli_si128(d0, 8));
+ const __m128i d0l = _mm_cvtepu16_epi32(d0);
+ // d0h, d0l = [7 6 5 4], [3 2 1 0] as u32 (indices of dat[])
+
+ // Load 8 pixels from the filtered image
+ const __m128i flth = xx_loadu_128(flt + j + 4);
+ const __m128i fltl = xx_loadu_128(flt + j);
+ // flth, fltl = [7 6 5 4], [3 2 1 0] as i32 (indices of flt+j)
+
+ const __m128i flth_xq = _mm_mullo_epi32(flth, xq_active);
+ const __m128i fltl_xq = _mm_mullo_epi32(fltl, xq_active);
+ const __m128i d0h_xq = _mm_mullo_epi32(d0h, xq_inactive);
+ const __m128i d0l_xq = _mm_mullo_epi32(d0l, xq_inactive);
+
+ const __m128i vh = _mm_add_epi32(flth_xq, d0h_xq);
+ const __m128i vl = _mm_add_epi32(fltl_xq, d0l_xq);
+ // vh = [ xq0(f[7]-d[7]) xq0(f[6]-d[6]) xq0(f[5]-d[5]) xq0(f[4]-d[4]) ]
+ // vl = [ xq0(f[3]-d[3]) xq0(f[2]-d[2]) xq0(f[1]-d[1]) xq0(f[0]-d[0]) ]
+
+ // Shift this down with appropriate rounding
+ const __m128i vrh = _mm_srai_epi32(_mm_add_epi32(vh, rounding), shift);
+ const __m128i vrl = _mm_srai_epi32(_mm_add_epi32(vl, rounding), shift);
+
+ // Saturate vr0 and vr1 from i32 to i16 then pack together
+ const __m128i vr = _mm_packs_epi32(vrl, vrh);
+
+ // Subtract twin-subspace-sgr filtered from source image to get error
+ const __m128i e0 = _mm_sub_epi16(_mm_add_epi16(vr, d0), s0);
+
+ // Calculate squared error and add adjacent values
+ const __m128i err0 = _mm_madd_epi16(e0, e0);
+
+ sum32 = _mm_add_epi32(sum32, err0);
+ }
+
+ const __m128i sum32l = _mm_cvtepu32_epi64(sum32);
+ sum64 = _mm_add_epi64(sum64, sum32l);
+ const __m128i sum32h = _mm_cvtepu32_epi64(_mm_srli_si128(sum32, 8));
+ sum64 = _mm_add_epi64(sum64, sum32h);
+
+ // Process remaining pixels in this row (modulo 8)
+ for (k = j; k < width; ++k) {
+ const int32_t u = (int32_t)(dat[k] << SGRPROJ_RST_BITS);
+ int32_t v = xq_on * (flt[k] - u);
+ const int32_t e = ROUND_POWER_OF_TWO(v, shift) + dat[k] - src[k];
+ err += ((int64_t)e * e);
+ }
+ dat += dat_stride;
+ src += src_stride;
+ flt += flt_stride;
+ }
+ } else { // Neither filter is enabled
+ for (i = 0; i < height; ++i) {
+ __m128i sum32 = _mm_setzero_si128();
+ for (j = 0; j <= width - 16; j += 16) {
+ // Load 2x8 u16 from source image
+ const __m128i s0 = xx_loadu_128(src + j);
+ const __m128i s1 = xx_loadu_128(src + j + 8);
+ // Load 2x8 u16 from corrupted image
+ const __m128i d0 = xx_loadu_128(dat + j);
+ const __m128i d1 = xx_loadu_128(dat + j + 8);
+
+ // Subtract corrupted image from source image
const __m128i diff0 = _mm_sub_epi16(d0, s0);
const __m128i diff1 = _mm_sub_epi16(d1, s1);
+
+ // Square error and add adjacent values
const __m128i err0 = _mm_madd_epi16(diff0, diff0);
const __m128i err1 = _mm_madd_epi16(diff1, diff1);
+
sum32 = _mm_add_epi32(sum32, err0);
sum32 = _mm_add_epi32(sum32, err1);
}
+
+ const __m128i sum32l = _mm_cvtepu32_epi64(sum32);
+ sum64 = _mm_add_epi64(sum64, sum32l);
+ const __m128i sum32h = _mm_cvtepu32_epi64(_mm_srli_si128(sum32, 8));
+ sum64 = _mm_add_epi64(sum64, sum32h);
+
+ // Process remaining pixels (modulu 8)
for (k = j; k < width; ++k) {
const int32_t e = (int32_t)(dat[k]) - src[k];
- err += e * e;
+ err += ((int64_t)e * e);
}
dat += dat_stride;
src += src_stride;
}
- const __m128i sum64_0 = _mm_cvtepi32_epi64(sum32);
- const __m128i sum64_1 = _mm_cvtepi32_epi64(_mm_srli_si128(sum32, 8));
- sum64 = _mm_add_epi64(sum64_0, sum64_1);
}
+
+ // Sum 4 values from sum64l and sum64h into err
int64_t sum[2];
xx_storeu_128(sum, sum64);
err += sum[0] + sum[1];
return err;
}
+#endif // CONFIG_AV1_HIGHBITDEPTH
diff --git a/media/libaom/src/av1/encoder/x86/rdopt_avx2.c b/media/libaom/src/av1/encoder/x86/rdopt_avx2.c
new file mode 100644
index 0000000000..f588badc7c
--- /dev/null
+++ b/media/libaom/src/av1/encoder/x86/rdopt_avx2.c
@@ -0,0 +1,256 @@
+/*
+ * Copyright (c) 2018, Alliance for Open Media. All rights reserved
+ *
+ * This source code is subject to the terms of the BSD 2 Clause License and
+ * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
+ * was not distributed with this source code in the LICENSE file, you can
+ * obtain it at www.aomedia.org/license/software. If the Alliance for Open
+ * Media Patent License 1.0 was not distributed with this source code in the
+ * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
+ */
+
+#include <assert.h>
+#include <immintrin.h>
+#include "aom_dsp/x86/synonyms_avx2.h"
+#include "aom_ports/system_state.h"
+
+#include "config/av1_rtcd.h"
+#include "av1/encoder/rdopt.h"
+
+// Process horizontal and vertical correlations in a 4x4 block of pixels.
+// We actually use the 4x4 pixels to calculate correlations corresponding to
+// the top-left 3x3 pixels, so this function must be called with 1x1 overlap,
+// moving the window along/down by 3 pixels at a time.
+INLINE static void horver_correlation_4x4(const int16_t *diff, int stride,
+ __m256i *xy_sum_32,
+ __m256i *xz_sum_32, __m256i *x_sum_32,
+ __m256i *x2_sum_32) {
+ // Pixels in this 4x4 [ a b c d ]
+ // are referred to as: [ e f g h ]
+ // [ i j k l ]
+ // [ m n o p ]
+
+ const __m256i pixels = _mm256_set_epi64x(
+ *(uint64_t *)&diff[0 * stride], *(uint64_t *)&diff[1 * stride],
+ *(uint64_t *)&diff[2 * stride], *(uint64_t *)&diff[3 * stride]);
+ // pixels = [d c b a h g f e] [l k j i p o n m] as i16
+
+ const __m256i slli = _mm256_slli_epi64(pixels, 16);
+ // slli = [c b a 0 g f e 0] [k j i 0 o n m 0] as i16
+
+ const __m256i madd_xy = _mm256_madd_epi16(pixels, slli);
+ // madd_xy = [bc+cd ab fg+gh ef] [jk+kl ij no+op mn] as i32
+ *xy_sum_32 = _mm256_add_epi32(*xy_sum_32, madd_xy);
+
+ // Permute control [3 2] [1 0] => [2 1] [0 0], 0b10010000 = 0x90
+ const __m256i perm = _mm256_permute4x64_epi64(slli, 0x90);
+ // perm = [g f e 0 k j i 0] [o n m 0 o n m 0] as i16
+
+ const __m256i madd_xz = _mm256_madd_epi16(slli, perm);
+ // madd_xz = [cg+bf ae gk+fj ei] [ko+jn im oo+nn mm] as i32
+ *xz_sum_32 = _mm256_add_epi32(*xz_sum_32, madd_xz);
+
+ // Sum every element in slli (and then also their squares)
+ const __m256i madd1_slli = _mm256_madd_epi16(slli, _mm256_set1_epi16(1));
+ // madd1_slli = [c+b a g+f e] [k+j i o+n m] as i32
+ *x_sum_32 = _mm256_add_epi32(*x_sum_32, madd1_slli);
+
+ const __m256i madd_slli = _mm256_madd_epi16(slli, slli);
+ // madd_slli = [cc+bb aa gg+ff ee] [kk+jj ii oo+nn mm] as i32
+ *x2_sum_32 = _mm256_add_epi32(*x2_sum_32, madd_slli);
+}
+
+void av1_get_horver_correlation_full_avx2(const int16_t *diff, int stride,
+ int width, int height, float *hcorr,
+ float *vcorr) {
+ // The following notation is used:
+ // x - current pixel
+ // y - right neighbour pixel
+ // z - below neighbour pixel
+ // w - down-right neighbour pixel
+ int64_t xy_sum = 0, xz_sum = 0;
+ int64_t x_sum = 0, x2_sum = 0;
+
+ // Process horizontal and vertical correlations through the body in 4x4
+ // blocks. This excludes the final row and column and possibly one extra
+ // column depending how 3 divides into width and height
+ int32_t xy_xz_tmp[8] = { 0 }, x_x2_tmp[8] = { 0 };
+ __m256i xy_sum_32 = _mm256_setzero_si256();
+ __m256i xz_sum_32 = _mm256_setzero_si256();
+ __m256i x_sum_32 = _mm256_setzero_si256();
+ __m256i x2_sum_32 = _mm256_setzero_si256();
+ for (int i = 0; i <= height - 4; i += 3) {
+ for (int j = 0; j <= width - 4; j += 3) {
+ horver_correlation_4x4(&diff[i * stride + j], stride, &xy_sum_32,
+ &xz_sum_32, &x_sum_32, &x2_sum_32);
+ }
+ const __m256i hadd_xy_xz = _mm256_hadd_epi32(xy_sum_32, xz_sum_32);
+ // hadd_xy_xz = [ae+bf+cg ei+fj+gk ab+bc+cd ef+fg+gh]
+ // [im+jn+ko mm+nn+oo ij+jk+kl mn+no+op] as i32
+ yy_storeu_256(xy_xz_tmp, hadd_xy_xz);
+ xy_sum += (int64_t)xy_xz_tmp[5] + xy_xz_tmp[4] + xy_xz_tmp[1];
+ xz_sum += (int64_t)xy_xz_tmp[7] + xy_xz_tmp[6] + xy_xz_tmp[3];
+
+ const __m256i hadd_x_x2 = _mm256_hadd_epi32(x_sum_32, x2_sum_32);
+ // hadd_x_x2 = [aa+bb+cc ee+ff+gg a+b+c e+f+g]
+ // [ii+jj+kk mm+nn+oo i+j+k m+n+o] as i32
+ yy_storeu_256(x_x2_tmp, hadd_x_x2);
+ x_sum += (int64_t)x_x2_tmp[5] + x_x2_tmp[4] + x_x2_tmp[1];
+ x2_sum += (int64_t)x_x2_tmp[7] + x_x2_tmp[6] + x_x2_tmp[3];
+
+ xy_sum_32 = _mm256_setzero_si256();
+ xz_sum_32 = _mm256_setzero_si256();
+ x_sum_32 = _mm256_setzero_si256();
+ x2_sum_32 = _mm256_setzero_si256();
+ }
+
+ // x_sum now covers every pixel except the final 1-2 rows and 1-2 cols
+ int64_t x_finalrow = 0, x_finalcol = 0, x2_finalrow = 0, x2_finalcol = 0;
+
+ // Do we have 2 rows remaining or just the one? Note that width and height
+ // are powers of 2, so each modulo 3 must be 1 or 2.
+ if (height % 3 == 1) { // Just horiz corrs on the final row
+ const int16_t x0 = diff[(height - 1) * stride];
+ x_sum += x0;
+ x_finalrow += x0;
+ x2_sum += x0 * x0;
+ x2_finalrow += x0 * x0;
+ for (int j = 0; j < width - 1; ++j) {
+ const int16_t x = diff[(height - 1) * stride + j];
+ const int16_t y = diff[(height - 1) * stride + j + 1];
+ xy_sum += x * y;
+ x_sum += y;
+ x2_sum += y * y;
+ x_finalrow += y;
+ x2_finalrow += y * y;
+ }
+ } else { // Two rows remaining to do
+ const int16_t x0 = diff[(height - 2) * stride];
+ const int16_t z0 = diff[(height - 1) * stride];
+ x_sum += x0 + z0;
+ x2_sum += x0 * x0 + z0 * z0;
+ x_finalrow += z0;
+ x2_finalrow += z0 * z0;
+ for (int j = 0; j < width - 1; ++j) {
+ const int16_t x = diff[(height - 2) * stride + j];
+ const int16_t y = diff[(height - 2) * stride + j + 1];
+ const int16_t z = diff[(height - 1) * stride + j];
+ const int16_t w = diff[(height - 1) * stride + j + 1];
+
+ // Horizontal and vertical correlations for the penultimate row:
+ xy_sum += x * y;
+ xz_sum += x * z;
+
+ // Now just horizontal correlations for the final row:
+ xy_sum += z * w;
+
+ x_sum += y + w;
+ x2_sum += y * y + w * w;
+ x_finalrow += w;
+ x2_finalrow += w * w;
+ }
+ }
+
+ // Do we have 2 columns remaining or just the one?
+ if (width % 3 == 1) { // Just vert corrs on the final col
+ const int16_t x0 = diff[width - 1];
+ x_sum += x0;
+ x_finalcol += x0;
+ x2_sum += x0 * x0;
+ x2_finalcol += x0 * x0;
+ for (int i = 0; i < height - 1; ++i) {
+ const int16_t x = diff[i * stride + width - 1];
+ const int16_t z = diff[(i + 1) * stride + width - 1];
+ xz_sum += x * z;
+ x_finalcol += z;
+ x2_finalcol += z * z;
+ // So the bottom-right elements don't get counted twice:
+ if (i < height - (height % 3 == 1 ? 2 : 3)) {
+ x_sum += z;
+ x2_sum += z * z;
+ }
+ }
+ } else { // Two cols remaining
+ const int16_t x0 = diff[width - 2];
+ const int16_t y0 = diff[width - 1];
+ x_sum += x0 + y0;
+ x2_sum += x0 * x0 + y0 * y0;
+ x_finalcol += y0;
+ x2_finalcol += y0 * y0;
+ for (int i = 0; i < height - 1; ++i) {
+ const int16_t x = diff[i * stride + width - 2];
+ const int16_t y = diff[i * stride + width - 1];
+ const int16_t z = diff[(i + 1) * stride + width - 2];
+ const int16_t w = diff[(i + 1) * stride + width - 1];
+
+ // Horizontal and vertical correlations for the penultimate col:
+ // Skip these on the last iteration of this loop if we also had two
+ // rows remaining, otherwise the final horizontal and vertical correlation
+ // get erroneously processed twice
+ if (i < height - 2 || height % 3 == 1) {
+ xy_sum += x * y;
+ xz_sum += x * z;
+ }
+
+ x_finalcol += w;
+ x2_finalcol += w * w;
+ // So the bottom-right elements don't get counted twice:
+ if (i < height - (height % 3 == 1 ? 2 : 3)) {
+ x_sum += z + w;
+ x2_sum += z * z + w * w;
+ }
+
+ // Now just vertical correlations for the final column:
+ xz_sum += y * w;
+ }
+ }
+
+ // Calculate the simple sums and squared-sums
+ int64_t x_firstrow = 0, x_firstcol = 0;
+ int64_t x2_firstrow = 0, x2_firstcol = 0;
+
+ for (int j = 0; j < width; ++j) {
+ x_firstrow += diff[j];
+ x2_firstrow += diff[j] * diff[j];
+ }
+ for (int i = 0; i < height; ++i) {
+ x_firstcol += diff[i * stride];
+ x2_firstcol += diff[i * stride] * diff[i * stride];
+ }
+
+ int64_t xhor_sum = x_sum - x_finalcol;
+ int64_t xver_sum = x_sum - x_finalrow;
+ int64_t y_sum = x_sum - x_firstcol;
+ int64_t z_sum = x_sum - x_firstrow;
+ int64_t x2hor_sum = x2_sum - x2_finalcol;
+ int64_t x2ver_sum = x2_sum - x2_finalrow;
+ int64_t y2_sum = x2_sum - x2_firstcol;
+ int64_t z2_sum = x2_sum - x2_firstrow;
+
+ aom_clear_system_state();
+
+ const float num_hor = (float)(height * (width - 1));
+ const float num_ver = (float)((height - 1) * width);
+
+ const float xhor_var_n = x2hor_sum - (xhor_sum * xhor_sum) / num_hor;
+ const float xver_var_n = x2ver_sum - (xver_sum * xver_sum) / num_ver;
+
+ const float y_var_n = y2_sum - (y_sum * y_sum) / num_hor;
+ const float z_var_n = z2_sum - (z_sum * z_sum) / num_ver;
+
+ const float xy_var_n = xy_sum - (xhor_sum * y_sum) / num_hor;
+ const float xz_var_n = xz_sum - (xver_sum * z_sum) / num_ver;
+
+ if (xhor_var_n > 0 && y_var_n > 0) {
+ *hcorr = xy_var_n / sqrtf(xhor_var_n * y_var_n);
+ *hcorr = *hcorr < 0 ? 0 : *hcorr;
+ } else {
+ *hcorr = 1.0;
+ }
+ if (xver_var_n > 0 && z_var_n > 0) {
+ *vcorr = xz_var_n / sqrtf(xver_var_n * z_var_n);
+ *vcorr = *vcorr < 0 ? 0 : *vcorr;
+ } else {
+ *vcorr = 1.0;
+ }
+}
diff --git a/media/libaom/src/av1/encoder/x86/rdopt_sse4.c b/media/libaom/src/av1/encoder/x86/rdopt_sse4.c
new file mode 100644
index 0000000000..67d94b4ca8
--- /dev/null
+++ b/media/libaom/src/av1/encoder/x86/rdopt_sse4.c
@@ -0,0 +1,275 @@
+/*
+ * Copyright (c) 2018, Alliance for Open Media. All rights reserved
+ *
+ * This source code is subject to the terms of the BSD 2 Clause License and
+ * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
+ * was not distributed with this source code in the LICENSE file, you can
+ * obtain it at www.aomedia.org/license/software. If the Alliance for Open
+ * Media Patent License 1.0 was not distributed with this source code in the
+ * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
+ */
+
+#include <assert.h>
+#include <emmintrin.h>
+#include "aom_dsp/x86/synonyms.h"
+#include "aom_ports/system_state.h"
+
+#include "config/av1_rtcd.h"
+#include "av1/encoder/rdopt.h"
+
+// Process horizontal and vertical correlations in a 4x4 block of pixels.
+// We actually use the 4x4 pixels to calculate correlations corresponding to
+// the top-left 3x3 pixels, so this function must be called with 1x1 overlap,
+// moving the window along/down by 3 pixels at a time.
+INLINE static void horver_correlation_4x4(const int16_t *diff, int stride,
+ __m128i *xy_sum_32,
+ __m128i *xz_sum_32, __m128i *x_sum_32,
+ __m128i *x2_sum_32) {
+ // Pixels in this 4x4 [ a b c d ]
+ // are referred to as: [ e f g h ]
+ // [ i j k l ]
+ // [ m n o p ]
+
+ const __m128i pixelsa = _mm_set_epi64x(*(uint64_t *)&diff[0 * stride],
+ *(uint64_t *)&diff[2 * stride]);
+ const __m128i pixelsb = _mm_set_epi64x(*(uint64_t *)&diff[1 * stride],
+ *(uint64_t *)&diff[3 * stride]);
+ // pixelsa = [d c b a l k j i] as i16
+ // pixelsb = [h g f e p o n m] as i16
+
+ const __m128i slli_a = _mm_slli_epi64(pixelsa, 16);
+ const __m128i slli_b = _mm_slli_epi64(pixelsb, 16);
+ // slli_a = [c b a 0 k j i 0] as i16
+ // slli_b = [g f e 0 o n m 0] as i16
+
+ const __m128i xy_madd_a = _mm_madd_epi16(pixelsa, slli_a);
+ const __m128i xy_madd_b = _mm_madd_epi16(pixelsb, slli_b);
+ // xy_madd_a = [bc+cd ab jk+kl ij] as i32
+ // xy_madd_b = [fg+gh ef no+op mn] as i32
+
+ const __m128i xy32 = _mm_hadd_epi32(xy_madd_b, xy_madd_a);
+ // xy32 = [ab+bc+cd ij+jk+kl ef+fg+gh mn+no+op] as i32
+ *xy_sum_32 = _mm_add_epi32(*xy_sum_32, xy32);
+
+ const __m128i xz_madd_a = _mm_madd_epi16(slli_a, slli_b);
+ // xz_madd_a = [bf+cg ae jn+ko im] i32
+
+ const __m128i swap_b = _mm_srli_si128(slli_b, 8);
+ // swap_b = [0 0 0 0 g f e 0] as i16
+ const __m128i xz_madd_b = _mm_madd_epi16(slli_a, swap_b);
+ // xz_madd_b = [0 0 gk+fj ei] i32
+
+ const __m128i xz32 = _mm_hadd_epi32(xz_madd_b, xz_madd_a);
+ // xz32 = [ae+bf+cg im+jn+ko 0 ei+fj+gk] i32
+ *xz_sum_32 = _mm_add_epi32(*xz_sum_32, xz32);
+
+ // Now calculate the straight sums, x_sum += a+b+c+e+f+g+i+j+k
+ // (sum up every element in slli_a and swap_b)
+ const __m128i sum_slli_a = _mm_hadd_epi16(slli_a, slli_a);
+ const __m128i sum_slli_a32 = _mm_cvtepi16_epi32(sum_slli_a);
+ // sum_slli_a32 = [c+b a k+j i] as i32
+ const __m128i swap_b32 = _mm_cvtepi16_epi32(swap_b);
+ // swap_b32 = [g f e 0] as i32
+ *x_sum_32 = _mm_add_epi32(*x_sum_32, sum_slli_a32);
+ *x_sum_32 = _mm_add_epi32(*x_sum_32, swap_b32);
+ // sum = [c+b+g a+f k+j+e i] as i32
+
+ // Also sum their squares
+ const __m128i slli_a_2 = _mm_madd_epi16(slli_a, slli_a);
+ const __m128i swap_b_2 = _mm_madd_epi16(swap_b, swap_b);
+ // slli_a_2 = [c2+b2 a2 k2+j2 i2]
+ // swap_b_2 = [0 0 g2+f2 e2]
+ const __m128i sum2 = _mm_hadd_epi32(slli_a_2, swap_b_2);
+ // sum2 = [0 g2+f2+e2 c2+b2+a2 k2+j2+i2]
+ *x2_sum_32 = _mm_add_epi32(*x2_sum_32, sum2);
+}
+
+void av1_get_horver_correlation_full_sse4_1(const int16_t *diff, int stride,
+ int width, int height, float *hcorr,
+ float *vcorr) {
+ // The following notation is used:
+ // x - current pixel
+ // y - right neighbour pixel
+ // z - below neighbour pixel
+ // w - down-right neighbour pixel
+ int64_t xy_sum = 0, xz_sum = 0;
+ int64_t x_sum = 0, x2_sum = 0;
+
+ // Process horizontal and vertical correlations through the body in 4x4
+ // blocks. This excludes the final row and column and possibly one extra
+ // column depending how 3 divides into width and height
+ int32_t xy_tmp[4] = { 0 }, xz_tmp[4] = { 0 };
+ int32_t x_tmp[4] = { 0 }, x2_tmp[4] = { 0 };
+ __m128i xy_sum_32 = _mm_setzero_si128();
+ __m128i xz_sum_32 = _mm_setzero_si128();
+ __m128i x_sum_32 = _mm_setzero_si128();
+ __m128i x2_sum_32 = _mm_setzero_si128();
+ for (int i = 0; i <= height - 4; i += 3) {
+ for (int j = 0; j <= width - 4; j += 3) {
+ horver_correlation_4x4(&diff[i * stride + j], stride, &xy_sum_32,
+ &xz_sum_32, &x_sum_32, &x2_sum_32);
+ }
+ xx_storeu_128(xy_tmp, xy_sum_32);
+ xx_storeu_128(xz_tmp, xz_sum_32);
+ xx_storeu_128(x_tmp, x_sum_32);
+ xx_storeu_128(x2_tmp, x2_sum_32);
+ xy_sum += (int64_t)xy_tmp[3] + xy_tmp[2] + xy_tmp[1];
+ xz_sum += (int64_t)xz_tmp[3] + xz_tmp[2] + xz_tmp[0];
+ x_sum += (int64_t)x_tmp[3] + x_tmp[2] + x_tmp[1] + x_tmp[0];
+ x2_sum += (int64_t)x2_tmp[2] + x2_tmp[1] + x2_tmp[0];
+ xy_sum_32 = _mm_setzero_si128();
+ xz_sum_32 = _mm_setzero_si128();
+ x_sum_32 = _mm_setzero_si128();
+ x2_sum_32 = _mm_setzero_si128();
+ }
+
+ // x_sum now covers every pixel except the final 1-2 rows and 1-2 cols
+ int64_t x_finalrow = 0, x_finalcol = 0, x2_finalrow = 0, x2_finalcol = 0;
+
+ // Do we have 2 rows remaining or just the one? Note that width and height
+ // are powers of 2, so each modulo 3 must be 1 or 2.
+ if (height % 3 == 1) { // Just horiz corrs on the final row
+ const int16_t x0 = diff[(height - 1) * stride];
+ x_sum += x0;
+ x_finalrow += x0;
+ x2_sum += x0 * x0;
+ x2_finalrow += x0 * x0;
+ for (int j = 0; j < width - 1; ++j) {
+ const int16_t x = diff[(height - 1) * stride + j];
+ const int16_t y = diff[(height - 1) * stride + j + 1];
+ xy_sum += x * y;
+ x_sum += y;
+ x2_sum += y * y;
+ x_finalrow += y;
+ x2_finalrow += y * y;
+ }
+ } else { // Two rows remaining to do
+ const int16_t x0 = diff[(height - 2) * stride];
+ const int16_t z0 = diff[(height - 1) * stride];
+ x_sum += x0 + z0;
+ x2_sum += x0 * x0 + z0 * z0;
+ x_finalrow += z0;
+ x2_finalrow += z0 * z0;
+ for (int j = 0; j < width - 1; ++j) {
+ const int16_t x = diff[(height - 2) * stride + j];
+ const int16_t y = diff[(height - 2) * stride + j + 1];
+ const int16_t z = diff[(height - 1) * stride + j];
+ const int16_t w = diff[(height - 1) * stride + j + 1];
+
+ // Horizontal and vertical correlations for the penultimate row:
+ xy_sum += x * y;
+ xz_sum += x * z;
+
+ // Now just horizontal correlations for the final row:
+ xy_sum += z * w;
+
+ x_sum += y + w;
+ x2_sum += y * y + w * w;
+ x_finalrow += w;
+ x2_finalrow += w * w;
+ }
+ }
+
+ // Do we have 2 columns remaining or just the one?
+ if (width % 3 == 1) { // Just vert corrs on the final col
+ const int16_t x0 = diff[width - 1];
+ x_sum += x0;
+ x_finalcol += x0;
+ x2_sum += x0 * x0;
+ x2_finalcol += x0 * x0;
+ for (int i = 0; i < height - 1; ++i) {
+ const int16_t x = diff[i * stride + width - 1];
+ const int16_t z = diff[(i + 1) * stride + width - 1];
+ xz_sum += x * z;
+ x_finalcol += z;
+ x2_finalcol += z * z;
+ // So the bottom-right elements don't get counted twice:
+ if (i < height - (height % 3 == 1 ? 2 : 3)) {
+ x_sum += z;
+ x2_sum += z * z;
+ }
+ }
+ } else { // Two cols remaining
+ const int16_t x0 = diff[width - 2];
+ const int16_t y0 = diff[width - 1];
+ x_sum += x0 + y0;
+ x2_sum += x0 * x0 + y0 * y0;
+ x_finalcol += y0;
+ x2_finalcol += y0 * y0;
+ for (int i = 0; i < height - 1; ++i) {
+ const int16_t x = diff[i * stride + width - 2];
+ const int16_t y = diff[i * stride + width - 1];
+ const int16_t z = diff[(i + 1) * stride + width - 2];
+ const int16_t w = diff[(i + 1) * stride + width - 1];
+
+ // Horizontal and vertical correlations for the penultimate col:
+ // Skip these on the last iteration of this loop if we also had two
+ // rows remaining, otherwise the final horizontal and vertical correlation
+ // get erroneously processed twice
+ if (i < height - 2 || height % 3 == 1) {
+ xy_sum += x * y;
+ xz_sum += x * z;
+ }
+
+ x_finalcol += w;
+ x2_finalcol += w * w;
+ // So the bottom-right elements don't get counted twice:
+ if (i < height - (height % 3 == 1 ? 2 : 3)) {
+ x_sum += z + w;
+ x2_sum += z * z + w * w;
+ }
+
+ // Now just vertical correlations for the final column:
+ xz_sum += y * w;
+ }
+ }
+
+ // Calculate the simple sums and squared-sums
+ int64_t x_firstrow = 0, x_firstcol = 0;
+ int64_t x2_firstrow = 0, x2_firstcol = 0;
+
+ for (int j = 0; j < width; ++j) {
+ x_firstrow += diff[j];
+ x2_firstrow += diff[j] * diff[j];
+ }
+ for (int i = 0; i < height; ++i) {
+ x_firstcol += diff[i * stride];
+ x2_firstcol += diff[i * stride] * diff[i * stride];
+ }
+
+ int64_t xhor_sum = x_sum - x_finalcol;
+ int64_t xver_sum = x_sum - x_finalrow;
+ int64_t y_sum = x_sum - x_firstcol;
+ int64_t z_sum = x_sum - x_firstrow;
+ int64_t x2hor_sum = x2_sum - x2_finalcol;
+ int64_t x2ver_sum = x2_sum - x2_finalrow;
+ int64_t y2_sum = x2_sum - x2_firstcol;
+ int64_t z2_sum = x2_sum - x2_firstrow;
+
+ aom_clear_system_state();
+
+ const float num_hor = (float)(height * (width - 1));
+ const float num_ver = (float)((height - 1) * width);
+
+ const float xhor_var_n = x2hor_sum - (xhor_sum * xhor_sum) / num_hor;
+ const float xver_var_n = x2ver_sum - (xver_sum * xver_sum) / num_ver;
+
+ const float y_var_n = y2_sum - (y_sum * y_sum) / num_hor;
+ const float z_var_n = z2_sum - (z_sum * z_sum) / num_ver;
+
+ const float xy_var_n = xy_sum - (xhor_sum * y_sum) / num_hor;
+ const float xz_var_n = xz_sum - (xver_sum * z_sum) / num_ver;
+
+ if (xhor_var_n > 0 && y_var_n > 0) {
+ *hcorr = xy_var_n / sqrtf(xhor_var_n * y_var_n);
+ *hcorr = *hcorr < 0 ? 0 : *hcorr;
+ } else {
+ *hcorr = 1.0;
+ }
+ if (xver_var_n > 0 && z_var_n > 0) {
+ *vcorr = xz_var_n / sqrtf(xver_var_n * z_var_n);
+ *vcorr = *vcorr < 0 ? 0 : *vcorr;
+ } else {
+ *vcorr = 1.0;
+ }
+}
diff --git a/media/libaom/src/av1/encoder/x86/temporal_filter_apply_sse2.asm b/media/libaom/src/av1/encoder/x86/temporal_filter_apply_sse2.asm
deleted file mode 100644
index 30983d1c10..0000000000
--- a/media/libaom/src/av1/encoder/x86/temporal_filter_apply_sse2.asm
+++ /dev/null
@@ -1,217 +0,0 @@
-;
-; Copyright (c) 2016, Alliance for Open Media. All rights reserved
-;
-; This source code is subject to the terms of the BSD 2 Clause License and
-; the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
-; was not distributed with this source code in the LICENSE file, you can
-; obtain it at www.aomedia.org/license/software. If the Alliance for Open
-; Media Patent License 1.0 was not distributed with this source code in the
-; PATENTS file, you can obtain it at www.aomedia.org/license/patent.
-;
-
-;
-
-
-%include "aom_ports/x86_abi_support.asm"
-
-SECTION .text
-
-; void av1_temporal_filter_apply_sse2 | arg
-; (unsigned char *frame1, | 0
-; unsigned int stride, | 1
-; unsigned char *frame2, | 2
-; unsigned int block_width, | 3
-; unsigned int block_height, | 4
-; int strength, | 5
-; int filter_weight, | 6
-; unsigned int *accumulator, | 7
-; unsigned short *count) | 8
-global sym(av1_temporal_filter_apply_sse2) PRIVATE
-sym(av1_temporal_filter_apply_sse2):
-
- push rbp
- mov rbp, rsp
- SHADOW_ARGS_TO_STACK 9
- SAVE_XMM 7
- GET_GOT rbx
- push rsi
- push rdi
- ALIGN_STACK 16, rax
- %define block_width 0
- %define block_height 16
- %define strength 32
- %define filter_weight 48
- %define rounding_bit 64
- %define rbp_backup 80
- %define stack_size 96
- sub rsp, stack_size
- mov [rsp + rbp_backup], rbp
- ; end prolog
-
- mov edx, arg(3)
- mov [rsp + block_width], rdx
- mov edx, arg(4)
- mov [rsp + block_height], rdx
- movd xmm6, arg(5)
- movdqa [rsp + strength], xmm6 ; where strength is used, all 16 bytes are read
-
- ; calculate the rounding bit outside the loop
- ; 0x8000 >> (16 - strength)
- mov rdx, 16
- sub rdx, arg(5) ; 16 - strength
- movq xmm4, rdx ; can't use rdx w/ shift
- movdqa xmm5, [GLOBAL(_const_top_bit)]
- psrlw xmm5, xmm4
- movdqa [rsp + rounding_bit], xmm5
-
- mov rsi, arg(0) ; src/frame1
- mov rdx, arg(2) ; predictor frame
- mov rdi, arg(7) ; accumulator
- mov rax, arg(8) ; count
-
- ; dup the filter weight and store for later
- movd xmm0, arg(6) ; filter_weight
- pshuflw xmm0, xmm0, 0
- punpcklwd xmm0, xmm0
- movdqa [rsp + filter_weight], xmm0
-
- mov rbp, arg(1) ; stride
- pxor xmm7, xmm7 ; zero for extraction
-
- mov rcx, [rsp + block_width]
- imul rcx, [rsp + block_height]
- add rcx, rdx
- cmp dword ptr [rsp + block_width], 8
- jne .temporal_filter_apply_load_16
-
-.temporal_filter_apply_load_8:
- movq xmm0, [rsi] ; first row
- lea rsi, [rsi + rbp] ; += stride
- punpcklbw xmm0, xmm7 ; src[ 0- 7]
- movq xmm1, [rsi] ; second row
- lea rsi, [rsi + rbp] ; += stride
- punpcklbw xmm1, xmm7 ; src[ 8-15]
- jmp .temporal_filter_apply_load_finished
-
-.temporal_filter_apply_load_16:
- movdqa xmm0, [rsi] ; src (frame1)
- lea rsi, [rsi + rbp] ; += stride
- movdqa xmm1, xmm0
- punpcklbw xmm0, xmm7 ; src[ 0- 7]
- punpckhbw xmm1, xmm7 ; src[ 8-15]
-
-.temporal_filter_apply_load_finished:
- movdqa xmm2, [rdx] ; predictor (frame2)
- movdqa xmm3, xmm2
- punpcklbw xmm2, xmm7 ; pred[ 0- 7]
- punpckhbw xmm3, xmm7 ; pred[ 8-15]
-
- ; modifier = src_byte - pixel_value
- psubw xmm0, xmm2 ; src - pred[ 0- 7]
- psubw xmm1, xmm3 ; src - pred[ 8-15]
-
- ; modifier *= modifier
- pmullw xmm0, xmm0 ; modifer[ 0- 7]^2
- pmullw xmm1, xmm1 ; modifer[ 8-15]^2
-
- ; modifier *= 3
- pmullw xmm0, [GLOBAL(_const_3w)]
- pmullw xmm1, [GLOBAL(_const_3w)]
-
- ; modifer += 0x8000 >> (16 - strength)
- paddw xmm0, [rsp + rounding_bit]
- paddw xmm1, [rsp + rounding_bit]
-
- ; modifier >>= strength
- psrlw xmm0, [rsp + strength]
- psrlw xmm1, [rsp + strength]
-
- ; modifier = 16 - modifier
- ; saturation takes care of modifier > 16
- movdqa xmm3, [GLOBAL(_const_16w)]
- movdqa xmm2, [GLOBAL(_const_16w)]
- psubusw xmm3, xmm1
- psubusw xmm2, xmm0
-
- ; modifier *= filter_weight
- pmullw xmm2, [rsp + filter_weight]
- pmullw xmm3, [rsp + filter_weight]
-
- ; count
- movdqa xmm4, [rax]
- movdqa xmm5, [rax+16]
- ; += modifier
- paddw xmm4, xmm2
- paddw xmm5, xmm3
- ; write back
- movdqa [rax], xmm4
- movdqa [rax+16], xmm5
- lea rax, [rax + 16*2] ; count += 16*(sizeof(short))
-
- ; load and extract the predictor up to shorts
- pxor xmm7, xmm7
- movdqa xmm0, [rdx]
- lea rdx, [rdx + 16*1] ; pred += 16*(sizeof(char))
- movdqa xmm1, xmm0
- punpcklbw xmm0, xmm7 ; pred[ 0- 7]
- punpckhbw xmm1, xmm7 ; pred[ 8-15]
-
- ; modifier *= pixel_value
- pmullw xmm0, xmm2
- pmullw xmm1, xmm3
-
- ; expand to double words
- movdqa xmm2, xmm0
- punpcklwd xmm0, xmm7 ; [ 0- 3]
- punpckhwd xmm2, xmm7 ; [ 4- 7]
- movdqa xmm3, xmm1
- punpcklwd xmm1, xmm7 ; [ 8-11]
- punpckhwd xmm3, xmm7 ; [12-15]
-
- ; accumulator
- movdqa xmm4, [rdi]
- movdqa xmm5, [rdi+16]
- movdqa xmm6, [rdi+32]
- movdqa xmm7, [rdi+48]
- ; += modifier
- paddd xmm4, xmm0
- paddd xmm5, xmm2
- paddd xmm6, xmm1
- paddd xmm7, xmm3
- ; write back
- movdqa [rdi], xmm4
- movdqa [rdi+16], xmm5
- movdqa [rdi+32], xmm6
- movdqa [rdi+48], xmm7
- lea rdi, [rdi + 16*4] ; accumulator += 16*(sizeof(int))
-
- cmp rdx, rcx
- je .temporal_filter_apply_epilog
- pxor xmm7, xmm7 ; zero for extraction
- cmp dword ptr [rsp + block_width], 16
- je .temporal_filter_apply_load_16
- jmp .temporal_filter_apply_load_8
-
-.temporal_filter_apply_epilog:
- ; begin epilog
- mov rbp, [rsp + rbp_backup]
- add rsp, stack_size
- pop rsp
- pop rdi
- pop rsi
- RESTORE_GOT
- RESTORE_XMM
- UNSHADOW_ARGS
- pop rbp
- ret
-
-SECTION_RODATA
-align 16
-_const_3w:
- times 8 dw 3
-align 16
-_const_top_bit:
- times 8 dw 1<<15
-align 16
-_const_16w:
- times 8 dw 16
diff --git a/media/libaom/src/av1/encoder/x86/temporal_filter_avx2.c b/media/libaom/src/av1/encoder/x86/temporal_filter_avx2.c
new file mode 100644
index 0000000000..847f7283ce
--- /dev/null
+++ b/media/libaom/src/av1/encoder/x86/temporal_filter_avx2.c
@@ -0,0 +1,284 @@
+/*
+ * Copyright (c) 2019, Alliance for Open Media. All rights reserved
+ *
+ * This source code is subject to the terms of the BSD 2 Clause License and
+ * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
+ * was not distributed with this source code in the LICENSE file, you can
+ * obtain it at www.aomedia.org/license/software. If the Alliance for Open
+ * Media Patent License 1.0 was not distributed with this source code in the
+ * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
+ */
+
+#include <assert.h>
+#include <immintrin.h>
+
+#include "config/av1_rtcd.h"
+#include "av1/encoder/encoder.h"
+#include "av1/encoder/temporal_filter.h"
+
+#define SSE_STRIDE (BW + 2)
+
+DECLARE_ALIGNED(32, static const uint32_t, sse_bytemask[4][8]) = {
+ { 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0, 0, 0 },
+ { 0, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0, 0 },
+ { 0, 0, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0 },
+ { 0, 0, 0, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF }
+};
+
+DECLARE_ALIGNED(32, static const uint8_t, shufflemask_16b[2][16]) = {
+ { 0, 1, 0, 1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 },
+ { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 10, 11, 10, 11 }
+};
+
+static AOM_FORCE_INLINE void get_squared_error_16x16_avx2(
+ const uint8_t *frame1, const unsigned int stride, const uint8_t *frame2,
+ const unsigned int stride2, const int block_width, const int block_height,
+ uint16_t *frame_sse, const unsigned int sse_stride) {
+ (void)block_width;
+ const uint8_t *src1 = frame1;
+ const uint8_t *src2 = frame2;
+ uint16_t *dst = frame_sse;
+ for (int i = 0; i < block_height; i++) {
+ __m128i vf1_128, vf2_128;
+ __m256i vf1, vf2, vdiff1, vsqdiff1;
+
+ vf1_128 = _mm_loadu_si128((__m128i *)(src1));
+ vf2_128 = _mm_loadu_si128((__m128i *)(src2));
+ vf1 = _mm256_cvtepu8_epi16(vf1_128);
+ vf2 = _mm256_cvtepu8_epi16(vf2_128);
+ vdiff1 = _mm256_sub_epi16(vf1, vf2);
+ vsqdiff1 = _mm256_mullo_epi16(vdiff1, vdiff1);
+
+ _mm256_storeu_si256((__m256i *)(dst), vsqdiff1);
+ // Set zero to uninitialized memory to avoid uninitialized loads later
+ *(uint32_t *)(dst + 16) = _mm_cvtsi128_si32(_mm_setzero_si128());
+
+ src1 += stride, src2 += stride2;
+ dst += sse_stride;
+ }
+}
+
+static AOM_FORCE_INLINE void get_squared_error_32x32_avx2(
+ const uint8_t *frame1, const unsigned int stride, const uint8_t *frame2,
+ const unsigned int stride2, const int block_width, const int block_height,
+ uint16_t *frame_sse, const unsigned int sse_stride) {
+ (void)block_width;
+ const uint8_t *src1 = frame1;
+ const uint8_t *src2 = frame2;
+ uint16_t *dst = frame_sse;
+ for (int i = 0; i < block_height; i++) {
+ __m256i vsrc1, vsrc2, vmin, vmax, vdiff, vdiff1, vdiff2, vres1, vres2;
+
+ vsrc1 = _mm256_loadu_si256((__m256i *)src1);
+ vsrc2 = _mm256_loadu_si256((__m256i *)src2);
+ vmax = _mm256_max_epu8(vsrc1, vsrc2);
+ vmin = _mm256_min_epu8(vsrc1, vsrc2);
+ vdiff = _mm256_subs_epu8(vmax, vmin);
+
+ __m128i vtmp1 = _mm256_castsi256_si128(vdiff);
+ __m128i vtmp2 = _mm256_extracti128_si256(vdiff, 1);
+ vdiff1 = _mm256_cvtepu8_epi16(vtmp1);
+ vdiff2 = _mm256_cvtepu8_epi16(vtmp2);
+
+ vres1 = _mm256_mullo_epi16(vdiff1, vdiff1);
+ vres2 = _mm256_mullo_epi16(vdiff2, vdiff2);
+ _mm256_storeu_si256((__m256i *)(dst), vres1);
+ _mm256_storeu_si256((__m256i *)(dst + 16), vres2);
+ // Set zero to uninitialized memory to avoid uninitialized loads later
+ *(uint32_t *)(dst + 32) = _mm_cvtsi128_si32(_mm_setzero_si128());
+
+ src1 += stride;
+ src2 += stride2;
+ dst += sse_stride;
+ }
+}
+
+static AOM_FORCE_INLINE __m256i xx_load_and_pad(uint16_t *src, int col,
+ int block_width) {
+ __m128i v128tmp = _mm_loadu_si128((__m128i *)(src));
+ if (col == 0) {
+ // For the first column, replicate the first element twice to the left
+ v128tmp = _mm_shuffle_epi8(v128tmp, *(__m128i *)shufflemask_16b[0]);
+ }
+ if (col == block_width - 4) {
+ // For the last column, replicate the last element twice to the right
+ v128tmp = _mm_shuffle_epi8(v128tmp, *(__m128i *)shufflemask_16b[1]);
+ }
+ return _mm256_cvtepu16_epi32(v128tmp);
+}
+
+static AOM_FORCE_INLINE int32_t xx_mask_and_hadd(__m256i vsum, int i) {
+ // Mask the required 5 values inside the vector
+ __m256i vtmp = _mm256_and_si256(vsum, *(__m256i *)sse_bytemask[i]);
+ __m128i v128a, v128b;
+ // Extract 256b as two 128b registers A and B
+ v128a = _mm256_castsi256_si128(vtmp);
+ v128b = _mm256_extracti128_si256(vtmp, 1);
+ // A = [A0+B0, A1+B1, A2+B2, A3+B3]
+ v128a = _mm_add_epi32(v128a, v128b);
+ // B = [A2+B2, A3+B3, 0, 0]
+ v128b = _mm_srli_si128(v128a, 8);
+ // A = [A0+B0+A2+B2, A1+B1+A3+B3, X, X]
+ v128a = _mm_add_epi32(v128a, v128b);
+ // B = [A1+B1+A3+B3, 0, 0, 0]
+ v128b = _mm_srli_si128(v128a, 4);
+ // A = [A0+B0+A2+B2+A1+B1+A3+B3, X, X, X]
+ v128a = _mm_add_epi32(v128a, v128b);
+ return _mm_extract_epi32(v128a, 0);
+}
+
+static void apply_temporal_filter_planewise(
+ const uint8_t *frame1, const unsigned int stride, const uint8_t *frame2,
+ const unsigned int stride2, const int block_width, const int block_height,
+ const double sigma, const int decay_control, const int use_subblock,
+ const int block_mse, const int *subblock_mses, const int q_factor,
+ unsigned int *accumulator, uint16_t *count, uint16_t *luma_sq_error,
+ uint16_t *chroma_sq_error, int plane, int ss_x_shift, int ss_y_shift) {
+ assert(TF_PLANEWISE_FILTER_WINDOW_LENGTH == 5);
+ assert(((block_width == 16) || (block_width == 32)) &&
+ ((block_height == 16) || (block_height == 32)));
+ if (plane > PLANE_TYPE_Y) assert(chroma_sq_error != NULL);
+
+ uint32_t acc_5x5_sse[BH][BW];
+ const double h = decay_control * (0.7 + log(sigma + 1.0));
+ const double q = AOMMIN((double)(q_factor * q_factor) / 256.0, 1);
+ uint16_t *frame_sse =
+ (plane == PLANE_TYPE_Y) ? luma_sq_error : chroma_sq_error;
+
+ if (block_width == 32) {
+ get_squared_error_32x32_avx2(frame1, stride, frame2, stride2, block_width,
+ block_height, frame_sse, SSE_STRIDE);
+ } else {
+ get_squared_error_16x16_avx2(frame1, stride, frame2, stride2, block_width,
+ block_height, frame_sse, SSE_STRIDE);
+ }
+
+ __m256i vsrc[5];
+
+ // Traverse 4 columns at a time
+ // First and last columns will require padding
+ for (int col = 0; col < block_width; col += 4) {
+ uint16_t *src = (col) ? frame_sse + col - 2 : frame_sse;
+
+ // Load and pad(for first and last col) 3 rows from the top
+ for (int i = 2; i < 5; i++) {
+ vsrc[i] = xx_load_and_pad(src, col, block_width);
+ src += SSE_STRIDE;
+ }
+
+ // Copy first row to first 2 vectors
+ vsrc[0] = vsrc[2];
+ vsrc[1] = vsrc[2];
+
+ for (int row = 0; row < block_height; row++) {
+ __m256i vsum = _mm256_setzero_si256();
+
+ // Add 5 consecutive rows
+ for (int i = 0; i < 5; i++) {
+ vsum = _mm256_add_epi32(vsum, vsrc[i]);
+ }
+
+ // Push all elements by one element to the top
+ for (int i = 0; i < 4; i++) {
+ vsrc[i] = vsrc[i + 1];
+ }
+
+ // Load next row to the last element
+ if (row <= block_height - 4) {
+ vsrc[4] = xx_load_and_pad(src, col, block_width);
+ src += SSE_STRIDE;
+ } else {
+ vsrc[4] = vsrc[3];
+ }
+
+ // Accumulate the sum horizontally
+ for (int i = 0; i < 4; i++) {
+ acc_5x5_sse[row][col + i] = xx_mask_and_hadd(vsum, i);
+ }
+ }
+ }
+
+ for (int i = 0, k = 0; i < block_height; i++) {
+ for (int j = 0; j < block_width; j++, k++) {
+ const int pixel_value = frame2[i * stride2 + j];
+
+ int diff_sse = acc_5x5_sse[i][j];
+ int num_ref_pixels =
+ TF_PLANEWISE_FILTER_WINDOW_LENGTH * TF_PLANEWISE_FILTER_WINDOW_LENGTH;
+
+ // Filter U-plane and V-plane using Y-plane. This is because motion
+ // search is only done on Y-plane, so the information from Y-plane will
+ // be more accurate.
+ if (plane != PLANE_TYPE_Y) {
+ for (int ii = 0; ii < (1 << ss_y_shift); ++ii) {
+ for (int jj = 0; jj < (1 << ss_x_shift); ++jj) {
+ const int yy = (i << ss_y_shift) + ii; // Y-coord on Y-plane.
+ const int xx = (j << ss_x_shift) + jj; // X-coord on Y-plane.
+ diff_sse += luma_sq_error[yy * SSE_STRIDE + xx];
+ ++num_ref_pixels;
+ }
+ }
+ }
+
+ const double window_error = (double)(diff_sse) / num_ref_pixels;
+ const int subblock_idx =
+ (i >= block_height / 2) * 2 + (j >= block_width / 2);
+ const double block_error =
+ (double)(use_subblock ? subblock_mses[subblock_idx] : block_mse);
+
+ const double scaled_diff =
+ AOMMAX(-(window_error + block_error / 10) / (2 * h * h * q), -15.0);
+ const int adjusted_weight =
+ (int)(exp(scaled_diff) * TF_PLANEWISE_FILTER_WEIGHT_SCALE);
+
+ count[k] += adjusted_weight;
+ accumulator[k] += adjusted_weight * pixel_value;
+ }
+ }
+}
+
+void av1_apply_temporal_filter_planewise_avx2(
+ const YV12_BUFFER_CONFIG *ref_frame, const MACROBLOCKD *mbd,
+ const BLOCK_SIZE block_size, const int mb_row, const int mb_col,
+ const int num_planes, const double *noise_levels, const int use_subblock,
+ const int block_mse, const int *subblock_mses, const int q_factor,
+ const uint8_t *pred, uint32_t *accum, uint16_t *count) {
+ const int is_high_bitdepth = ref_frame->flags & YV12_FLAG_HIGHBITDEPTH;
+ if (is_high_bitdepth) {
+ assert(0 && "Only support low bit-depth with avx2!");
+ }
+ assert(num_planes >= 1 && num_planes <= MAX_MB_PLANE);
+
+ const int frame_height = ref_frame->heights[0] << mbd->plane[0].subsampling_y;
+ const int decay_control = frame_height >= 720 ? 4 : 3;
+
+ const int mb_height = block_size_high[block_size];
+ const int mb_width = block_size_wide[block_size];
+ const int mb_pels = mb_height * mb_width;
+ uint16_t luma_sq_error[SSE_STRIDE * BH];
+ uint16_t *chroma_sq_error =
+ (num_planes > 0)
+ ? (uint16_t *)aom_malloc(SSE_STRIDE * BH * sizeof(uint16_t))
+ : NULL;
+
+ for (int plane = 0; plane < num_planes; ++plane) {
+ const uint32_t plane_h = mb_height >> mbd->plane[plane].subsampling_y;
+ const uint32_t plane_w = mb_width >> mbd->plane[plane].subsampling_x;
+ const uint32_t frame_stride = ref_frame->strides[plane == 0 ? 0 : 1];
+ const int frame_offset = mb_row * plane_h * frame_stride + mb_col * plane_w;
+
+ const uint8_t *ref = ref_frame->buffers[plane] + frame_offset;
+ const int ss_x_shift =
+ mbd->plane[plane].subsampling_x - mbd->plane[0].subsampling_x;
+ const int ss_y_shift =
+ mbd->plane[plane].subsampling_y - mbd->plane[0].subsampling_y;
+
+ apply_temporal_filter_planewise(
+ ref, frame_stride, pred + mb_pels * plane, plane_w, plane_w, plane_h,
+ noise_levels[plane], decay_control, use_subblock, block_mse,
+ subblock_mses, q_factor, accum + mb_pels * plane,
+ count + mb_pels * plane, luma_sq_error, chroma_sq_error, plane,
+ ss_x_shift, ss_y_shift);
+ }
+ if (chroma_sq_error != NULL) aom_free(chroma_sq_error);
+}
diff --git a/media/libaom/src/av1/encoder/x86/temporal_filter_constants.h b/media/libaom/src/av1/encoder/x86/temporal_filter_constants.h
new file mode 100644
index 0000000000..7cd61d75ef
--- /dev/null
+++ b/media/libaom/src/av1/encoder/x86/temporal_filter_constants.h
@@ -0,0 +1,407 @@
+/*
+ * Copyright (c) 2019, Alliance for Open Media. All rights reserved
+ *
+ * This source code is subject to the terms of the BSD 2 Clause License and
+ * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
+ * was not distributed with this source code in the LICENSE file, you can
+ * obtain it at www.aomedia.org/license/software. If the Alliance for Open
+ * Media Patent License 1.0 was not distributed with this source code in the
+ * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
+ */
+
+#ifndef AOM_AV1_ENCODER_X86_TEMPORAL_FILTER_CONSTANTS_H_
+#define AOM_AV1_ENCODER_X86_TEMPORAL_FILTER_CONSTANTS_H_
+
+// Division using multiplication and shifting. The C implementation does:
+// modifier *= 3;
+// modifier /= index;
+// where 'modifier' is a set of summed values and 'index' is the number of
+// summed values.
+//
+// This equation works out to (m * 3) / i which reduces to:
+// m * 3/4
+// m * 1/2
+// m * 1/3
+//
+// By pairing the multiply with a down shift by 16 (_mm_mulhi_epu16):
+// m * C / 65536
+// we can create a C to replicate the division.
+//
+// m * 49152 / 65536 = m * 3/4
+// m * 32758 / 65536 = m * 1/2
+// m * 21846 / 65536 = m * 0.3333
+//
+// These are loaded using an instruction expecting int16_t values but are used
+// with _mm_mulhi_epu16(), which treats them as unsigned.
+#define NEIGHBOR_CONSTANT_4 (int16_t)49152
+#define NEIGHBOR_CONSTANT_5 (int16_t)39322
+#define NEIGHBOR_CONSTANT_6 (int16_t)32768
+#define NEIGHBOR_CONSTANT_7 (int16_t)28087
+#define NEIGHBOR_CONSTANT_8 (int16_t)24576
+#define NEIGHBOR_CONSTANT_9 (int16_t)21846
+#define NEIGHBOR_CONSTANT_10 (int16_t)19661
+#define NEIGHBOR_CONSTANT_11 (int16_t)17874
+#define NEIGHBOR_CONSTANT_13 (int16_t)15124
+
+DECLARE_ALIGNED(16, static const int16_t, LEFT_CORNER_NEIGHBORS_PLUS_1[8]) = {
+ NEIGHBOR_CONSTANT_5, NEIGHBOR_CONSTANT_7, NEIGHBOR_CONSTANT_7,
+ NEIGHBOR_CONSTANT_7, NEIGHBOR_CONSTANT_7, NEIGHBOR_CONSTANT_7,
+ NEIGHBOR_CONSTANT_7, NEIGHBOR_CONSTANT_7
+};
+
+DECLARE_ALIGNED(16, static const int16_t, RIGHT_CORNER_NEIGHBORS_PLUS_1[8]) = {
+ NEIGHBOR_CONSTANT_7, NEIGHBOR_CONSTANT_7, NEIGHBOR_CONSTANT_7,
+ NEIGHBOR_CONSTANT_7, NEIGHBOR_CONSTANT_7, NEIGHBOR_CONSTANT_7,
+ NEIGHBOR_CONSTANT_7, NEIGHBOR_CONSTANT_5
+};
+
+DECLARE_ALIGNED(16, static const int16_t, LEFT_EDGE_NEIGHBORS_PLUS_1[8]) = {
+ NEIGHBOR_CONSTANT_7, NEIGHBOR_CONSTANT_10, NEIGHBOR_CONSTANT_10,
+ NEIGHBOR_CONSTANT_10, NEIGHBOR_CONSTANT_10, NEIGHBOR_CONSTANT_10,
+ NEIGHBOR_CONSTANT_10, NEIGHBOR_CONSTANT_10
+};
+
+DECLARE_ALIGNED(16, static const int16_t, RIGHT_EDGE_NEIGHBORS_PLUS_1[8]) = {
+ NEIGHBOR_CONSTANT_10, NEIGHBOR_CONSTANT_10, NEIGHBOR_CONSTANT_10,
+ NEIGHBOR_CONSTANT_10, NEIGHBOR_CONSTANT_10, NEIGHBOR_CONSTANT_10,
+ NEIGHBOR_CONSTANT_10, NEIGHBOR_CONSTANT_7
+};
+
+DECLARE_ALIGNED(16, static const int16_t, MIDDLE_EDGE_NEIGHBORS_PLUS_1[8]) = {
+ NEIGHBOR_CONSTANT_7, NEIGHBOR_CONSTANT_7, NEIGHBOR_CONSTANT_7,
+ NEIGHBOR_CONSTANT_7, NEIGHBOR_CONSTANT_7, NEIGHBOR_CONSTANT_7,
+ NEIGHBOR_CONSTANT_7, NEIGHBOR_CONSTANT_7
+};
+
+DECLARE_ALIGNED(16, static const int16_t, MIDDLE_CENTER_NEIGHBORS_PLUS_1[8]) = {
+ NEIGHBOR_CONSTANT_10, NEIGHBOR_CONSTANT_10, NEIGHBOR_CONSTANT_10,
+ NEIGHBOR_CONSTANT_10, NEIGHBOR_CONSTANT_10, NEIGHBOR_CONSTANT_10,
+ NEIGHBOR_CONSTANT_10, NEIGHBOR_CONSTANT_10
+};
+
+DECLARE_ALIGNED(16, static const int16_t, LEFT_CORNER_NEIGHBORS_PLUS_2[8]) = {
+ NEIGHBOR_CONSTANT_6, NEIGHBOR_CONSTANT_8, NEIGHBOR_CONSTANT_8,
+ NEIGHBOR_CONSTANT_8, NEIGHBOR_CONSTANT_8, NEIGHBOR_CONSTANT_8,
+ NEIGHBOR_CONSTANT_8, NEIGHBOR_CONSTANT_8
+};
+
+DECLARE_ALIGNED(16, static const int16_t, RIGHT_CORNER_NEIGHBORS_PLUS_2[8]) = {
+ NEIGHBOR_CONSTANT_8, NEIGHBOR_CONSTANT_8, NEIGHBOR_CONSTANT_8,
+ NEIGHBOR_CONSTANT_8, NEIGHBOR_CONSTANT_8, NEIGHBOR_CONSTANT_8,
+ NEIGHBOR_CONSTANT_8, NEIGHBOR_CONSTANT_6
+};
+
+DECLARE_ALIGNED(16, static const int16_t, LEFT_EDGE_NEIGHBORS_PLUS_2[8]) = {
+ NEIGHBOR_CONSTANT_8, NEIGHBOR_CONSTANT_11, NEIGHBOR_CONSTANT_11,
+ NEIGHBOR_CONSTANT_11, NEIGHBOR_CONSTANT_11, NEIGHBOR_CONSTANT_11,
+ NEIGHBOR_CONSTANT_11, NEIGHBOR_CONSTANT_11
+};
+
+DECLARE_ALIGNED(16, static const int16_t, RIGHT_EDGE_NEIGHBORS_PLUS_2[8]) = {
+ NEIGHBOR_CONSTANT_11, NEIGHBOR_CONSTANT_11, NEIGHBOR_CONSTANT_11,
+ NEIGHBOR_CONSTANT_11, NEIGHBOR_CONSTANT_11, NEIGHBOR_CONSTANT_11,
+ NEIGHBOR_CONSTANT_11, NEIGHBOR_CONSTANT_8
+};
+
+DECLARE_ALIGNED(16, static const int16_t, MIDDLE_EDGE_NEIGHBORS_PLUS_2[8]) = {
+ NEIGHBOR_CONSTANT_8, NEIGHBOR_CONSTANT_8, NEIGHBOR_CONSTANT_8,
+ NEIGHBOR_CONSTANT_8, NEIGHBOR_CONSTANT_8, NEIGHBOR_CONSTANT_8,
+ NEIGHBOR_CONSTANT_8, NEIGHBOR_CONSTANT_8
+};
+
+DECLARE_ALIGNED(16, static const int16_t, MIDDLE_CENTER_NEIGHBORS_PLUS_2[8]) = {
+ NEIGHBOR_CONSTANT_11, NEIGHBOR_CONSTANT_11, NEIGHBOR_CONSTANT_11,
+ NEIGHBOR_CONSTANT_11, NEIGHBOR_CONSTANT_11, NEIGHBOR_CONSTANT_11,
+ NEIGHBOR_CONSTANT_11, NEIGHBOR_CONSTANT_11
+};
+
+DECLARE_ALIGNED(16, static const int16_t, TWO_CORNER_NEIGHBORS_PLUS_2[8]) = {
+ NEIGHBOR_CONSTANT_6, NEIGHBOR_CONSTANT_8, NEIGHBOR_CONSTANT_8,
+ NEIGHBOR_CONSTANT_8, NEIGHBOR_CONSTANT_8, NEIGHBOR_CONSTANT_8,
+ NEIGHBOR_CONSTANT_8, NEIGHBOR_CONSTANT_6
+};
+
+DECLARE_ALIGNED(16, static const int16_t, TWO_EDGE_NEIGHBORS_PLUS_2[8]) = {
+ NEIGHBOR_CONSTANT_8, NEIGHBOR_CONSTANT_11, NEIGHBOR_CONSTANT_11,
+ NEIGHBOR_CONSTANT_11, NEIGHBOR_CONSTANT_11, NEIGHBOR_CONSTANT_11,
+ NEIGHBOR_CONSTANT_11, NEIGHBOR_CONSTANT_8
+};
+
+DECLARE_ALIGNED(16, static const int16_t, LEFT_CORNER_NEIGHBORS_PLUS_4[8]) = {
+ NEIGHBOR_CONSTANT_8, NEIGHBOR_CONSTANT_10, NEIGHBOR_CONSTANT_10,
+ NEIGHBOR_CONSTANT_10, NEIGHBOR_CONSTANT_10, NEIGHBOR_CONSTANT_10,
+ NEIGHBOR_CONSTANT_10, NEIGHBOR_CONSTANT_10
+};
+
+DECLARE_ALIGNED(16, static const int16_t, RIGHT_CORNER_NEIGHBORS_PLUS_4[8]) = {
+ NEIGHBOR_CONSTANT_10, NEIGHBOR_CONSTANT_10, NEIGHBOR_CONSTANT_10,
+ NEIGHBOR_CONSTANT_10, NEIGHBOR_CONSTANT_10, NEIGHBOR_CONSTANT_10,
+ NEIGHBOR_CONSTANT_10, NEIGHBOR_CONSTANT_8
+};
+
+DECLARE_ALIGNED(16, static const int16_t, LEFT_EDGE_NEIGHBORS_PLUS_4[8]) = {
+ NEIGHBOR_CONSTANT_10, NEIGHBOR_CONSTANT_13, NEIGHBOR_CONSTANT_13,
+ NEIGHBOR_CONSTANT_13, NEIGHBOR_CONSTANT_13, NEIGHBOR_CONSTANT_13,
+ NEIGHBOR_CONSTANT_13, NEIGHBOR_CONSTANT_13
+};
+
+DECLARE_ALIGNED(16, static const int16_t, RIGHT_EDGE_NEIGHBORS_PLUS_4[8]) = {
+ NEIGHBOR_CONSTANT_13, NEIGHBOR_CONSTANT_13, NEIGHBOR_CONSTANT_13,
+ NEIGHBOR_CONSTANT_13, NEIGHBOR_CONSTANT_13, NEIGHBOR_CONSTANT_13,
+ NEIGHBOR_CONSTANT_13, NEIGHBOR_CONSTANT_10
+};
+
+DECLARE_ALIGNED(16, static const int16_t, MIDDLE_EDGE_NEIGHBORS_PLUS_4[8]) = {
+ NEIGHBOR_CONSTANT_10, NEIGHBOR_CONSTANT_10, NEIGHBOR_CONSTANT_10,
+ NEIGHBOR_CONSTANT_10, NEIGHBOR_CONSTANT_10, NEIGHBOR_CONSTANT_10,
+ NEIGHBOR_CONSTANT_10, NEIGHBOR_CONSTANT_10
+};
+
+DECLARE_ALIGNED(16, static const int16_t, MIDDLE_CENTER_NEIGHBORS_PLUS_4[8]) = {
+ NEIGHBOR_CONSTANT_13, NEIGHBOR_CONSTANT_13, NEIGHBOR_CONSTANT_13,
+ NEIGHBOR_CONSTANT_13, NEIGHBOR_CONSTANT_13, NEIGHBOR_CONSTANT_13,
+ NEIGHBOR_CONSTANT_13, NEIGHBOR_CONSTANT_13
+};
+
+DECLARE_ALIGNED(16, static const int16_t, TWO_CORNER_NEIGHBORS_PLUS_4[8]) = {
+ NEIGHBOR_CONSTANT_8, NEIGHBOR_CONSTANT_10, NEIGHBOR_CONSTANT_10,
+ NEIGHBOR_CONSTANT_10, NEIGHBOR_CONSTANT_10, NEIGHBOR_CONSTANT_10,
+ NEIGHBOR_CONSTANT_10, NEIGHBOR_CONSTANT_8
+};
+
+DECLARE_ALIGNED(16, static const int16_t, TWO_EDGE_NEIGHBORS_PLUS_4[8]) = {
+ NEIGHBOR_CONSTANT_10, NEIGHBOR_CONSTANT_13, NEIGHBOR_CONSTANT_13,
+ NEIGHBOR_CONSTANT_13, NEIGHBOR_CONSTANT_13, NEIGHBOR_CONSTANT_13,
+ NEIGHBOR_CONSTANT_13, NEIGHBOR_CONSTANT_10
+};
+
+static const int16_t *const LUMA_LEFT_COLUMN_NEIGHBORS[2] = {
+ LEFT_CORNER_NEIGHBORS_PLUS_2, LEFT_EDGE_NEIGHBORS_PLUS_2
+};
+
+static const int16_t *const LUMA_MIDDLE_COLUMN_NEIGHBORS[2] = {
+ MIDDLE_EDGE_NEIGHBORS_PLUS_2, MIDDLE_CENTER_NEIGHBORS_PLUS_2
+};
+
+static const int16_t *const LUMA_RIGHT_COLUMN_NEIGHBORS[2] = {
+ RIGHT_CORNER_NEIGHBORS_PLUS_2, RIGHT_EDGE_NEIGHBORS_PLUS_2
+};
+
+static const int16_t *const CHROMA_NO_SS_LEFT_COLUMN_NEIGHBORS[2] = {
+ LEFT_CORNER_NEIGHBORS_PLUS_1, LEFT_EDGE_NEIGHBORS_PLUS_1
+};
+
+static const int16_t *const CHROMA_NO_SS_MIDDLE_COLUMN_NEIGHBORS[2] = {
+ MIDDLE_EDGE_NEIGHBORS_PLUS_1, MIDDLE_CENTER_NEIGHBORS_PLUS_1
+};
+
+static const int16_t *const CHROMA_NO_SS_RIGHT_COLUMN_NEIGHBORS[2] = {
+ RIGHT_CORNER_NEIGHBORS_PLUS_1, RIGHT_EDGE_NEIGHBORS_PLUS_1
+};
+
+static const int16_t *const CHROMA_SINGLE_SS_LEFT_COLUMN_NEIGHBORS[2] = {
+ LEFT_CORNER_NEIGHBORS_PLUS_2, LEFT_EDGE_NEIGHBORS_PLUS_2
+};
+
+static const int16_t *const CHROMA_SINGLE_SS_MIDDLE_COLUMN_NEIGHBORS[2] = {
+ MIDDLE_EDGE_NEIGHBORS_PLUS_2, MIDDLE_CENTER_NEIGHBORS_PLUS_2
+};
+
+static const int16_t *const CHROMA_SINGLE_SS_RIGHT_COLUMN_NEIGHBORS[2] = {
+ RIGHT_CORNER_NEIGHBORS_PLUS_2, RIGHT_EDGE_NEIGHBORS_PLUS_2
+};
+
+static const int16_t *const CHROMA_SINGLE_SS_SINGLE_COLUMN_NEIGHBORS[2] = {
+ TWO_CORNER_NEIGHBORS_PLUS_2, TWO_EDGE_NEIGHBORS_PLUS_2
+};
+
+static const int16_t *const CHROMA_DOUBLE_SS_LEFT_COLUMN_NEIGHBORS[2] = {
+ LEFT_CORNER_NEIGHBORS_PLUS_4, LEFT_EDGE_NEIGHBORS_PLUS_4
+};
+
+static const int16_t *const CHROMA_DOUBLE_SS_MIDDLE_COLUMN_NEIGHBORS[2] = {
+ MIDDLE_EDGE_NEIGHBORS_PLUS_4, MIDDLE_CENTER_NEIGHBORS_PLUS_4
+};
+
+static const int16_t *const CHROMA_DOUBLE_SS_RIGHT_COLUMN_NEIGHBORS[2] = {
+ RIGHT_CORNER_NEIGHBORS_PLUS_4, RIGHT_EDGE_NEIGHBORS_PLUS_4
+};
+
+static const int16_t *const CHROMA_DOUBLE_SS_SINGLE_COLUMN_NEIGHBORS[2] = {
+ TWO_CORNER_NEIGHBORS_PLUS_4, TWO_EDGE_NEIGHBORS_PLUS_4
+};
+
+#define HIGHBD_NEIGHBOR_CONSTANT_4 (uint32_t)3221225472U
+#define HIGHBD_NEIGHBOR_CONSTANT_5 (uint32_t)2576980378U
+#define HIGHBD_NEIGHBOR_CONSTANT_6 (uint32_t)2147483648U
+#define HIGHBD_NEIGHBOR_CONSTANT_7 (uint32_t)1840700270U
+#define HIGHBD_NEIGHBOR_CONSTANT_8 (uint32_t)1610612736U
+#define HIGHBD_NEIGHBOR_CONSTANT_9 (uint32_t)1431655766U
+#define HIGHBD_NEIGHBOR_CONSTANT_10 (uint32_t)1288490189U
+#define HIGHBD_NEIGHBOR_CONSTANT_11 (uint32_t)1171354718U
+#define HIGHBD_NEIGHBOR_CONSTANT_13 (uint32_t)991146300U
+
+DECLARE_ALIGNED(16, static const uint32_t,
+ HIGHBD_LEFT_CORNER_NEIGHBORS_PLUS_1[4]) = {
+ HIGHBD_NEIGHBOR_CONSTANT_5, HIGHBD_NEIGHBOR_CONSTANT_7,
+ HIGHBD_NEIGHBOR_CONSTANT_7, HIGHBD_NEIGHBOR_CONSTANT_7
+};
+
+DECLARE_ALIGNED(16, static const uint32_t,
+ HIGHBD_RIGHT_CORNER_NEIGHBORS_PLUS_1[4]) = {
+ HIGHBD_NEIGHBOR_CONSTANT_7, HIGHBD_NEIGHBOR_CONSTANT_7,
+ HIGHBD_NEIGHBOR_CONSTANT_7, HIGHBD_NEIGHBOR_CONSTANT_5
+};
+
+DECLARE_ALIGNED(16, static const uint32_t,
+ HIGHBD_LEFT_EDGE_NEIGHBORS_PLUS_1[4]) = {
+ HIGHBD_NEIGHBOR_CONSTANT_7, HIGHBD_NEIGHBOR_CONSTANT_10,
+ HIGHBD_NEIGHBOR_CONSTANT_10, HIGHBD_NEIGHBOR_CONSTANT_10
+};
+
+DECLARE_ALIGNED(16, static const uint32_t,
+ HIGHBD_RIGHT_EDGE_NEIGHBORS_PLUS_1[4]) = {
+ HIGHBD_NEIGHBOR_CONSTANT_10, HIGHBD_NEIGHBOR_CONSTANT_10,
+ HIGHBD_NEIGHBOR_CONSTANT_10, HIGHBD_NEIGHBOR_CONSTANT_7
+};
+
+DECLARE_ALIGNED(16, static const uint32_t,
+ HIGHBD_MIDDLE_EDGE_NEIGHBORS_PLUS_1[4]) = {
+ HIGHBD_NEIGHBOR_CONSTANT_7, HIGHBD_NEIGHBOR_CONSTANT_7,
+ HIGHBD_NEIGHBOR_CONSTANT_7, HIGHBD_NEIGHBOR_CONSTANT_7
+};
+
+DECLARE_ALIGNED(16, static const uint32_t,
+ HIGHBD_MIDDLE_CENTER_NEIGHBORS_PLUS_1[4]) = {
+ HIGHBD_NEIGHBOR_CONSTANT_10, HIGHBD_NEIGHBOR_CONSTANT_10,
+ HIGHBD_NEIGHBOR_CONSTANT_10, HIGHBD_NEIGHBOR_CONSTANT_10
+};
+
+DECLARE_ALIGNED(16, static const uint32_t,
+ HIGHBD_LEFT_CORNER_NEIGHBORS_PLUS_2[4]) = {
+ HIGHBD_NEIGHBOR_CONSTANT_6, HIGHBD_NEIGHBOR_CONSTANT_8,
+ HIGHBD_NEIGHBOR_CONSTANT_8, HIGHBD_NEIGHBOR_CONSTANT_8
+};
+
+DECLARE_ALIGNED(16, static const uint32_t,
+ HIGHBD_RIGHT_CORNER_NEIGHBORS_PLUS_2[4]) = {
+ HIGHBD_NEIGHBOR_CONSTANT_8, HIGHBD_NEIGHBOR_CONSTANT_8,
+ HIGHBD_NEIGHBOR_CONSTANT_8, HIGHBD_NEIGHBOR_CONSTANT_6
+};
+
+DECLARE_ALIGNED(16, static const uint32_t,
+ HIGHBD_LEFT_EDGE_NEIGHBORS_PLUS_2[4]) = {
+ HIGHBD_NEIGHBOR_CONSTANT_8, HIGHBD_NEIGHBOR_CONSTANT_11,
+ HIGHBD_NEIGHBOR_CONSTANT_11, HIGHBD_NEIGHBOR_CONSTANT_11
+};
+
+DECLARE_ALIGNED(16, static const uint32_t,
+ HIGHBD_RIGHT_EDGE_NEIGHBORS_PLUS_2[4]) = {
+ HIGHBD_NEIGHBOR_CONSTANT_11, HIGHBD_NEIGHBOR_CONSTANT_11,
+ HIGHBD_NEIGHBOR_CONSTANT_11, HIGHBD_NEIGHBOR_CONSTANT_8
+};
+
+DECLARE_ALIGNED(16, static const uint32_t,
+ HIGHBD_MIDDLE_EDGE_NEIGHBORS_PLUS_2[4]) = {
+ HIGHBD_NEIGHBOR_CONSTANT_8, HIGHBD_NEIGHBOR_CONSTANT_8,
+ HIGHBD_NEIGHBOR_CONSTANT_8, HIGHBD_NEIGHBOR_CONSTANT_8
+};
+
+DECLARE_ALIGNED(16, static const uint32_t,
+ HIGHBD_MIDDLE_CENTER_NEIGHBORS_PLUS_2[4]) = {
+ HIGHBD_NEIGHBOR_CONSTANT_11, HIGHBD_NEIGHBOR_CONSTANT_11,
+ HIGHBD_NEIGHBOR_CONSTANT_11, HIGHBD_NEIGHBOR_CONSTANT_11
+};
+
+DECLARE_ALIGNED(16, static const uint32_t,
+ HIGHBD_LEFT_CORNER_NEIGHBORS_PLUS_4[4]) = {
+ HIGHBD_NEIGHBOR_CONSTANT_8, HIGHBD_NEIGHBOR_CONSTANT_10,
+ HIGHBD_NEIGHBOR_CONSTANT_10, HIGHBD_NEIGHBOR_CONSTANT_10
+};
+
+DECLARE_ALIGNED(16, static const uint32_t,
+ HIGHBD_RIGHT_CORNER_NEIGHBORS_PLUS_4[4]) = {
+ HIGHBD_NEIGHBOR_CONSTANT_10, HIGHBD_NEIGHBOR_CONSTANT_10,
+ HIGHBD_NEIGHBOR_CONSTANT_10, HIGHBD_NEIGHBOR_CONSTANT_8
+};
+
+DECLARE_ALIGNED(16, static const uint32_t,
+ HIGHBD_LEFT_EDGE_NEIGHBORS_PLUS_4[4]) = {
+ HIGHBD_NEIGHBOR_CONSTANT_10, HIGHBD_NEIGHBOR_CONSTANT_13,
+ HIGHBD_NEIGHBOR_CONSTANT_13, HIGHBD_NEIGHBOR_CONSTANT_13
+};
+
+DECLARE_ALIGNED(16, static const uint32_t,
+ HIGHBD_RIGHT_EDGE_NEIGHBORS_PLUS_4[4]) = {
+ HIGHBD_NEIGHBOR_CONSTANT_13, HIGHBD_NEIGHBOR_CONSTANT_13,
+ HIGHBD_NEIGHBOR_CONSTANT_13, HIGHBD_NEIGHBOR_CONSTANT_10
+};
+
+DECLARE_ALIGNED(16, static const uint32_t,
+ HIGHBD_MIDDLE_EDGE_NEIGHBORS_PLUS_4[4]) = {
+ HIGHBD_NEIGHBOR_CONSTANT_10, HIGHBD_NEIGHBOR_CONSTANT_10,
+ HIGHBD_NEIGHBOR_CONSTANT_10, HIGHBD_NEIGHBOR_CONSTANT_10
+};
+
+DECLARE_ALIGNED(16, static const uint32_t,
+ HIGHBD_MIDDLE_CENTER_NEIGHBORS_PLUS_4[4]) = {
+ HIGHBD_NEIGHBOR_CONSTANT_13, HIGHBD_NEIGHBOR_CONSTANT_13,
+ HIGHBD_NEIGHBOR_CONSTANT_13, HIGHBD_NEIGHBOR_CONSTANT_13
+};
+
+static const uint32_t *const HIGHBD_LUMA_LEFT_COLUMN_NEIGHBORS[2] = {
+ HIGHBD_LEFT_CORNER_NEIGHBORS_PLUS_2, HIGHBD_LEFT_EDGE_NEIGHBORS_PLUS_2
+};
+
+static const uint32_t *const HIGHBD_LUMA_MIDDLE_COLUMN_NEIGHBORS[2] = {
+ HIGHBD_MIDDLE_EDGE_NEIGHBORS_PLUS_2, HIGHBD_MIDDLE_CENTER_NEIGHBORS_PLUS_2
+};
+
+static const uint32_t *const HIGHBD_LUMA_RIGHT_COLUMN_NEIGHBORS[2] = {
+ HIGHBD_RIGHT_CORNER_NEIGHBORS_PLUS_2, HIGHBD_RIGHT_EDGE_NEIGHBORS_PLUS_2
+};
+
+static const uint32_t *const HIGHBD_CHROMA_NO_SS_LEFT_COLUMN_NEIGHBORS[2] = {
+ HIGHBD_LEFT_CORNER_NEIGHBORS_PLUS_1, HIGHBD_LEFT_EDGE_NEIGHBORS_PLUS_1
+};
+
+static const uint32_t *const HIGHBD_CHROMA_NO_SS_MIDDLE_COLUMN_NEIGHBORS[2] = {
+ HIGHBD_MIDDLE_EDGE_NEIGHBORS_PLUS_1, HIGHBD_MIDDLE_CENTER_NEIGHBORS_PLUS_1
+};
+
+static const uint32_t *const HIGHBD_CHROMA_NO_SS_RIGHT_COLUMN_NEIGHBORS[2] = {
+ HIGHBD_RIGHT_CORNER_NEIGHBORS_PLUS_1, HIGHBD_RIGHT_EDGE_NEIGHBORS_PLUS_1
+};
+
+static const uint32_t
+ *const HIGHBD_CHROMA_SINGLE_SS_LEFT_COLUMN_NEIGHBORS[2] = {
+ HIGHBD_LEFT_CORNER_NEIGHBORS_PLUS_2, HIGHBD_LEFT_EDGE_NEIGHBORS_PLUS_2
+ };
+
+static const uint32_t
+ *const HIGHBD_CHROMA_SINGLE_SS_MIDDLE_COLUMN_NEIGHBORS[2] = {
+ HIGHBD_MIDDLE_EDGE_NEIGHBORS_PLUS_2, HIGHBD_MIDDLE_CENTER_NEIGHBORS_PLUS_2
+ };
+
+static const uint32_t
+ *const HIGHBD_CHROMA_SINGLE_SS_RIGHT_COLUMN_NEIGHBORS[2] = {
+ HIGHBD_RIGHT_CORNER_NEIGHBORS_PLUS_2, HIGHBD_RIGHT_EDGE_NEIGHBORS_PLUS_2
+ };
+
+static const uint32_t
+ *const HIGHBD_CHROMA_DOUBLE_SS_LEFT_COLUMN_NEIGHBORS[2] = {
+ HIGHBD_LEFT_CORNER_NEIGHBORS_PLUS_4, HIGHBD_LEFT_EDGE_NEIGHBORS_PLUS_4
+ };
+
+static const uint32_t
+ *const HIGHBD_CHROMA_DOUBLE_SS_MIDDLE_COLUMN_NEIGHBORS[2] = {
+ HIGHBD_MIDDLE_EDGE_NEIGHBORS_PLUS_4, HIGHBD_MIDDLE_CENTER_NEIGHBORS_PLUS_4
+ };
+
+static const uint32_t
+ *const HIGHBD_CHROMA_DOUBLE_SS_RIGHT_COLUMN_NEIGHBORS[2] = {
+ HIGHBD_RIGHT_CORNER_NEIGHBORS_PLUS_4, HIGHBD_RIGHT_EDGE_NEIGHBORS_PLUS_4
+ };
+
+#define DIST_STRIDE ((BW) + 2)
+#endif // AOM_AV1_ENCODER_X86_TEMPORAL_FILTER_CONSTANTS_H_
diff --git a/media/libaom/src/av1/encoder/x86/temporal_filter_sse2.c b/media/libaom/src/av1/encoder/x86/temporal_filter_sse2.c
new file mode 100644
index 0000000000..1722fac86c
--- /dev/null
+++ b/media/libaom/src/av1/encoder/x86/temporal_filter_sse2.c
@@ -0,0 +1,262 @@
+/*
+ * Copyright (c) 2019, Alliance for Open Media. All rights reserved
+ *
+ * This source code is subject to the terms of the BSD 2 Clause License and
+ * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
+ * was not distributed with this source code in the LICENSE file, you can
+ * obtain it at www.aomedia.org/license/software. If the Alliance for Open
+ * Media Patent License 1.0 was not distributed with this source code in the
+ * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
+ */
+
+#include <assert.h>
+#include <emmintrin.h>
+
+#include "config/av1_rtcd.h"
+#include "av1/encoder/encoder.h"
+#include "av1/encoder/temporal_filter.h"
+
+// For the squared error buffer, keep a padding for 4 samples
+#define SSE_STRIDE (BW + 4)
+
+DECLARE_ALIGNED(32, static const uint32_t, sse_bytemask_2x4[4][2][4]) = {
+ { { 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF },
+ { 0xFFFFFFFF, 0x00000000, 0x00000000, 0x00000000 } },
+ { { 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF },
+ { 0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000 } },
+ { { 0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF },
+ { 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0x00000000 } },
+ { { 0x00000000, 0x00000000, 0x00000000, 0xFFFFFFFF },
+ { 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF } }
+};
+
+static void get_squared_error(const uint8_t *frame1, const unsigned int stride,
+ const uint8_t *frame2, const unsigned int stride2,
+ const int block_width, const int block_height,
+ uint16_t *frame_sse,
+ const unsigned int dst_stride) {
+ const uint8_t *src1 = frame1;
+ const uint8_t *src2 = frame2;
+ uint16_t *dst = frame_sse;
+
+ for (int i = 0; i < block_height; i++) {
+ for (int j = 0; j < block_width; j += 16) {
+ // Set zero to uninitialized memory to avoid uninitialized loads later
+ *(uint32_t *)(dst) = _mm_cvtsi128_si32(_mm_setzero_si128());
+
+ __m128i vsrc1 = _mm_loadu_si128((__m128i *)(src1 + j));
+ __m128i vsrc2 = _mm_loadu_si128((__m128i *)(src2 + j));
+
+ __m128i vmax = _mm_max_epu8(vsrc1, vsrc2);
+ __m128i vmin = _mm_min_epu8(vsrc1, vsrc2);
+ __m128i vdiff = _mm_subs_epu8(vmax, vmin);
+
+ __m128i vzero = _mm_setzero_si128();
+ __m128i vdiff1 = _mm_unpacklo_epi8(vdiff, vzero);
+ __m128i vdiff2 = _mm_unpackhi_epi8(vdiff, vzero);
+
+ __m128i vres1 = _mm_mullo_epi16(vdiff1, vdiff1);
+ __m128i vres2 = _mm_mullo_epi16(vdiff2, vdiff2);
+
+ _mm_storeu_si128((__m128i *)(dst + j + 2), vres1);
+ _mm_storeu_si128((__m128i *)(dst + j + 10), vres2);
+ }
+
+ // Set zero to uninitialized memory to avoid uninitialized loads later
+ *(uint32_t *)(dst + block_width + 2) =
+ _mm_cvtsi128_si32(_mm_setzero_si128());
+
+ src1 += stride;
+ src2 += stride2;
+ dst += dst_stride;
+ }
+}
+
+static void xx_load_and_pad(uint16_t *src, __m128i *dstvec, int col,
+ int block_width) {
+ __m128i vtmp = _mm_loadu_si128((__m128i *)src);
+ __m128i vzero = _mm_setzero_si128();
+ __m128i vtmp1 = _mm_unpacklo_epi16(vtmp, vzero);
+ __m128i vtmp2 = _mm_unpackhi_epi16(vtmp, vzero);
+ // For the first column, replicate the first element twice to the left
+ dstvec[0] = (col) ? vtmp1 : _mm_shuffle_epi32(vtmp1, 0xEA);
+ // For the last column, replicate the last element twice to the right
+ dstvec[1] = (col < block_width - 4) ? vtmp2 : _mm_shuffle_epi32(vtmp2, 0x54);
+}
+
+static int32_t xx_mask_and_hadd(__m128i vsum1, __m128i vsum2, int i) {
+ __m128i veca, vecb;
+ // Mask and obtain the required 5 values inside the vector
+ veca = _mm_and_si128(vsum1, *(__m128i *)sse_bytemask_2x4[i][0]);
+ vecb = _mm_and_si128(vsum2, *(__m128i *)sse_bytemask_2x4[i][1]);
+ // A = [A0+B0, A1+B1, A2+B2, A3+B3]
+ veca = _mm_add_epi32(veca, vecb);
+ // B = [A2+B2, A3+B3, 0, 0]
+ vecb = _mm_srli_si128(veca, 8);
+ // A = [A0+B0+A2+B2, A1+B1+A3+B3, X, X]
+ veca = _mm_add_epi32(veca, vecb);
+ // B = [A1+B1+A3+B3, 0, 0, 0]
+ vecb = _mm_srli_si128(veca, 4);
+ // A = [A0+B0+A2+B2+A1+B1+A3+B3, X, X, X]
+ veca = _mm_add_epi32(veca, vecb);
+ return _mm_cvtsi128_si32(veca);
+}
+
+static void apply_temporal_filter_planewise(
+ const uint8_t *frame1, const unsigned int stride, const uint8_t *frame2,
+ const unsigned int stride2, const int block_width, const int block_height,
+ const double sigma, const int decay_control, const int use_subblock,
+ const int block_mse, const int *subblock_mses, const int q_factor,
+ unsigned int *accumulator, uint16_t *count, uint16_t *luma_sq_error,
+ uint16_t *chroma_sq_error, int plane, int ss_x_shift, int ss_y_shift) {
+ assert(TF_PLANEWISE_FILTER_WINDOW_LENGTH == 5);
+ assert(((block_width == 16) || (block_width == 32)) &&
+ ((block_height == 16) || (block_height == 32)));
+ if (plane > PLANE_TYPE_Y) assert(chroma_sq_error != NULL);
+
+ uint32_t acc_5x5_sse[BH][BW];
+ const double h = decay_control * (0.7 + log(sigma + 1.0));
+ const double q = AOMMIN((double)(q_factor * q_factor) / 256.0, 1);
+ uint16_t *frame_sse =
+ (plane == PLANE_TYPE_Y) ? luma_sq_error : chroma_sq_error;
+
+ get_squared_error(frame1, stride, frame2, stride2, block_width, block_height,
+ frame_sse, SSE_STRIDE);
+
+ __m128i vsrc[5][2];
+
+ // Traverse 4 columns at a time
+ // First and last columns will require padding
+ for (int col = 0; col < block_width; col += 4) {
+ uint16_t *src = frame_sse + col;
+
+ // Load and pad(for first and last col) 3 rows from the top
+ for (int i = 2; i < 5; i++) {
+ xx_load_and_pad(src, vsrc[i], col, block_width);
+ src += SSE_STRIDE;
+ }
+
+ // Padding for top 2 rows
+ vsrc[0][0] = vsrc[2][0];
+ vsrc[0][1] = vsrc[2][1];
+ vsrc[1][0] = vsrc[2][0];
+ vsrc[1][1] = vsrc[2][1];
+
+ for (int row = 0; row < block_height; row++) {
+ __m128i vsum1 = _mm_setzero_si128();
+ __m128i vsum2 = _mm_setzero_si128();
+
+ // Add 5 consecutive rows
+ for (int i = 0; i < 5; i++) {
+ vsum1 = _mm_add_epi32(vsrc[i][0], vsum1);
+ vsum2 = _mm_add_epi32(vsrc[i][1], vsum2);
+ }
+
+ // Push all elements by one element to the top
+ for (int i = 0; i < 4; i++) {
+ vsrc[i][0] = vsrc[i + 1][0];
+ vsrc[i][1] = vsrc[i + 1][1];
+ }
+
+ if (row <= block_height - 4) {
+ // Load next row
+ xx_load_and_pad(src, vsrc[4], col, block_width);
+ src += SSE_STRIDE;
+ } else {
+ // Padding for bottom 2 rows
+ vsrc[4][0] = vsrc[3][0];
+ vsrc[4][1] = vsrc[3][1];
+ }
+
+ // Accumulate the sum horizontally
+ for (int i = 0; i < 4; i++) {
+ acc_5x5_sse[row][col + i] = xx_mask_and_hadd(vsum1, vsum2, i);
+ }
+ }
+ }
+
+ for (int i = 0, k = 0; i < block_height; i++) {
+ for (int j = 0; j < block_width; j++, k++) {
+ const int pixel_value = frame2[i * stride2 + j];
+
+ int diff_sse = acc_5x5_sse[i][j];
+ int num_ref_pixels =
+ TF_PLANEWISE_FILTER_WINDOW_LENGTH * TF_PLANEWISE_FILTER_WINDOW_LENGTH;
+
+ // Filter U-plane and V-plane using Y-plane. This is because motion
+ // search is only done on Y-plane, so the information from Y-plane will
+ // be more accurate.
+ if (plane != PLANE_TYPE_Y) {
+ for (int ii = 0; ii < (1 << ss_y_shift); ++ii) {
+ for (int jj = 0; jj < (1 << ss_x_shift); ++jj) {
+ const int yy = (i << ss_y_shift) + ii; // Y-coord on Y-plane.
+ const int xx = (j << ss_x_shift) + jj + 2; // X-coord on Y-plane.
+ const int ww = SSE_STRIDE; // Stride of Y-plane.
+ diff_sse += luma_sq_error[yy * ww + xx];
+ ++num_ref_pixels;
+ }
+ }
+ }
+
+ const double window_error = (double)(diff_sse) / num_ref_pixels;
+ const int subblock_idx =
+ (i >= block_height / 2) * 2 + (j >= block_width / 2);
+ const double block_error =
+ (double)(use_subblock ? subblock_mses[subblock_idx] : block_mse);
+
+ const double scaled_diff =
+ AOMMAX(-(window_error + block_error / 10) / (2 * h * h * q), -15.0);
+ const int adjusted_weight =
+ (int)(exp(scaled_diff) * TF_PLANEWISE_FILTER_WEIGHT_SCALE);
+
+ count[k] += adjusted_weight;
+ accumulator[k] += adjusted_weight * pixel_value;
+ }
+ }
+}
+
+void av1_apply_temporal_filter_planewise_sse2(
+ const YV12_BUFFER_CONFIG *ref_frame, const MACROBLOCKD *mbd,
+ const BLOCK_SIZE block_size, const int mb_row, const int mb_col,
+ const int num_planes, const double *noise_levels, const int use_subblock,
+ const int block_mse, const int *subblock_mses, const int q_factor,
+ const uint8_t *pred, uint32_t *accum, uint16_t *count) {
+ const int is_high_bitdepth = ref_frame->flags & YV12_FLAG_HIGHBITDEPTH;
+ if (is_high_bitdepth) {
+ assert(0 && "Only support low bit-depth with sse2!");
+ }
+ assert(num_planes >= 1 && num_planes <= MAX_MB_PLANE);
+
+ const int frame_height = ref_frame->heights[0] << mbd->plane[0].subsampling_y;
+ const int decay_control = frame_height >= 720 ? 4 : 3;
+
+ const int mb_height = block_size_high[block_size];
+ const int mb_width = block_size_wide[block_size];
+ const int mb_pels = mb_height * mb_width;
+ uint16_t luma_sq_error[SSE_STRIDE * BH];
+ uint16_t *chroma_sq_error =
+ (num_planes > 0)
+ ? (uint16_t *)aom_malloc(SSE_STRIDE * BH * sizeof(uint16_t))
+ : NULL;
+
+ for (int plane = 0; plane < num_planes; ++plane) {
+ const uint32_t plane_h = mb_height >> mbd->plane[plane].subsampling_y;
+ const uint32_t plane_w = mb_width >> mbd->plane[plane].subsampling_x;
+ const uint32_t frame_stride = ref_frame->strides[plane == 0 ? 0 : 1];
+ const int frame_offset = mb_row * plane_h * frame_stride + mb_col * plane_w;
+
+ const uint8_t *ref = ref_frame->buffers[plane] + frame_offset;
+ const int ss_x_shift =
+ mbd->plane[plane].subsampling_x - mbd->plane[0].subsampling_x;
+ const int ss_y_shift =
+ mbd->plane[plane].subsampling_y - mbd->plane[0].subsampling_y;
+
+ apply_temporal_filter_planewise(
+ ref, frame_stride, pred + mb_pels * plane, plane_w, plane_w, plane_h,
+ noise_levels[plane], decay_control, use_subblock, block_mse,
+ subblock_mses, q_factor, accum + mb_pels * plane,
+ count + mb_pels * plane, luma_sq_error, chroma_sq_error, plane,
+ ss_x_shift, ss_y_shift);
+ }
+ if (chroma_sq_error != NULL) aom_free(chroma_sq_error);
+}
diff --git a/media/libaom/src/av1/encoder/x86/temporal_filter_sse4.c b/media/libaom/src/av1/encoder/x86/temporal_filter_sse4.c
new file mode 100644
index 0000000000..e3f9f5f276
--- /dev/null
+++ b/media/libaom/src/av1/encoder/x86/temporal_filter_sse4.c
@@ -0,0 +1,2044 @@
+/*
+ * Copyright (c) 2019, Alliance for Open Media. All rights reserved
+ *
+ * This source code is subject to the terms of the BSD 2 Clause License and
+ * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
+ * was not distributed with this source code in the LICENSE file, you can
+ * obtain it at www.aomedia.org/license/software. If the Alliance for Open
+ * Media Patent License 1.0 was not distributed with this source code in the
+ * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
+ */
+
+#include <assert.h>
+#include <smmintrin.h>
+
+#include "config/av1_rtcd.h"
+#include "aom/aom_integer.h"
+#include "av1/encoder/encoder.h"
+#include "av1/encoder/temporal_filter.h"
+#include "av1/encoder/x86/temporal_filter_constants.h"
+
+//////////////////////////
+// Low bit-depth Begins //
+//////////////////////////
+
+// Read in 8 pixels from a and b as 8-bit unsigned integers, compute the
+// difference squared, and store as unsigned 16-bit integer to dst.
+static INLINE void store_dist_8(const uint8_t *a, const uint8_t *b,
+ uint16_t *dst) {
+ const __m128i a_reg = _mm_loadl_epi64((const __m128i *)a);
+ const __m128i b_reg = _mm_loadl_epi64((const __m128i *)b);
+
+ const __m128i a_first = _mm_cvtepu8_epi16(a_reg);
+ const __m128i b_first = _mm_cvtepu8_epi16(b_reg);
+
+ __m128i dist_first;
+
+ dist_first = _mm_sub_epi16(a_first, b_first);
+ dist_first = _mm_mullo_epi16(dist_first, dist_first);
+
+ _mm_storeu_si128((__m128i *)dst, dist_first);
+}
+
+static INLINE void store_dist_16(const uint8_t *a, const uint8_t *b,
+ uint16_t *dst) {
+ const __m128i zero = _mm_setzero_si128();
+ const __m128i a_reg = _mm_loadu_si128((const __m128i *)a);
+ const __m128i b_reg = _mm_loadu_si128((const __m128i *)b);
+
+ const __m128i a_first = _mm_cvtepu8_epi16(a_reg);
+ const __m128i a_second = _mm_unpackhi_epi8(a_reg, zero);
+ const __m128i b_first = _mm_cvtepu8_epi16(b_reg);
+ const __m128i b_second = _mm_unpackhi_epi8(b_reg, zero);
+
+ __m128i dist_first, dist_second;
+
+ dist_first = _mm_sub_epi16(a_first, b_first);
+ dist_second = _mm_sub_epi16(a_second, b_second);
+ dist_first = _mm_mullo_epi16(dist_first, dist_first);
+ dist_second = _mm_mullo_epi16(dist_second, dist_second);
+
+ _mm_storeu_si128((__m128i *)dst, dist_first);
+ _mm_storeu_si128((__m128i *)(dst + 8), dist_second);
+}
+
+static INLINE void read_dist_8(const uint16_t *dist, __m128i *dist_reg) {
+ *dist_reg = _mm_loadu_si128((const __m128i *)dist);
+}
+
+static INLINE void read_dist_16(const uint16_t *dist, __m128i *reg_first,
+ __m128i *reg_second) {
+ read_dist_8(dist, reg_first);
+ read_dist_8(dist + 8, reg_second);
+}
+
+// Average the value based on the number of values summed (9 for pixels away
+// from the border, 4 for pixels in corners, and 6 for other edge values).
+//
+// Add in the rounding factor and shift, clamp to 16, invert and shift. Multiply
+// by weight.
+static __m128i average_8(__m128i sum, const __m128i *mul_constants,
+ const int strength, const int rounding,
+ const int weight) {
+ // _mm_srl_epi16 uses the lower 64 bit value for the shift.
+ const __m128i strength_u128 = _mm_set_epi32(0, 0, 0, strength);
+ const __m128i rounding_u16 = _mm_set1_epi16(rounding);
+ const __m128i weight_u16 = _mm_set1_epi16(weight);
+ const __m128i sixteen = _mm_set1_epi16(16);
+
+ // modifier * 3 / index;
+ sum = _mm_mulhi_epu16(sum, *mul_constants);
+
+ sum = _mm_adds_epu16(sum, rounding_u16);
+ sum = _mm_srl_epi16(sum, strength_u128);
+
+ // The maximum input to this comparison is UINT16_MAX * NEIGHBOR_CONSTANT_4
+ // >> 16 (also NEIGHBOR_CONSTANT_4 -1) which is 49151 / 0xbfff / -16385
+ // So this needs to use the epu16 version which did not come until SSE4.
+ sum = _mm_min_epu16(sum, sixteen);
+
+ sum = _mm_sub_epi16(sixteen, sum);
+
+ return _mm_mullo_epi16(sum, weight_u16);
+}
+
+static __m128i average_4_4(__m128i sum, const __m128i *mul_constants,
+ const int strength, const int rounding,
+ const int weight_0, const int weight_1) {
+ // _mm_srl_epi16 uses the lower 64 bit value for the shift.
+ const __m128i strength_u128 = _mm_set_epi32(0, 0, 0, strength);
+ const __m128i rounding_u16 = _mm_set1_epi16(rounding);
+ const __m128i weight_u16 =
+ _mm_setr_epi16(weight_0, weight_0, weight_0, weight_0, weight_1, weight_1,
+ weight_1, weight_1);
+ const __m128i sixteen = _mm_set1_epi16(16);
+
+ // modifier * 3 / index;
+ sum = _mm_mulhi_epu16(sum, *mul_constants);
+
+ sum = _mm_adds_epu16(sum, rounding_u16);
+ sum = _mm_srl_epi16(sum, strength_u128);
+
+ // The maximum input to this comparison is UINT16_MAX * NEIGHBOR_CONSTANT_4
+ // >> 16 (also NEIGHBOR_CONSTANT_4 -1) which is 49151 / 0xbfff / -16385
+ // So this needs to use the epu16 version which did not come until SSE4.
+ sum = _mm_min_epu16(sum, sixteen);
+
+ sum = _mm_sub_epi16(sixteen, sum);
+
+ return _mm_mullo_epi16(sum, weight_u16);
+}
+
+static INLINE void average_16(__m128i *sum_0_u16, __m128i *sum_1_u16,
+ const __m128i *mul_constants_0,
+ const __m128i *mul_constants_1,
+ const int strength, const int rounding,
+ const int weight) {
+ const __m128i strength_u128 = _mm_set_epi32(0, 0, 0, strength);
+ const __m128i rounding_u16 = _mm_set1_epi16(rounding);
+ const __m128i weight_u16 = _mm_set1_epi16(weight);
+ const __m128i sixteen = _mm_set1_epi16(16);
+ __m128i input_0, input_1;
+
+ input_0 = _mm_mulhi_epu16(*sum_0_u16, *mul_constants_0);
+ input_0 = _mm_adds_epu16(input_0, rounding_u16);
+
+ input_1 = _mm_mulhi_epu16(*sum_1_u16, *mul_constants_1);
+ input_1 = _mm_adds_epu16(input_1, rounding_u16);
+
+ input_0 = _mm_srl_epi16(input_0, strength_u128);
+ input_1 = _mm_srl_epi16(input_1, strength_u128);
+
+ input_0 = _mm_min_epu16(input_0, sixteen);
+ input_1 = _mm_min_epu16(input_1, sixteen);
+ input_0 = _mm_sub_epi16(sixteen, input_0);
+ input_1 = _mm_sub_epi16(sixteen, input_1);
+
+ *sum_0_u16 = _mm_mullo_epi16(input_0, weight_u16);
+ *sum_1_u16 = _mm_mullo_epi16(input_1, weight_u16);
+}
+
+// Add 'sum_u16' to 'count'. Multiply by 'pred' and add to 'accumulator.'
+static void accumulate_and_store_8(const __m128i sum_u16, const uint8_t *pred,
+ uint16_t *count, uint32_t *accumulator) {
+ const __m128i pred_u8 = _mm_loadl_epi64((const __m128i *)pred);
+ const __m128i zero = _mm_setzero_si128();
+ __m128i count_u16 = _mm_loadu_si128((const __m128i *)count);
+ __m128i pred_u16 = _mm_cvtepu8_epi16(pred_u8);
+ __m128i pred_0_u32, pred_1_u32;
+ __m128i accum_0_u32, accum_1_u32;
+
+ count_u16 = _mm_adds_epu16(count_u16, sum_u16);
+ _mm_storeu_si128((__m128i *)count, count_u16);
+
+ pred_u16 = _mm_mullo_epi16(sum_u16, pred_u16);
+
+ pred_0_u32 = _mm_cvtepu16_epi32(pred_u16);
+ pred_1_u32 = _mm_unpackhi_epi16(pred_u16, zero);
+
+ accum_0_u32 = _mm_loadu_si128((const __m128i *)accumulator);
+ accum_1_u32 = _mm_loadu_si128((const __m128i *)(accumulator + 4));
+
+ accum_0_u32 = _mm_add_epi32(pred_0_u32, accum_0_u32);
+ accum_1_u32 = _mm_add_epi32(pred_1_u32, accum_1_u32);
+
+ _mm_storeu_si128((__m128i *)accumulator, accum_0_u32);
+ _mm_storeu_si128((__m128i *)(accumulator + 4), accum_1_u32);
+}
+
+static INLINE void accumulate_and_store_16(const __m128i sum_0_u16,
+ const __m128i sum_1_u16,
+ const uint8_t *pred, uint16_t *count,
+ uint32_t *accumulator) {
+ const __m128i pred_u8 = _mm_loadu_si128((const __m128i *)pred);
+ const __m128i zero = _mm_setzero_si128();
+ __m128i count_0_u16 = _mm_loadu_si128((const __m128i *)count),
+ count_1_u16 = _mm_loadu_si128((const __m128i *)(count + 8));
+ __m128i pred_0_u16 = _mm_cvtepu8_epi16(pred_u8),
+ pred_1_u16 = _mm_unpackhi_epi8(pred_u8, zero);
+ __m128i pred_0_u32, pred_1_u32, pred_2_u32, pred_3_u32;
+ __m128i accum_0_u32, accum_1_u32, accum_2_u32, accum_3_u32;
+
+ count_0_u16 = _mm_adds_epu16(count_0_u16, sum_0_u16);
+ _mm_storeu_si128((__m128i *)count, count_0_u16);
+
+ count_1_u16 = _mm_adds_epu16(count_1_u16, sum_1_u16);
+ _mm_storeu_si128((__m128i *)(count + 8), count_1_u16);
+
+ pred_0_u16 = _mm_mullo_epi16(sum_0_u16, pred_0_u16);
+ pred_1_u16 = _mm_mullo_epi16(sum_1_u16, pred_1_u16);
+
+ pred_0_u32 = _mm_cvtepu16_epi32(pred_0_u16);
+ pred_1_u32 = _mm_unpackhi_epi16(pred_0_u16, zero);
+ pred_2_u32 = _mm_cvtepu16_epi32(pred_1_u16);
+ pred_3_u32 = _mm_unpackhi_epi16(pred_1_u16, zero);
+
+ accum_0_u32 = _mm_loadu_si128((const __m128i *)accumulator);
+ accum_1_u32 = _mm_loadu_si128((const __m128i *)(accumulator + 4));
+ accum_2_u32 = _mm_loadu_si128((const __m128i *)(accumulator + 8));
+ accum_3_u32 = _mm_loadu_si128((const __m128i *)(accumulator + 12));
+
+ accum_0_u32 = _mm_add_epi32(pred_0_u32, accum_0_u32);
+ accum_1_u32 = _mm_add_epi32(pred_1_u32, accum_1_u32);
+ accum_2_u32 = _mm_add_epi32(pred_2_u32, accum_2_u32);
+ accum_3_u32 = _mm_add_epi32(pred_3_u32, accum_3_u32);
+
+ _mm_storeu_si128((__m128i *)accumulator, accum_0_u32);
+ _mm_storeu_si128((__m128i *)(accumulator + 4), accum_1_u32);
+ _mm_storeu_si128((__m128i *)(accumulator + 8), accum_2_u32);
+ _mm_storeu_si128((__m128i *)(accumulator + 12), accum_3_u32);
+}
+
+// Read in 8 pixels from y_dist. For each index i, compute y_dist[i-1] +
+// y_dist[i] + y_dist[i+1] and store in sum as 16-bit unsigned int.
+static INLINE void get_sum_8(const uint16_t *y_dist, __m128i *sum) {
+ __m128i dist_reg, dist_left, dist_right;
+
+ dist_reg = _mm_loadu_si128((const __m128i *)y_dist);
+ dist_left = _mm_loadu_si128((const __m128i *)(y_dist - 1));
+ dist_right = _mm_loadu_si128((const __m128i *)(y_dist + 1));
+
+ *sum = _mm_adds_epu16(dist_reg, dist_left);
+ *sum = _mm_adds_epu16(*sum, dist_right);
+}
+
+// Read in 16 pixels from y_dist. For each index i, compute y_dist[i-1] +
+// y_dist[i] + y_dist[i+1]. Store the result for first 8 pixels in sum_first and
+// the rest in sum_second.
+static INLINE void get_sum_16(const uint16_t *y_dist, __m128i *sum_first,
+ __m128i *sum_second) {
+ get_sum_8(y_dist, sum_first);
+ get_sum_8(y_dist + 8, sum_second);
+}
+
+// Read in a row of chroma values corresponds to a row of 16 luma values.
+static INLINE void read_chroma_dist_row_16(int ss_x, const uint16_t *u_dist,
+ const uint16_t *v_dist,
+ __m128i *u_first, __m128i *u_second,
+ __m128i *v_first,
+ __m128i *v_second) {
+ if (!ss_x) {
+ // If there is no chroma subsampling in the horizontal direction, then we
+ // need to load 16 entries from chroma.
+ read_dist_16(u_dist, u_first, u_second);
+ read_dist_16(v_dist, v_first, v_second);
+ } else { // ss_x == 1
+ // Otherwise, we only need to load 8 entries
+ __m128i u_reg, v_reg;
+
+ read_dist_8(u_dist, &u_reg);
+
+ *u_first = _mm_unpacklo_epi16(u_reg, u_reg);
+ *u_second = _mm_unpackhi_epi16(u_reg, u_reg);
+
+ read_dist_8(v_dist, &v_reg);
+
+ *v_first = _mm_unpacklo_epi16(v_reg, v_reg);
+ *v_second = _mm_unpackhi_epi16(v_reg, v_reg);
+ }
+}
+
+// Horizontal add unsigned 16-bit ints in src and store them as signed 32-bit
+// int in dst.
+static INLINE void hadd_epu16(__m128i *src, __m128i *dst) {
+ const __m128i zero = _mm_setzero_si128();
+ const __m128i shift_right = _mm_srli_si128(*src, 2);
+
+ const __m128i odd = _mm_blend_epi16(shift_right, zero, 170);
+ const __m128i even = _mm_blend_epi16(*src, zero, 170);
+
+ *dst = _mm_add_epi32(even, odd);
+}
+
+// Add a row of luma distortion to 8 corresponding chroma mods.
+static INLINE void add_luma_dist_to_8_chroma_mod(const uint16_t *y_dist,
+ int ss_x, int ss_y,
+ __m128i *u_mod,
+ __m128i *v_mod) {
+ __m128i y_reg;
+ if (!ss_x) {
+ read_dist_8(y_dist, &y_reg);
+ if (ss_y == 1) {
+ __m128i y_tmp;
+ read_dist_8(y_dist + DIST_STRIDE, &y_tmp);
+
+ y_reg = _mm_adds_epu16(y_reg, y_tmp);
+ }
+ } else {
+ __m128i y_first, y_second;
+ read_dist_16(y_dist, &y_first, &y_second);
+ if (ss_y == 1) {
+ __m128i y_tmp_0, y_tmp_1;
+ read_dist_16(y_dist + DIST_STRIDE, &y_tmp_0, &y_tmp_1);
+
+ y_first = _mm_adds_epu16(y_first, y_tmp_0);
+ y_second = _mm_adds_epu16(y_second, y_tmp_1);
+ }
+
+ hadd_epu16(&y_first, &y_first);
+ hadd_epu16(&y_second, &y_second);
+
+ y_reg = _mm_packus_epi32(y_first, y_second);
+ }
+
+ *u_mod = _mm_adds_epu16(*u_mod, y_reg);
+ *v_mod = _mm_adds_epu16(*v_mod, y_reg);
+}
+
+// Apply temporal filter to the luma components. This performs temporal
+// filtering on a luma block of 16 X block_height. Use blk_fw as an array of
+// size 4 for the weights for each of the 4 subblocks if blk_fw is not NULL,
+// else use top_weight for top half, and bottom weight for bottom half.
+static void apply_temporal_filter_luma_16(
+ const uint8_t *y_src, int y_src_stride, const uint8_t *y_pre,
+ int y_pre_stride, const uint8_t *u_src, const uint8_t *v_src,
+ int uv_src_stride, const uint8_t *u_pre, const uint8_t *v_pre,
+ int uv_pre_stride, unsigned int block_width, unsigned int block_height,
+ int ss_x, int ss_y, int strength, int use_whole_blk, uint32_t *y_accum,
+ uint16_t *y_count, const uint16_t *y_dist, const uint16_t *u_dist,
+ const uint16_t *v_dist, const int16_t *const *neighbors_first,
+ const int16_t *const *neighbors_second, int top_weight, int bottom_weight,
+ const int *blk_fw) {
+ const int rounding = (1 << strength) >> 1;
+ int weight = top_weight;
+
+ __m128i mul_first, mul_second;
+
+ __m128i sum_row_1_first, sum_row_1_second;
+ __m128i sum_row_2_first, sum_row_2_second;
+ __m128i sum_row_3_first, sum_row_3_second;
+
+ __m128i u_first, u_second;
+ __m128i v_first, v_second;
+
+ __m128i sum_row_first;
+ __m128i sum_row_second;
+
+ // Loop variables
+ unsigned int h;
+
+ assert(strength >= 0);
+ assert(strength <= 6);
+
+ assert(block_width == 16);
+
+ (void)block_width;
+
+ // First row
+ mul_first = _mm_loadu_si128((const __m128i *)neighbors_first[0]);
+ mul_second = _mm_loadu_si128((const __m128i *)neighbors_second[0]);
+
+ // Add luma values
+ get_sum_16(y_dist, &sum_row_2_first, &sum_row_2_second);
+ get_sum_16(y_dist + DIST_STRIDE, &sum_row_3_first, &sum_row_3_second);
+
+ sum_row_first = _mm_adds_epu16(sum_row_2_first, sum_row_3_first);
+ sum_row_second = _mm_adds_epu16(sum_row_2_second, sum_row_3_second);
+
+ // Add chroma values
+ read_chroma_dist_row_16(ss_x, u_dist, v_dist, &u_first, &u_second, &v_first,
+ &v_second);
+
+ sum_row_first = _mm_adds_epu16(sum_row_first, u_first);
+ sum_row_second = _mm_adds_epu16(sum_row_second, u_second);
+
+ sum_row_first = _mm_adds_epu16(sum_row_first, v_first);
+ sum_row_second = _mm_adds_epu16(sum_row_second, v_second);
+
+ // Get modifier and store result
+ if (blk_fw) {
+ sum_row_first =
+ average_8(sum_row_first, &mul_first, strength, rounding, blk_fw[0]);
+ sum_row_second =
+ average_8(sum_row_second, &mul_second, strength, rounding, blk_fw[1]);
+ } else {
+ average_16(&sum_row_first, &sum_row_second, &mul_first, &mul_second,
+ strength, rounding, weight);
+ }
+ accumulate_and_store_16(sum_row_first, sum_row_second, y_pre, y_count,
+ y_accum);
+
+ y_src += y_src_stride;
+ y_pre += y_pre_stride;
+ y_count += y_pre_stride;
+ y_accum += y_pre_stride;
+ y_dist += DIST_STRIDE;
+
+ u_src += uv_src_stride;
+ u_pre += uv_pre_stride;
+ u_dist += DIST_STRIDE;
+ v_src += uv_src_stride;
+ v_pre += uv_pre_stride;
+ v_dist += DIST_STRIDE;
+
+ // Then all the rows except the last one
+ mul_first = _mm_loadu_si128((const __m128i *)neighbors_first[1]);
+ mul_second = _mm_loadu_si128((const __m128i *)neighbors_second[1]);
+
+ for (h = 1; h < block_height - 1; ++h) {
+ // Move the weight to bottom half
+ if (!use_whole_blk && h == block_height / 2) {
+ if (blk_fw) {
+ blk_fw += 2;
+ } else {
+ weight = bottom_weight;
+ }
+ }
+ // Shift the rows up
+ sum_row_1_first = sum_row_2_first;
+ sum_row_1_second = sum_row_2_second;
+ sum_row_2_first = sum_row_3_first;
+ sum_row_2_second = sum_row_3_second;
+
+ // Add luma values to the modifier
+ sum_row_first = _mm_adds_epu16(sum_row_1_first, sum_row_2_first);
+ sum_row_second = _mm_adds_epu16(sum_row_1_second, sum_row_2_second);
+
+ get_sum_16(y_dist + DIST_STRIDE, &sum_row_3_first, &sum_row_3_second);
+
+ sum_row_first = _mm_adds_epu16(sum_row_first, sum_row_3_first);
+ sum_row_second = _mm_adds_epu16(sum_row_second, sum_row_3_second);
+
+ // Add chroma values to the modifier
+ if (ss_y == 0 || h % 2 == 0) {
+ // Only calculate the new chroma distortion if we are at a pixel that
+ // corresponds to a new chroma row
+ read_chroma_dist_row_16(ss_x, u_dist, v_dist, &u_first, &u_second,
+ &v_first, &v_second);
+
+ u_src += uv_src_stride;
+ u_pre += uv_pre_stride;
+ u_dist += DIST_STRIDE;
+ v_src += uv_src_stride;
+ v_pre += uv_pre_stride;
+ v_dist += DIST_STRIDE;
+ }
+
+ sum_row_first = _mm_adds_epu16(sum_row_first, u_first);
+ sum_row_second = _mm_adds_epu16(sum_row_second, u_second);
+ sum_row_first = _mm_adds_epu16(sum_row_first, v_first);
+ sum_row_second = _mm_adds_epu16(sum_row_second, v_second);
+
+ // Get modifier and store result
+ if (blk_fw) {
+ sum_row_first =
+ average_8(sum_row_first, &mul_first, strength, rounding, blk_fw[0]);
+ sum_row_second =
+ average_8(sum_row_second, &mul_second, strength, rounding, blk_fw[1]);
+ } else {
+ average_16(&sum_row_first, &sum_row_second, &mul_first, &mul_second,
+ strength, rounding, weight);
+ }
+ accumulate_and_store_16(sum_row_first, sum_row_second, y_pre, y_count,
+ y_accum);
+
+ y_src += y_src_stride;
+ y_pre += y_pre_stride;
+ y_count += y_pre_stride;
+ y_accum += y_pre_stride;
+ y_dist += DIST_STRIDE;
+ }
+
+ // The last row
+ mul_first = _mm_loadu_si128((const __m128i *)neighbors_first[0]);
+ mul_second = _mm_loadu_si128((const __m128i *)neighbors_second[0]);
+
+ // Shift the rows up
+ sum_row_1_first = sum_row_2_first;
+ sum_row_1_second = sum_row_2_second;
+ sum_row_2_first = sum_row_3_first;
+ sum_row_2_second = sum_row_3_second;
+
+ // Add luma values to the modifier
+ sum_row_first = _mm_adds_epu16(sum_row_1_first, sum_row_2_first);
+ sum_row_second = _mm_adds_epu16(sum_row_1_second, sum_row_2_second);
+
+ // Add chroma values to the modifier
+ if (ss_y == 0) {
+ // Only calculate the new chroma distortion if we are at a pixel that
+ // corresponds to a new chroma row
+ read_chroma_dist_row_16(ss_x, u_dist, v_dist, &u_first, &u_second, &v_first,
+ &v_second);
+ }
+
+ sum_row_first = _mm_adds_epu16(sum_row_first, u_first);
+ sum_row_second = _mm_adds_epu16(sum_row_second, u_second);
+ sum_row_first = _mm_adds_epu16(sum_row_first, v_first);
+ sum_row_second = _mm_adds_epu16(sum_row_second, v_second);
+
+ // Get modifier and store result
+ if (blk_fw) {
+ sum_row_first =
+ average_8(sum_row_first, &mul_first, strength, rounding, blk_fw[0]);
+ sum_row_second =
+ average_8(sum_row_second, &mul_second, strength, rounding, blk_fw[1]);
+ } else {
+ average_16(&sum_row_first, &sum_row_second, &mul_first, &mul_second,
+ strength, rounding, weight);
+ }
+ accumulate_and_store_16(sum_row_first, sum_row_second, y_pre, y_count,
+ y_accum);
+}
+
+// Perform temporal filter for the luma component.
+static void apply_temporal_filter_luma(
+ const uint8_t *y_src, int y_src_stride, const uint8_t *y_pre,
+ int y_pre_stride, const uint8_t *u_src, const uint8_t *v_src,
+ int uv_src_stride, const uint8_t *u_pre, const uint8_t *v_pre,
+ int uv_pre_stride, unsigned int block_width, unsigned int block_height,
+ int ss_x, int ss_y, int strength, const int *blk_fw, int use_whole_blk,
+ uint32_t *y_accum, uint16_t *y_count, const uint16_t *y_dist,
+ const uint16_t *u_dist, const uint16_t *v_dist) {
+ unsigned int blk_col = 0, uv_blk_col = 0;
+ const unsigned int blk_col_step = 16, uv_blk_col_step = 16 >> ss_x;
+ const unsigned int mid_width = block_width >> 1,
+ last_width = block_width - blk_col_step;
+ int top_weight = blk_fw[0],
+ bottom_weight = use_whole_blk ? blk_fw[0] : blk_fw[2];
+ const int16_t *const *neighbors_first;
+ const int16_t *const *neighbors_second;
+
+ if (block_width == 16) {
+ // Special Case: The blockwidth is 16 and we are operating on a row of 16
+ // chroma pixels. In this case, we can't use the usualy left-midle-right
+ // pattern. We also don't support splitting now.
+ neighbors_first = LUMA_LEFT_COLUMN_NEIGHBORS;
+ neighbors_second = LUMA_RIGHT_COLUMN_NEIGHBORS;
+ if (use_whole_blk) {
+ apply_temporal_filter_luma_16(
+ y_src + blk_col, y_src_stride, y_pre + blk_col, y_pre_stride,
+ u_src + uv_blk_col, v_src + uv_blk_col, uv_src_stride,
+ u_pre + uv_blk_col, v_pre + uv_blk_col, uv_pre_stride, 16,
+ block_height, ss_x, ss_y, strength, use_whole_blk, y_accum + blk_col,
+ y_count + blk_col, y_dist + blk_col, u_dist + uv_blk_col,
+ v_dist + uv_blk_col, neighbors_first, neighbors_second, top_weight,
+ bottom_weight, NULL);
+ } else {
+ apply_temporal_filter_luma_16(
+ y_src + blk_col, y_src_stride, y_pre + blk_col, y_pre_stride,
+ u_src + uv_blk_col, v_src + uv_blk_col, uv_src_stride,
+ u_pre + uv_blk_col, v_pre + uv_blk_col, uv_pre_stride, 16,
+ block_height, ss_x, ss_y, strength, use_whole_blk, y_accum + blk_col,
+ y_count + blk_col, y_dist + blk_col, u_dist + uv_blk_col,
+ v_dist + uv_blk_col, neighbors_first, neighbors_second, 0, 0, blk_fw);
+ }
+
+ return;
+ }
+
+ // Left
+ neighbors_first = LUMA_LEFT_COLUMN_NEIGHBORS;
+ neighbors_second = LUMA_MIDDLE_COLUMN_NEIGHBORS;
+ apply_temporal_filter_luma_16(
+ y_src + blk_col, y_src_stride, y_pre + blk_col, y_pre_stride,
+ u_src + uv_blk_col, v_src + uv_blk_col, uv_src_stride, u_pre + uv_blk_col,
+ v_pre + uv_blk_col, uv_pre_stride, 16, block_height, ss_x, ss_y, strength,
+ use_whole_blk, y_accum + blk_col, y_count + blk_col, y_dist + blk_col,
+ u_dist + uv_blk_col, v_dist + uv_blk_col, neighbors_first,
+ neighbors_second, top_weight, bottom_weight, NULL);
+
+ blk_col += blk_col_step;
+ uv_blk_col += uv_blk_col_step;
+
+ // Middle First
+ neighbors_first = LUMA_MIDDLE_COLUMN_NEIGHBORS;
+ for (; blk_col < mid_width;
+ blk_col += blk_col_step, uv_blk_col += uv_blk_col_step) {
+ apply_temporal_filter_luma_16(
+ y_src + blk_col, y_src_stride, y_pre + blk_col, y_pre_stride,
+ u_src + uv_blk_col, v_src + uv_blk_col, uv_src_stride,
+ u_pre + uv_blk_col, v_pre + uv_blk_col, uv_pre_stride, 16, block_height,
+ ss_x, ss_y, strength, use_whole_blk, y_accum + blk_col,
+ y_count + blk_col, y_dist + blk_col, u_dist + uv_blk_col,
+ v_dist + uv_blk_col, neighbors_first, neighbors_second, top_weight,
+ bottom_weight, NULL);
+ }
+
+ if (!use_whole_blk) {
+ top_weight = blk_fw[1];
+ bottom_weight = blk_fw[3];
+ }
+
+ // Middle Second
+ for (; blk_col < last_width;
+ blk_col += blk_col_step, uv_blk_col += uv_blk_col_step) {
+ apply_temporal_filter_luma_16(
+ y_src + blk_col, y_src_stride, y_pre + blk_col, y_pre_stride,
+ u_src + uv_blk_col, v_src + uv_blk_col, uv_src_stride,
+ u_pre + uv_blk_col, v_pre + uv_blk_col, uv_pre_stride, 16, block_height,
+ ss_x, ss_y, strength, use_whole_blk, y_accum + blk_col,
+ y_count + blk_col, y_dist + blk_col, u_dist + uv_blk_col,
+ v_dist + uv_blk_col, neighbors_first, neighbors_second, top_weight,
+ bottom_weight, NULL);
+ }
+
+ // Right
+ neighbors_second = LUMA_RIGHT_COLUMN_NEIGHBORS;
+ apply_temporal_filter_luma_16(
+ y_src + blk_col, y_src_stride, y_pre + blk_col, y_pre_stride,
+ u_src + uv_blk_col, v_src + uv_blk_col, uv_src_stride, u_pre + uv_blk_col,
+ v_pre + uv_blk_col, uv_pre_stride, 16, block_height, ss_x, ss_y, strength,
+ use_whole_blk, y_accum + blk_col, y_count + blk_col, y_dist + blk_col,
+ u_dist + uv_blk_col, v_dist + uv_blk_col, neighbors_first,
+ neighbors_second, top_weight, bottom_weight, NULL);
+}
+
+// Apply temporal filter to the chroma components. This performs temporal
+// filtering on a chroma block of 8 X uv_height. If blk_fw is not NULL, use
+// blk_fw as an array of size 4 for the weights for each of the 4 subblocks,
+// else use top_weight for top half, and bottom weight for bottom half.
+static void apply_temporal_filter_chroma_8(
+ const uint8_t *y_src, int y_src_stride, const uint8_t *y_pre,
+ int y_pre_stride, const uint8_t *u_src, const uint8_t *v_src,
+ int uv_src_stride, const uint8_t *u_pre, const uint8_t *v_pre,
+ int uv_pre_stride, unsigned int uv_block_width,
+ unsigned int uv_block_height, int ss_x, int ss_y, int strength,
+ uint32_t *u_accum, uint16_t *u_count, uint32_t *v_accum, uint16_t *v_count,
+ const uint16_t *y_dist, const uint16_t *u_dist, const uint16_t *v_dist,
+ const int16_t *const *neighbors, int top_weight, int bottom_weight,
+ const int *blk_fw) {
+ const int rounding = (1 << strength) >> 1;
+ int weight = top_weight;
+
+ __m128i mul;
+
+ __m128i u_sum_row_1, u_sum_row_2, u_sum_row_3;
+ __m128i v_sum_row_1, v_sum_row_2, v_sum_row_3;
+
+ __m128i u_sum_row, v_sum_row;
+
+ // Loop variable
+ unsigned int h;
+
+ (void)uv_block_width;
+
+ // First row
+ mul = _mm_loadu_si128((const __m128i *)neighbors[0]);
+
+ // Add chroma values
+ get_sum_8(u_dist, &u_sum_row_2);
+ get_sum_8(u_dist + DIST_STRIDE, &u_sum_row_3);
+
+ u_sum_row = _mm_adds_epu16(u_sum_row_2, u_sum_row_3);
+
+ get_sum_8(v_dist, &v_sum_row_2);
+ get_sum_8(v_dist + DIST_STRIDE, &v_sum_row_3);
+
+ v_sum_row = _mm_adds_epu16(v_sum_row_2, v_sum_row_3);
+
+ // Add luma values
+ add_luma_dist_to_8_chroma_mod(y_dist, ss_x, ss_y, &u_sum_row, &v_sum_row);
+
+ // Get modifier and store result
+ if (blk_fw) {
+ u_sum_row =
+ average_4_4(u_sum_row, &mul, strength, rounding, blk_fw[0], blk_fw[1]);
+ v_sum_row =
+ average_4_4(v_sum_row, &mul, strength, rounding, blk_fw[0], blk_fw[1]);
+ } else {
+ u_sum_row = average_8(u_sum_row, &mul, strength, rounding, weight);
+ v_sum_row = average_8(v_sum_row, &mul, strength, rounding, weight);
+ }
+ accumulate_and_store_8(u_sum_row, u_pre, u_count, u_accum);
+ accumulate_and_store_8(v_sum_row, v_pre, v_count, v_accum);
+
+ u_src += uv_src_stride;
+ u_pre += uv_pre_stride;
+ u_dist += DIST_STRIDE;
+ v_src += uv_src_stride;
+ v_pre += uv_pre_stride;
+ v_dist += DIST_STRIDE;
+ u_count += uv_pre_stride;
+ u_accum += uv_pre_stride;
+ v_count += uv_pre_stride;
+ v_accum += uv_pre_stride;
+
+ y_src += y_src_stride * (1 + ss_y);
+ y_pre += y_pre_stride * (1 + ss_y);
+ y_dist += DIST_STRIDE * (1 + ss_y);
+
+ // Then all the rows except the last one
+ mul = _mm_loadu_si128((const __m128i *)neighbors[1]);
+
+ for (h = 1; h < uv_block_height - 1; ++h) {
+ // Move the weight pointer to the bottom half of the blocks
+ if (h == uv_block_height / 2) {
+ if (blk_fw) {
+ blk_fw += 2;
+ } else {
+ weight = bottom_weight;
+ }
+ }
+
+ // Shift the rows up
+ u_sum_row_1 = u_sum_row_2;
+ u_sum_row_2 = u_sum_row_3;
+
+ v_sum_row_1 = v_sum_row_2;
+ v_sum_row_2 = v_sum_row_3;
+
+ // Add chroma values
+ u_sum_row = _mm_adds_epu16(u_sum_row_1, u_sum_row_2);
+ get_sum_8(u_dist + DIST_STRIDE, &u_sum_row_3);
+ u_sum_row = _mm_adds_epu16(u_sum_row, u_sum_row_3);
+
+ v_sum_row = _mm_adds_epu16(v_sum_row_1, v_sum_row_2);
+ get_sum_8(v_dist + DIST_STRIDE, &v_sum_row_3);
+ v_sum_row = _mm_adds_epu16(v_sum_row, v_sum_row_3);
+
+ // Add luma values
+ add_luma_dist_to_8_chroma_mod(y_dist, ss_x, ss_y, &u_sum_row, &v_sum_row);
+
+ // Get modifier and store result
+ if (blk_fw) {
+ u_sum_row = average_4_4(u_sum_row, &mul, strength, rounding, blk_fw[0],
+ blk_fw[1]);
+ v_sum_row = average_4_4(v_sum_row, &mul, strength, rounding, blk_fw[0],
+ blk_fw[1]);
+ } else {
+ u_sum_row = average_8(u_sum_row, &mul, strength, rounding, weight);
+ v_sum_row = average_8(v_sum_row, &mul, strength, rounding, weight);
+ }
+
+ accumulate_and_store_8(u_sum_row, u_pre, u_count, u_accum);
+ accumulate_and_store_8(v_sum_row, v_pre, v_count, v_accum);
+
+ u_src += uv_src_stride;
+ u_pre += uv_pre_stride;
+ u_dist += DIST_STRIDE;
+ v_src += uv_src_stride;
+ v_pre += uv_pre_stride;
+ v_dist += DIST_STRIDE;
+ u_count += uv_pre_stride;
+ u_accum += uv_pre_stride;
+ v_count += uv_pre_stride;
+ v_accum += uv_pre_stride;
+
+ y_src += y_src_stride * (1 + ss_y);
+ y_pre += y_pre_stride * (1 + ss_y);
+ y_dist += DIST_STRIDE * (1 + ss_y);
+ }
+
+ // The last row
+ mul = _mm_loadu_si128((const __m128i *)neighbors[0]);
+
+ // Shift the rows up
+ u_sum_row_1 = u_sum_row_2;
+ u_sum_row_2 = u_sum_row_3;
+
+ v_sum_row_1 = v_sum_row_2;
+ v_sum_row_2 = v_sum_row_3;
+
+ // Add chroma values
+ u_sum_row = _mm_adds_epu16(u_sum_row_1, u_sum_row_2);
+ v_sum_row = _mm_adds_epu16(v_sum_row_1, v_sum_row_2);
+
+ // Add luma values
+ add_luma_dist_to_8_chroma_mod(y_dist, ss_x, ss_y, &u_sum_row, &v_sum_row);
+
+ // Get modifier and store result
+ if (blk_fw) {
+ u_sum_row =
+ average_4_4(u_sum_row, &mul, strength, rounding, blk_fw[0], blk_fw[1]);
+ v_sum_row =
+ average_4_4(v_sum_row, &mul, strength, rounding, blk_fw[0], blk_fw[1]);
+ } else {
+ u_sum_row = average_8(u_sum_row, &mul, strength, rounding, weight);
+ v_sum_row = average_8(v_sum_row, &mul, strength, rounding, weight);
+ }
+
+ accumulate_and_store_8(u_sum_row, u_pre, u_count, u_accum);
+ accumulate_and_store_8(v_sum_row, v_pre, v_count, v_accum);
+}
+
+// Perform temporal filter for the chroma components.
+static void apply_temporal_filter_chroma(
+ const uint8_t *y_src, int y_src_stride, const uint8_t *y_pre,
+ int y_pre_stride, const uint8_t *u_src, const uint8_t *v_src,
+ int uv_src_stride, const uint8_t *u_pre, const uint8_t *v_pre,
+ int uv_pre_stride, unsigned int block_width, unsigned int block_height,
+ int ss_x, int ss_y, int strength, const int *blk_fw, int use_whole_blk,
+ uint32_t *u_accum, uint16_t *u_count, uint32_t *v_accum, uint16_t *v_count,
+ const uint16_t *y_dist, const uint16_t *u_dist, const uint16_t *v_dist) {
+ const unsigned int uv_width = block_width >> ss_x,
+ uv_height = block_height >> ss_y;
+
+ unsigned int blk_col = 0, uv_blk_col = 0;
+ const unsigned int uv_blk_col_step = 8, blk_col_step = 8 << ss_x;
+ const unsigned int uv_mid_width = uv_width >> 1,
+ uv_last_width = uv_width - uv_blk_col_step;
+ int top_weight = blk_fw[0],
+ bottom_weight = use_whole_blk ? blk_fw[0] : blk_fw[2];
+ const int16_t *const *neighbors;
+
+ if (uv_width == 8) {
+ // Special Case: We are subsampling in x direction on a 16x16 block. Since
+ // we are operating on a row of 8 chroma pixels, we can't use the usual
+ // left-middle-right pattern.
+ assert(ss_x);
+
+ if (ss_y) {
+ neighbors = CHROMA_DOUBLE_SS_SINGLE_COLUMN_NEIGHBORS;
+ } else {
+ neighbors = CHROMA_SINGLE_SS_SINGLE_COLUMN_NEIGHBORS;
+ }
+
+ if (use_whole_blk) {
+ apply_temporal_filter_chroma_8(
+ y_src + blk_col, y_src_stride, y_pre + blk_col, y_pre_stride,
+ u_src + uv_blk_col, v_src + uv_blk_col, uv_src_stride,
+ u_pre + uv_blk_col, v_pre + uv_blk_col, uv_pre_stride, uv_width,
+ uv_height, ss_x, ss_y, strength, u_accum + uv_blk_col,
+ u_count + uv_blk_col, v_accum + uv_blk_col, v_count + uv_blk_col,
+ y_dist + blk_col, u_dist + uv_blk_col, v_dist + uv_blk_col, neighbors,
+ top_weight, bottom_weight, NULL);
+ } else {
+ apply_temporal_filter_chroma_8(
+ y_src + blk_col, y_src_stride, y_pre + blk_col, y_pre_stride,
+ u_src + uv_blk_col, v_src + uv_blk_col, uv_src_stride,
+ u_pre + uv_blk_col, v_pre + uv_blk_col, uv_pre_stride, uv_width,
+ uv_height, ss_x, ss_y, strength, u_accum + uv_blk_col,
+ u_count + uv_blk_col, v_accum + uv_blk_col, v_count + uv_blk_col,
+ y_dist + blk_col, u_dist + uv_blk_col, v_dist + uv_blk_col, neighbors,
+ 0, 0, blk_fw);
+ }
+
+ return;
+ }
+
+ // Left
+ if (ss_x && ss_y) {
+ neighbors = CHROMA_DOUBLE_SS_LEFT_COLUMN_NEIGHBORS;
+ } else if (ss_x || ss_y) {
+ neighbors = CHROMA_SINGLE_SS_LEFT_COLUMN_NEIGHBORS;
+ } else {
+ neighbors = CHROMA_NO_SS_LEFT_COLUMN_NEIGHBORS;
+ }
+
+ apply_temporal_filter_chroma_8(
+ y_src + blk_col, y_src_stride, y_pre + blk_col, y_pre_stride,
+ u_src + uv_blk_col, v_src + uv_blk_col, uv_src_stride, u_pre + uv_blk_col,
+ v_pre + uv_blk_col, uv_pre_stride, uv_width, uv_height, ss_x, ss_y,
+ strength, u_accum + uv_blk_col, u_count + uv_blk_col,
+ v_accum + uv_blk_col, v_count + uv_blk_col, y_dist + blk_col,
+ u_dist + uv_blk_col, v_dist + uv_blk_col, neighbors, top_weight,
+ bottom_weight, NULL);
+
+ blk_col += blk_col_step;
+ uv_blk_col += uv_blk_col_step;
+
+ // Middle First
+ if (ss_x && ss_y) {
+ neighbors = CHROMA_DOUBLE_SS_MIDDLE_COLUMN_NEIGHBORS;
+ } else if (ss_x || ss_y) {
+ neighbors = CHROMA_SINGLE_SS_MIDDLE_COLUMN_NEIGHBORS;
+ } else {
+ neighbors = CHROMA_NO_SS_MIDDLE_COLUMN_NEIGHBORS;
+ }
+
+ for (; uv_blk_col < uv_mid_width;
+ blk_col += blk_col_step, uv_blk_col += uv_blk_col_step) {
+ apply_temporal_filter_chroma_8(
+ y_src + blk_col, y_src_stride, y_pre + blk_col, y_pre_stride,
+ u_src + uv_blk_col, v_src + uv_blk_col, uv_src_stride,
+ u_pre + uv_blk_col, v_pre + uv_blk_col, uv_pre_stride, uv_width,
+ uv_height, ss_x, ss_y, strength, u_accum + uv_blk_col,
+ u_count + uv_blk_col, v_accum + uv_blk_col, v_count + uv_blk_col,
+ y_dist + blk_col, u_dist + uv_blk_col, v_dist + uv_blk_col, neighbors,
+ top_weight, bottom_weight, NULL);
+ }
+
+ if (!use_whole_blk) {
+ top_weight = blk_fw[1];
+ bottom_weight = blk_fw[3];
+ }
+
+ // Middle Second
+ for (; uv_blk_col < uv_last_width;
+ blk_col += blk_col_step, uv_blk_col += uv_blk_col_step) {
+ apply_temporal_filter_chroma_8(
+ y_src + blk_col, y_src_stride, y_pre + blk_col, y_pre_stride,
+ u_src + uv_blk_col, v_src + uv_blk_col, uv_src_stride,
+ u_pre + uv_blk_col, v_pre + uv_blk_col, uv_pre_stride, uv_width,
+ uv_height, ss_x, ss_y, strength, u_accum + uv_blk_col,
+ u_count + uv_blk_col, v_accum + uv_blk_col, v_count + uv_blk_col,
+ y_dist + blk_col, u_dist + uv_blk_col, v_dist + uv_blk_col, neighbors,
+ top_weight, bottom_weight, NULL);
+ }
+
+ // Right
+ if (ss_x && ss_y) {
+ neighbors = CHROMA_DOUBLE_SS_RIGHT_COLUMN_NEIGHBORS;
+ } else if (ss_x || ss_y) {
+ neighbors = CHROMA_SINGLE_SS_RIGHT_COLUMN_NEIGHBORS;
+ } else {
+ neighbors = CHROMA_NO_SS_RIGHT_COLUMN_NEIGHBORS;
+ }
+
+ apply_temporal_filter_chroma_8(
+ y_src + blk_col, y_src_stride, y_pre + blk_col, y_pre_stride,
+ u_src + uv_blk_col, v_src + uv_blk_col, uv_src_stride, u_pre + uv_blk_col,
+ v_pre + uv_blk_col, uv_pre_stride, uv_width, uv_height, ss_x, ss_y,
+ strength, u_accum + uv_blk_col, u_count + uv_blk_col,
+ v_accum + uv_blk_col, v_count + uv_blk_col, y_dist + blk_col,
+ u_dist + uv_blk_col, v_dist + uv_blk_col, neighbors, top_weight,
+ bottom_weight, NULL);
+}
+
+static void apply_temporal_filter_yuv(
+ const YV12_BUFFER_CONFIG *ref_frame, const MACROBLOCKD *mbd,
+ const BLOCK_SIZE block_size, const int mb_row, const int mb_col,
+ const int strength, const int use_subblock,
+ const int *subblock_filter_weights, const uint8_t *pred, uint32_t *accum,
+ uint16_t *count) {
+ const int use_whole_blk = !use_subblock;
+ const int *blk_fw = subblock_filter_weights;
+
+ // Block information (Y-plane).
+ const unsigned int block_height = block_size_high[block_size];
+ const unsigned int block_width = block_size_wide[block_size];
+ const int mb_pels = block_height * block_width;
+ const int y_src_stride = ref_frame->y_stride;
+ const int y_pre_stride = block_width;
+ const int mb_y_src_offset =
+ mb_row * block_height * ref_frame->y_stride + mb_col * block_width;
+
+ // Block information (UV-plane).
+ const int ss_y = mbd->plane[1].subsampling_y;
+ const int ss_x = mbd->plane[1].subsampling_x;
+ const unsigned int uv_height = block_height >> ss_y;
+ const unsigned int uv_width = block_width >> ss_x;
+ const int uv_src_stride = ref_frame->uv_stride;
+ const int uv_pre_stride = block_width >> ss_x;
+ const int mb_uv_src_offset =
+ mb_row * uv_height * ref_frame->uv_stride + mb_col * uv_width;
+
+ const uint8_t *y_src = ref_frame->y_buffer + mb_y_src_offset;
+ const uint8_t *u_src = ref_frame->u_buffer + mb_uv_src_offset;
+ const uint8_t *v_src = ref_frame->v_buffer + mb_uv_src_offset;
+ const uint8_t *y_pre = pred;
+ const uint8_t *u_pre = pred + mb_pels;
+ const uint8_t *v_pre = pred + mb_pels * 2;
+ uint32_t *y_accum = accum;
+ uint32_t *u_accum = accum + mb_pels;
+ uint32_t *v_accum = accum + mb_pels * 2;
+ uint16_t *y_count = count;
+ uint16_t *u_count = count + mb_pels;
+ uint16_t *v_count = count + mb_pels * 2;
+
+ const unsigned int chroma_height = block_height >> ss_y,
+ chroma_width = block_width >> ss_x;
+
+ DECLARE_ALIGNED(16, uint16_t, y_dist[BH * DIST_STRIDE]) = { 0 };
+ DECLARE_ALIGNED(16, uint16_t, u_dist[BH * DIST_STRIDE]) = { 0 };
+ DECLARE_ALIGNED(16, uint16_t, v_dist[BH * DIST_STRIDE]) = { 0 };
+ const int *blk_fw_ptr = blk_fw;
+
+ uint16_t *y_dist_ptr = y_dist + 1, *u_dist_ptr = u_dist + 1,
+ *v_dist_ptr = v_dist + 1;
+ const uint8_t *y_src_ptr = y_src, *u_src_ptr = u_src, *v_src_ptr = v_src;
+ const uint8_t *y_pre_ptr = y_pre, *u_pre_ptr = u_pre, *v_pre_ptr = v_pre;
+
+ // Loop variables
+ unsigned int row, blk_col;
+
+ assert(block_width <= BW && "block width too large");
+ assert(block_height <= BH && "block height too large");
+ assert(block_width % 16 == 0 && "block width must be multiple of 16");
+ assert(block_height % 2 == 0 && "block height must be even");
+ assert((ss_x == 0 || ss_x == 1) && (ss_y == 0 || ss_y == 1) &&
+ "invalid chroma subsampling");
+ assert(strength >= 0 && strength <= 6 && "invalid temporal filter strength");
+ assert(blk_fw[0] >= 0 && "filter weight must be positive");
+ assert(
+ (use_whole_blk || (blk_fw[1] >= 0 && blk_fw[2] >= 0 && blk_fw[3] >= 0)) &&
+ "subblock filter weight must be positive");
+ assert(blk_fw[0] <= 2 && "sublock filter weight must be less than 2");
+ assert(
+ (use_whole_blk || (blk_fw[1] <= 2 && blk_fw[2] <= 2 && blk_fw[3] <= 2)) &&
+ "subblock filter weight must be less than 2");
+
+ // Precompute the difference sqaured
+ for (row = 0; row < block_height; row++) {
+ for (blk_col = 0; blk_col < block_width; blk_col += 16) {
+ store_dist_16(y_src_ptr + blk_col, y_pre_ptr + blk_col,
+ y_dist_ptr + blk_col);
+ }
+ y_src_ptr += y_src_stride;
+ y_pre_ptr += y_pre_stride;
+ y_dist_ptr += DIST_STRIDE;
+ }
+
+ for (row = 0; row < chroma_height; row++) {
+ for (blk_col = 0; blk_col < chroma_width; blk_col += 8) {
+ store_dist_8(u_src_ptr + blk_col, u_pre_ptr + blk_col,
+ u_dist_ptr + blk_col);
+ store_dist_8(v_src_ptr + blk_col, v_pre_ptr + blk_col,
+ v_dist_ptr + blk_col);
+ }
+
+ u_src_ptr += uv_src_stride;
+ u_pre_ptr += uv_pre_stride;
+ u_dist_ptr += DIST_STRIDE;
+ v_src_ptr += uv_src_stride;
+ v_pre_ptr += uv_pre_stride;
+ v_dist_ptr += DIST_STRIDE;
+ }
+
+ y_dist_ptr = y_dist + 1;
+ u_dist_ptr = u_dist + 1;
+ v_dist_ptr = v_dist + 1;
+
+ apply_temporal_filter_luma(y_src, y_src_stride, y_pre, y_pre_stride, u_src,
+ v_src, uv_src_stride, u_pre, v_pre, uv_pre_stride,
+ block_width, block_height, ss_x, ss_y, strength,
+ blk_fw_ptr, use_whole_blk, y_accum, y_count,
+ y_dist_ptr, u_dist_ptr, v_dist_ptr);
+
+ apply_temporal_filter_chroma(
+ y_src, y_src_stride, y_pre, y_pre_stride, u_src, v_src, uv_src_stride,
+ u_pre, v_pre, uv_pre_stride, block_width, block_height, ss_x, ss_y,
+ strength, blk_fw_ptr, use_whole_blk, u_accum, u_count, v_accum, v_count,
+ y_dist_ptr, u_dist_ptr, v_dist_ptr);
+}
+
+////////////////////////
+// Low bit-depth Ends //
+////////////////////////
+
+///////////////////////////
+// High bit-depth Begins //
+///////////////////////////
+
+// Compute (a-b)**2 for 8 pixels with size 16-bit
+static INLINE void highbd_store_dist_8(const uint16_t *a, const uint16_t *b,
+ uint32_t *dst) {
+ const __m128i zero = _mm_setzero_si128();
+ const __m128i a_reg = _mm_loadu_si128((const __m128i *)a);
+ const __m128i b_reg = _mm_loadu_si128((const __m128i *)b);
+
+ const __m128i a_first = _mm_cvtepu16_epi32(a_reg);
+ const __m128i a_second = _mm_unpackhi_epi16(a_reg, zero);
+ const __m128i b_first = _mm_cvtepu16_epi32(b_reg);
+ const __m128i b_second = _mm_unpackhi_epi16(b_reg, zero);
+
+ __m128i dist_first, dist_second;
+
+ dist_first = _mm_sub_epi32(a_first, b_first);
+ dist_second = _mm_sub_epi32(a_second, b_second);
+ dist_first = _mm_mullo_epi32(dist_first, dist_first);
+ dist_second = _mm_mullo_epi32(dist_second, dist_second);
+
+ _mm_storeu_si128((__m128i *)dst, dist_first);
+ _mm_storeu_si128((__m128i *)(dst + 4), dist_second);
+}
+
+// Sum up three neighboring distortions for the pixels
+static INLINE void highbd_get_sum_4(const uint32_t *dist, __m128i *sum) {
+ __m128i dist_reg, dist_left, dist_right;
+
+ dist_reg = _mm_loadu_si128((const __m128i *)dist);
+ dist_left = _mm_loadu_si128((const __m128i *)(dist - 1));
+ dist_right = _mm_loadu_si128((const __m128i *)(dist + 1));
+
+ *sum = _mm_add_epi32(dist_reg, dist_left);
+ *sum = _mm_add_epi32(*sum, dist_right);
+}
+
+static INLINE void highbd_get_sum_8(const uint32_t *dist, __m128i *sum_first,
+ __m128i *sum_second) {
+ highbd_get_sum_4(dist, sum_first);
+ highbd_get_sum_4(dist + 4, sum_second);
+}
+
+// Average the value based on the number of values summed (9 for pixels away
+// from the border, 4 for pixels in corners, and 6 for other edge values, plus
+// however many values from y/uv plane are).
+//
+// Add in the rounding factor and shift, clamp to 16, invert and shift. Multiply
+// by weight.
+static INLINE void highbd_average_4(__m128i *output, const __m128i *sum,
+ const __m128i *mul_constants,
+ const int strength, const int rounding,
+ const int weight) {
+ // _mm_srl_epi16 uses the lower 64 bit value for the shift.
+ const __m128i strength_u128 = _mm_set_epi32(0, 0, 0, strength);
+ const __m128i rounding_u32 = _mm_set1_epi32(rounding);
+ const __m128i weight_u32 = _mm_set1_epi32(weight);
+ const __m128i sixteen = _mm_set1_epi32(16);
+ const __m128i zero = _mm_setzero_si128();
+
+ // modifier * 3 / index;
+ const __m128i sum_lo = _mm_unpacklo_epi32(*sum, zero);
+ const __m128i sum_hi = _mm_unpackhi_epi32(*sum, zero);
+ const __m128i const_lo = _mm_unpacklo_epi32(*mul_constants, zero);
+ const __m128i const_hi = _mm_unpackhi_epi32(*mul_constants, zero);
+
+ const __m128i mul_lo = _mm_mul_epu32(sum_lo, const_lo);
+ const __m128i mul_lo_div = _mm_srli_epi64(mul_lo, 32);
+ const __m128i mul_hi = _mm_mul_epu32(sum_hi, const_hi);
+ const __m128i mul_hi_div = _mm_srli_epi64(mul_hi, 32);
+
+ // Now we have
+ // mul_lo: 00 a1 00 a0
+ // mul_hi: 00 a3 00 a2
+ // Unpack as 64 bit words to get even and odd elements
+ // unpack_lo: 00 a2 00 a0
+ // unpack_hi: 00 a3 00 a1
+ // Then we can shift and OR the results to get everything in 32-bits
+ const __m128i mul_even = _mm_unpacklo_epi64(mul_lo_div, mul_hi_div);
+ const __m128i mul_odd = _mm_unpackhi_epi64(mul_lo_div, mul_hi_div);
+ const __m128i mul_odd_shift = _mm_slli_si128(mul_odd, 4);
+ const __m128i mul = _mm_or_si128(mul_even, mul_odd_shift);
+
+ // Round
+ *output = _mm_add_epi32(mul, rounding_u32);
+ *output = _mm_srl_epi32(*output, strength_u128);
+
+ // Multiply with the weight
+ *output = _mm_min_epu32(*output, sixteen);
+ *output = _mm_sub_epi32(sixteen, *output);
+ *output = _mm_mullo_epi32(*output, weight_u32);
+}
+
+static INLINE void highbd_average_8(__m128i *output_0, __m128i *output_1,
+ const __m128i *sum_0_u32,
+ const __m128i *sum_1_u32,
+ const __m128i *mul_constants_0,
+ const __m128i *mul_constants_1,
+ const int strength, const int rounding,
+ const int weight) {
+ highbd_average_4(output_0, sum_0_u32, mul_constants_0, strength, rounding,
+ weight);
+ highbd_average_4(output_1, sum_1_u32, mul_constants_1, strength, rounding,
+ weight);
+}
+
+// Add 'sum_u32' to 'count'. Multiply by 'pred' and add to 'accumulator.'
+static INLINE void highbd_accumulate_and_store_8(const __m128i sum_first_u32,
+ const __m128i sum_second_u32,
+ const uint16_t *pred,
+ uint16_t *count,
+ uint32_t *accumulator) {
+ // Cast down to 16-bit ints
+ const __m128i sum_u16 = _mm_packus_epi32(sum_first_u32, sum_second_u32);
+ const __m128i zero = _mm_setzero_si128();
+
+ __m128i pred_u16 = _mm_loadu_si128((const __m128i *)pred);
+ __m128i count_u16 = _mm_loadu_si128((const __m128i *)count);
+
+ __m128i pred_0_u32, pred_1_u32;
+ __m128i accum_0_u32, accum_1_u32;
+
+ count_u16 = _mm_adds_epu16(count_u16, sum_u16);
+ _mm_storeu_si128((__m128i *)count, count_u16);
+
+ pred_u16 = _mm_mullo_epi16(sum_u16, pred_u16);
+
+ pred_0_u32 = _mm_cvtepu16_epi32(pred_u16);
+ pred_1_u32 = _mm_unpackhi_epi16(pred_u16, zero);
+
+ accum_0_u32 = _mm_loadu_si128((const __m128i *)accumulator);
+ accum_1_u32 = _mm_loadu_si128((const __m128i *)(accumulator + 4));
+
+ accum_0_u32 = _mm_add_epi32(pred_0_u32, accum_0_u32);
+ accum_1_u32 = _mm_add_epi32(pred_1_u32, accum_1_u32);
+
+ _mm_storeu_si128((__m128i *)accumulator, accum_0_u32);
+ _mm_storeu_si128((__m128i *)(accumulator + 4), accum_1_u32);
+}
+
+static INLINE void highbd_read_dist_4(const uint32_t *dist, __m128i *dist_reg) {
+ *dist_reg = _mm_loadu_si128((const __m128i *)dist);
+}
+
+static INLINE void highbd_read_dist_8(const uint32_t *dist, __m128i *reg_first,
+ __m128i *reg_second) {
+ highbd_read_dist_4(dist, reg_first);
+ highbd_read_dist_4(dist + 4, reg_second);
+}
+
+static INLINE void highbd_read_chroma_dist_row_8(
+ int ss_x, const uint32_t *u_dist, const uint32_t *v_dist, __m128i *u_first,
+ __m128i *u_second, __m128i *v_first, __m128i *v_second) {
+ if (!ss_x) {
+ // If there is no chroma subsampling in the horizontal direction, then we
+ // need to load 8 entries from chroma.
+ highbd_read_dist_8(u_dist, u_first, u_second);
+ highbd_read_dist_8(v_dist, v_first, v_second);
+ } else { // ss_x == 1
+ // Otherwise, we only need to load 8 entries
+ __m128i u_reg, v_reg;
+
+ highbd_read_dist_4(u_dist, &u_reg);
+
+ *u_first = _mm_unpacklo_epi32(u_reg, u_reg);
+ *u_second = _mm_unpackhi_epi32(u_reg, u_reg);
+
+ highbd_read_dist_4(v_dist, &v_reg);
+
+ *v_first = _mm_unpacklo_epi32(v_reg, v_reg);
+ *v_second = _mm_unpackhi_epi32(v_reg, v_reg);
+ }
+}
+
+static void highbd_apply_temporal_filter_luma_8(
+ const uint16_t *y_src, int y_src_stride, const uint16_t *y_pre,
+ int y_pre_stride, const uint16_t *u_src, const uint16_t *v_src,
+ int uv_src_stride, const uint16_t *u_pre, const uint16_t *v_pre,
+ int uv_pre_stride, unsigned int block_width, unsigned int block_height,
+ int ss_x, int ss_y, int strength, int use_whole_blk, uint32_t *y_accum,
+ uint16_t *y_count, const uint32_t *y_dist, const uint32_t *u_dist,
+ const uint32_t *v_dist, const uint32_t *const *neighbors_first,
+ const uint32_t *const *neighbors_second, int top_weight,
+ int bottom_weight) {
+ const int rounding = (1 << strength) >> 1;
+ int weight = top_weight;
+
+ __m128i mul_first, mul_second;
+
+ __m128i sum_row_1_first, sum_row_1_second;
+ __m128i sum_row_2_first, sum_row_2_second;
+ __m128i sum_row_3_first, sum_row_3_second;
+
+ __m128i u_first, u_second;
+ __m128i v_first, v_second;
+
+ __m128i sum_row_first;
+ __m128i sum_row_second;
+
+ // Loop variables
+ unsigned int h;
+
+ assert(strength >= 0 && strength <= 14 &&
+ "invalid adjusted temporal filter strength");
+ assert(block_width == 8);
+
+ (void)block_width;
+
+ // First row
+ mul_first = _mm_loadu_si128((const __m128i *)neighbors_first[0]);
+ mul_second = _mm_loadu_si128((const __m128i *)neighbors_second[0]);
+
+ // Add luma values
+ highbd_get_sum_8(y_dist, &sum_row_2_first, &sum_row_2_second);
+ highbd_get_sum_8(y_dist + DIST_STRIDE, &sum_row_3_first, &sum_row_3_second);
+
+ // We don't need to saturate here because the maximum value is UINT12_MAX ** 2
+ // * 9 ~= 2**24 * 9 < 2 ** 28 < INT32_MAX
+ sum_row_first = _mm_add_epi32(sum_row_2_first, sum_row_3_first);
+ sum_row_second = _mm_add_epi32(sum_row_2_second, sum_row_3_second);
+
+ // Add chroma values
+ highbd_read_chroma_dist_row_8(ss_x, u_dist, v_dist, &u_first, &u_second,
+ &v_first, &v_second);
+
+ // Max value here is 2 ** 24 * (9 + 2), so no saturation is needed
+ sum_row_first = _mm_add_epi32(sum_row_first, u_first);
+ sum_row_second = _mm_add_epi32(sum_row_second, u_second);
+
+ sum_row_first = _mm_add_epi32(sum_row_first, v_first);
+ sum_row_second = _mm_add_epi32(sum_row_second, v_second);
+
+ // Get modifier and store result
+ highbd_average_8(&sum_row_first, &sum_row_second, &sum_row_first,
+ &sum_row_second, &mul_first, &mul_second, strength, rounding,
+ weight);
+
+ highbd_accumulate_and_store_8(sum_row_first, sum_row_second, y_pre, y_count,
+ y_accum);
+
+ y_src += y_src_stride;
+ y_pre += y_pre_stride;
+ y_count += y_pre_stride;
+ y_accum += y_pre_stride;
+ y_dist += DIST_STRIDE;
+
+ u_src += uv_src_stride;
+ u_pre += uv_pre_stride;
+ u_dist += DIST_STRIDE;
+ v_src += uv_src_stride;
+ v_pre += uv_pre_stride;
+ v_dist += DIST_STRIDE;
+
+ // Then all the rows except the last one
+ mul_first = _mm_loadu_si128((const __m128i *)neighbors_first[1]);
+ mul_second = _mm_loadu_si128((const __m128i *)neighbors_second[1]);
+
+ for (h = 1; h < block_height - 1; ++h) {
+ // Move the weight to bottom half
+ if (!use_whole_blk && h == block_height / 2) {
+ weight = bottom_weight;
+ }
+ // Shift the rows up
+ sum_row_1_first = sum_row_2_first;
+ sum_row_1_second = sum_row_2_second;
+ sum_row_2_first = sum_row_3_first;
+ sum_row_2_second = sum_row_3_second;
+
+ // Add luma values to the modifier
+ sum_row_first = _mm_add_epi32(sum_row_1_first, sum_row_2_first);
+ sum_row_second = _mm_add_epi32(sum_row_1_second, sum_row_2_second);
+
+ highbd_get_sum_8(y_dist + DIST_STRIDE, &sum_row_3_first, &sum_row_3_second);
+
+ sum_row_first = _mm_add_epi32(sum_row_first, sum_row_3_first);
+ sum_row_second = _mm_add_epi32(sum_row_second, sum_row_3_second);
+
+ // Add chroma values to the modifier
+ if (ss_y == 0 || h % 2 == 0) {
+ // Only calculate the new chroma distortion if we are at a pixel that
+ // corresponds to a new chroma row
+ highbd_read_chroma_dist_row_8(ss_x, u_dist, v_dist, &u_first, &u_second,
+ &v_first, &v_second);
+
+ u_src += uv_src_stride;
+ u_pre += uv_pre_stride;
+ u_dist += DIST_STRIDE;
+ v_src += uv_src_stride;
+ v_pre += uv_pre_stride;
+ v_dist += DIST_STRIDE;
+ }
+
+ sum_row_first = _mm_add_epi32(sum_row_first, u_first);
+ sum_row_second = _mm_add_epi32(sum_row_second, u_second);
+ sum_row_first = _mm_add_epi32(sum_row_first, v_first);
+ sum_row_second = _mm_add_epi32(sum_row_second, v_second);
+
+ // Get modifier and store result
+ highbd_average_8(&sum_row_first, &sum_row_second, &sum_row_first,
+ &sum_row_second, &mul_first, &mul_second, strength,
+ rounding, weight);
+ highbd_accumulate_and_store_8(sum_row_first, sum_row_second, y_pre, y_count,
+ y_accum);
+
+ y_src += y_src_stride;
+ y_pre += y_pre_stride;
+ y_count += y_pre_stride;
+ y_accum += y_pre_stride;
+ y_dist += DIST_STRIDE;
+ }
+
+ // The last row
+ mul_first = _mm_loadu_si128((const __m128i *)neighbors_first[0]);
+ mul_second = _mm_loadu_si128((const __m128i *)neighbors_second[0]);
+
+ // Shift the rows up
+ sum_row_1_first = sum_row_2_first;
+ sum_row_1_second = sum_row_2_second;
+ sum_row_2_first = sum_row_3_first;
+ sum_row_2_second = sum_row_3_second;
+
+ // Add luma values to the modifier
+ sum_row_first = _mm_add_epi32(sum_row_1_first, sum_row_2_first);
+ sum_row_second = _mm_add_epi32(sum_row_1_second, sum_row_2_second);
+
+ // Add chroma values to the modifier
+ if (ss_y == 0) {
+ // Only calculate the new chroma distortion if we are at a pixel that
+ // corresponds to a new chroma row
+ highbd_read_chroma_dist_row_8(ss_x, u_dist, v_dist, &u_first, &u_second,
+ &v_first, &v_second);
+ }
+
+ sum_row_first = _mm_add_epi32(sum_row_first, u_first);
+ sum_row_second = _mm_add_epi32(sum_row_second, u_second);
+ sum_row_first = _mm_add_epi32(sum_row_first, v_first);
+ sum_row_second = _mm_add_epi32(sum_row_second, v_second);
+
+ // Get modifier and store result
+ highbd_average_8(&sum_row_first, &sum_row_second, &sum_row_first,
+ &sum_row_second, &mul_first, &mul_second, strength, rounding,
+ weight);
+ highbd_accumulate_and_store_8(sum_row_first, sum_row_second, y_pre, y_count,
+ y_accum);
+}
+
+// Perform temporal filter for the luma component.
+static void highbd_apply_temporal_filter_luma(
+ const uint16_t *y_src, int y_src_stride, const uint16_t *y_pre,
+ int y_pre_stride, const uint16_t *u_src, const uint16_t *v_src,
+ int uv_src_stride, const uint16_t *u_pre, const uint16_t *v_pre,
+ int uv_pre_stride, unsigned int block_width, unsigned int block_height,
+ int ss_x, int ss_y, int strength, const int *blk_fw, int use_whole_blk,
+ uint32_t *y_accum, uint16_t *y_count, const uint32_t *y_dist,
+ const uint32_t *u_dist, const uint32_t *v_dist) {
+ unsigned int blk_col = 0, uv_blk_col = 0;
+ const unsigned int blk_col_step = 8, uv_blk_col_step = 8 >> ss_x;
+ const unsigned int mid_width = block_width >> 1,
+ last_width = block_width - blk_col_step;
+ int top_weight = blk_fw[0],
+ bottom_weight = use_whole_blk ? blk_fw[0] : blk_fw[2];
+ const uint32_t *const *neighbors_first;
+ const uint32_t *const *neighbors_second;
+
+ // Left
+ neighbors_first = HIGHBD_LUMA_LEFT_COLUMN_NEIGHBORS;
+ neighbors_second = HIGHBD_LUMA_MIDDLE_COLUMN_NEIGHBORS;
+ highbd_apply_temporal_filter_luma_8(
+ y_src + blk_col, y_src_stride, y_pre + blk_col, y_pre_stride,
+ u_src + uv_blk_col, v_src + uv_blk_col, uv_src_stride, u_pre + uv_blk_col,
+ v_pre + uv_blk_col, uv_pre_stride, blk_col_step, block_height, ss_x, ss_y,
+ strength, use_whole_blk, y_accum + blk_col, y_count + blk_col,
+ y_dist + blk_col, u_dist + uv_blk_col, v_dist + uv_blk_col,
+ neighbors_first, neighbors_second, top_weight, bottom_weight);
+
+ blk_col += blk_col_step;
+ uv_blk_col += uv_blk_col_step;
+
+ // Middle First
+ neighbors_first = HIGHBD_LUMA_MIDDLE_COLUMN_NEIGHBORS;
+ for (; blk_col < mid_width;
+ blk_col += blk_col_step, uv_blk_col += uv_blk_col_step) {
+ highbd_apply_temporal_filter_luma_8(
+ y_src + blk_col, y_src_stride, y_pre + blk_col, y_pre_stride,
+ u_src + uv_blk_col, v_src + uv_blk_col, uv_src_stride,
+ u_pre + uv_blk_col, v_pre + uv_blk_col, uv_pre_stride, blk_col_step,
+ block_height, ss_x, ss_y, strength, use_whole_blk, y_accum + blk_col,
+ y_count + blk_col, y_dist + blk_col, u_dist + uv_blk_col,
+ v_dist + uv_blk_col, neighbors_first, neighbors_second, top_weight,
+ bottom_weight);
+ }
+
+ if (!use_whole_blk) {
+ top_weight = blk_fw[1];
+ bottom_weight = blk_fw[3];
+ }
+
+ // Middle Second
+ for (; blk_col < last_width;
+ blk_col += blk_col_step, uv_blk_col += uv_blk_col_step) {
+ highbd_apply_temporal_filter_luma_8(
+ y_src + blk_col, y_src_stride, y_pre + blk_col, y_pre_stride,
+ u_src + uv_blk_col, v_src + uv_blk_col, uv_src_stride,
+ u_pre + uv_blk_col, v_pre + uv_blk_col, uv_pre_stride, blk_col_step,
+ block_height, ss_x, ss_y, strength, use_whole_blk, y_accum + blk_col,
+ y_count + blk_col, y_dist + blk_col, u_dist + uv_blk_col,
+ v_dist + uv_blk_col, neighbors_first, neighbors_second, top_weight,
+ bottom_weight);
+ }
+
+ // Right
+ neighbors_second = HIGHBD_LUMA_RIGHT_COLUMN_NEIGHBORS;
+ highbd_apply_temporal_filter_luma_8(
+ y_src + blk_col, y_src_stride, y_pre + blk_col, y_pre_stride,
+ u_src + uv_blk_col, v_src + uv_blk_col, uv_src_stride, u_pre + uv_blk_col,
+ v_pre + uv_blk_col, uv_pre_stride, blk_col_step, block_height, ss_x, ss_y,
+ strength, use_whole_blk, y_accum + blk_col, y_count + blk_col,
+ y_dist + blk_col, u_dist + uv_blk_col, v_dist + uv_blk_col,
+ neighbors_first, neighbors_second, top_weight, bottom_weight);
+}
+
+// Add a row of luma distortion that corresponds to 8 chroma mods. If we are
+// subsampling in x direction, then we have 16 lumas, else we have 8.
+static INLINE void highbd_add_luma_dist_to_8_chroma_mod(
+ const uint32_t *y_dist, int ss_x, int ss_y, __m128i *u_mod_fst,
+ __m128i *u_mod_snd, __m128i *v_mod_fst, __m128i *v_mod_snd) {
+ __m128i y_reg_fst, y_reg_snd;
+ if (!ss_x) {
+ highbd_read_dist_8(y_dist, &y_reg_fst, &y_reg_snd);
+ if (ss_y == 1) {
+ __m128i y_tmp_fst, y_tmp_snd;
+ highbd_read_dist_8(y_dist + DIST_STRIDE, &y_tmp_fst, &y_tmp_snd);
+ y_reg_fst = _mm_add_epi32(y_reg_fst, y_tmp_fst);
+ y_reg_snd = _mm_add_epi32(y_reg_snd, y_tmp_snd);
+ }
+ } else {
+ // Temporary
+ __m128i y_fst, y_snd;
+
+ // First 8
+ highbd_read_dist_8(y_dist, &y_fst, &y_snd);
+ if (ss_y == 1) {
+ __m128i y_tmp_fst, y_tmp_snd;
+ highbd_read_dist_8(y_dist + DIST_STRIDE, &y_tmp_fst, &y_tmp_snd);
+
+ y_fst = _mm_add_epi32(y_fst, y_tmp_fst);
+ y_snd = _mm_add_epi32(y_snd, y_tmp_snd);
+ }
+
+ y_reg_fst = _mm_hadd_epi32(y_fst, y_snd);
+
+ // Second 8
+ highbd_read_dist_8(y_dist + 8, &y_fst, &y_snd);
+ if (ss_y == 1) {
+ __m128i y_tmp_fst, y_tmp_snd;
+ highbd_read_dist_8(y_dist + 8 + DIST_STRIDE, &y_tmp_fst, &y_tmp_snd);
+
+ y_fst = _mm_add_epi32(y_fst, y_tmp_fst);
+ y_snd = _mm_add_epi32(y_snd, y_tmp_snd);
+ }
+
+ y_reg_snd = _mm_hadd_epi32(y_fst, y_snd);
+ }
+
+ *u_mod_fst = _mm_add_epi32(*u_mod_fst, y_reg_fst);
+ *u_mod_snd = _mm_add_epi32(*u_mod_snd, y_reg_snd);
+ *v_mod_fst = _mm_add_epi32(*v_mod_fst, y_reg_fst);
+ *v_mod_snd = _mm_add_epi32(*v_mod_snd, y_reg_snd);
+}
+
+// Apply temporal filter to the chroma components. This performs temporal
+// filtering on a chroma block of 8 X uv_height. If blk_fw is not NULL, use
+// blk_fw as an array of size 4 for the weights for each of the 4 subblocks,
+// else use top_weight for top half, and bottom weight for bottom half.
+static void highbd_apply_temporal_filter_chroma_8(
+ const uint16_t *y_src, int y_src_stride, const uint16_t *y_pre,
+ int y_pre_stride, const uint16_t *u_src, const uint16_t *v_src,
+ int uv_src_stride, const uint16_t *u_pre, const uint16_t *v_pre,
+ int uv_pre_stride, unsigned int uv_block_width,
+ unsigned int uv_block_height, int ss_x, int ss_y, int strength,
+ uint32_t *u_accum, uint16_t *u_count, uint32_t *v_accum, uint16_t *v_count,
+ const uint32_t *y_dist, const uint32_t *u_dist, const uint32_t *v_dist,
+ const uint32_t *const *neighbors_fst, const uint32_t *const *neighbors_snd,
+ int top_weight, int bottom_weight, const int *blk_fw) {
+ const int rounding = (1 << strength) >> 1;
+ int weight = top_weight;
+
+ __m128i mul_fst, mul_snd;
+
+ __m128i u_sum_row_1_fst, u_sum_row_2_fst, u_sum_row_3_fst;
+ __m128i v_sum_row_1_fst, v_sum_row_2_fst, v_sum_row_3_fst;
+ __m128i u_sum_row_1_snd, u_sum_row_2_snd, u_sum_row_3_snd;
+ __m128i v_sum_row_1_snd, v_sum_row_2_snd, v_sum_row_3_snd;
+
+ __m128i u_sum_row_fst, v_sum_row_fst;
+ __m128i u_sum_row_snd, v_sum_row_snd;
+
+ // Loop variable
+ unsigned int h;
+
+ (void)uv_block_width;
+
+ // First row
+ mul_fst = _mm_loadu_si128((const __m128i *)neighbors_fst[0]);
+ mul_snd = _mm_loadu_si128((const __m128i *)neighbors_snd[0]);
+
+ // Add chroma values
+ highbd_get_sum_8(u_dist, &u_sum_row_2_fst, &u_sum_row_2_snd);
+ highbd_get_sum_8(u_dist + DIST_STRIDE, &u_sum_row_3_fst, &u_sum_row_3_snd);
+
+ u_sum_row_fst = _mm_add_epi32(u_sum_row_2_fst, u_sum_row_3_fst);
+ u_sum_row_snd = _mm_add_epi32(u_sum_row_2_snd, u_sum_row_3_snd);
+
+ highbd_get_sum_8(v_dist, &v_sum_row_2_fst, &v_sum_row_2_snd);
+ highbd_get_sum_8(v_dist + DIST_STRIDE, &v_sum_row_3_fst, &v_sum_row_3_snd);
+
+ v_sum_row_fst = _mm_add_epi32(v_sum_row_2_fst, v_sum_row_3_fst);
+ v_sum_row_snd = _mm_add_epi32(v_sum_row_2_snd, v_sum_row_3_snd);
+
+ // Add luma values
+ highbd_add_luma_dist_to_8_chroma_mod(y_dist, ss_x, ss_y, &u_sum_row_fst,
+ &u_sum_row_snd, &v_sum_row_fst,
+ &v_sum_row_snd);
+
+ // Get modifier and store result
+ if (blk_fw) {
+ highbd_average_4(&u_sum_row_fst, &u_sum_row_fst, &mul_fst, strength,
+ rounding, blk_fw[0]);
+ highbd_average_4(&u_sum_row_snd, &u_sum_row_snd, &mul_snd, strength,
+ rounding, blk_fw[1]);
+
+ highbd_average_4(&v_sum_row_fst, &v_sum_row_fst, &mul_fst, strength,
+ rounding, blk_fw[0]);
+ highbd_average_4(&v_sum_row_snd, &v_sum_row_snd, &mul_snd, strength,
+ rounding, blk_fw[1]);
+
+ } else {
+ highbd_average_8(&u_sum_row_fst, &u_sum_row_snd, &u_sum_row_fst,
+ &u_sum_row_snd, &mul_fst, &mul_snd, strength, rounding,
+ weight);
+ highbd_average_8(&v_sum_row_fst, &v_sum_row_snd, &v_sum_row_fst,
+ &v_sum_row_snd, &mul_fst, &mul_snd, strength, rounding,
+ weight);
+ }
+ highbd_accumulate_and_store_8(u_sum_row_fst, u_sum_row_snd, u_pre, u_count,
+ u_accum);
+ highbd_accumulate_and_store_8(v_sum_row_fst, v_sum_row_snd, v_pre, v_count,
+ v_accum);
+
+ u_src += uv_src_stride;
+ u_pre += uv_pre_stride;
+ u_dist += DIST_STRIDE;
+ v_src += uv_src_stride;
+ v_pre += uv_pre_stride;
+ v_dist += DIST_STRIDE;
+ u_count += uv_pre_stride;
+ u_accum += uv_pre_stride;
+ v_count += uv_pre_stride;
+ v_accum += uv_pre_stride;
+
+ y_src += y_src_stride * (1 + ss_y);
+ y_pre += y_pre_stride * (1 + ss_y);
+ y_dist += DIST_STRIDE * (1 + ss_y);
+
+ // Then all the rows except the last one
+ mul_fst = _mm_loadu_si128((const __m128i *)neighbors_fst[1]);
+ mul_snd = _mm_loadu_si128((const __m128i *)neighbors_snd[1]);
+
+ for (h = 1; h < uv_block_height - 1; ++h) {
+ // Move the weight pointer to the bottom half of the blocks
+ if (h == uv_block_height / 2) {
+ if (blk_fw) {
+ blk_fw += 2;
+ } else {
+ weight = bottom_weight;
+ }
+ }
+
+ // Shift the rows up
+ u_sum_row_1_fst = u_sum_row_2_fst;
+ u_sum_row_2_fst = u_sum_row_3_fst;
+ u_sum_row_1_snd = u_sum_row_2_snd;
+ u_sum_row_2_snd = u_sum_row_3_snd;
+
+ v_sum_row_1_fst = v_sum_row_2_fst;
+ v_sum_row_2_fst = v_sum_row_3_fst;
+ v_sum_row_1_snd = v_sum_row_2_snd;
+ v_sum_row_2_snd = v_sum_row_3_snd;
+
+ // Add chroma values
+ u_sum_row_fst = _mm_add_epi32(u_sum_row_1_fst, u_sum_row_2_fst);
+ u_sum_row_snd = _mm_add_epi32(u_sum_row_1_snd, u_sum_row_2_snd);
+ highbd_get_sum_8(u_dist + DIST_STRIDE, &u_sum_row_3_fst, &u_sum_row_3_snd);
+ u_sum_row_fst = _mm_add_epi32(u_sum_row_fst, u_sum_row_3_fst);
+ u_sum_row_snd = _mm_add_epi32(u_sum_row_snd, u_sum_row_3_snd);
+
+ v_sum_row_fst = _mm_add_epi32(v_sum_row_1_fst, v_sum_row_2_fst);
+ v_sum_row_snd = _mm_add_epi32(v_sum_row_1_snd, v_sum_row_2_snd);
+ highbd_get_sum_8(v_dist + DIST_STRIDE, &v_sum_row_3_fst, &v_sum_row_3_snd);
+ v_sum_row_fst = _mm_add_epi32(v_sum_row_fst, v_sum_row_3_fst);
+ v_sum_row_snd = _mm_add_epi32(v_sum_row_snd, v_sum_row_3_snd);
+
+ // Add luma values
+ highbd_add_luma_dist_to_8_chroma_mod(y_dist, ss_x, ss_y, &u_sum_row_fst,
+ &u_sum_row_snd, &v_sum_row_fst,
+ &v_sum_row_snd);
+
+ // Get modifier and store result
+ if (blk_fw) {
+ highbd_average_4(&u_sum_row_fst, &u_sum_row_fst, &mul_fst, strength,
+ rounding, blk_fw[0]);
+ highbd_average_4(&u_sum_row_snd, &u_sum_row_snd, &mul_snd, strength,
+ rounding, blk_fw[1]);
+
+ highbd_average_4(&v_sum_row_fst, &v_sum_row_fst, &mul_fst, strength,
+ rounding, blk_fw[0]);
+ highbd_average_4(&v_sum_row_snd, &v_sum_row_snd, &mul_snd, strength,
+ rounding, blk_fw[1]);
+
+ } else {
+ highbd_average_8(&u_sum_row_fst, &u_sum_row_snd, &u_sum_row_fst,
+ &u_sum_row_snd, &mul_fst, &mul_snd, strength, rounding,
+ weight);
+ highbd_average_8(&v_sum_row_fst, &v_sum_row_snd, &v_sum_row_fst,
+ &v_sum_row_snd, &mul_fst, &mul_snd, strength, rounding,
+ weight);
+ }
+
+ highbd_accumulate_and_store_8(u_sum_row_fst, u_sum_row_snd, u_pre, u_count,
+ u_accum);
+ highbd_accumulate_and_store_8(v_sum_row_fst, v_sum_row_snd, v_pre, v_count,
+ v_accum);
+
+ u_src += uv_src_stride;
+ u_pre += uv_pre_stride;
+ u_dist += DIST_STRIDE;
+ v_src += uv_src_stride;
+ v_pre += uv_pre_stride;
+ v_dist += DIST_STRIDE;
+ u_count += uv_pre_stride;
+ u_accum += uv_pre_stride;
+ v_count += uv_pre_stride;
+ v_accum += uv_pre_stride;
+
+ y_src += y_src_stride * (1 + ss_y);
+ y_pre += y_pre_stride * (1 + ss_y);
+ y_dist += DIST_STRIDE * (1 + ss_y);
+ }
+
+ // The last row
+ mul_fst = _mm_loadu_si128((const __m128i *)neighbors_fst[0]);
+ mul_snd = _mm_loadu_si128((const __m128i *)neighbors_snd[0]);
+
+ // Shift the rows up
+ u_sum_row_1_fst = u_sum_row_2_fst;
+ u_sum_row_2_fst = u_sum_row_3_fst;
+ u_sum_row_1_snd = u_sum_row_2_snd;
+ u_sum_row_2_snd = u_sum_row_3_snd;
+
+ v_sum_row_1_fst = v_sum_row_2_fst;
+ v_sum_row_2_fst = v_sum_row_3_fst;
+ v_sum_row_1_snd = v_sum_row_2_snd;
+ v_sum_row_2_snd = v_sum_row_3_snd;
+
+ // Add chroma values
+ u_sum_row_fst = _mm_add_epi32(u_sum_row_1_fst, u_sum_row_2_fst);
+ v_sum_row_fst = _mm_add_epi32(v_sum_row_1_fst, v_sum_row_2_fst);
+ u_sum_row_snd = _mm_add_epi32(u_sum_row_1_snd, u_sum_row_2_snd);
+ v_sum_row_snd = _mm_add_epi32(v_sum_row_1_snd, v_sum_row_2_snd);
+
+ // Add luma values
+ highbd_add_luma_dist_to_8_chroma_mod(y_dist, ss_x, ss_y, &u_sum_row_fst,
+ &u_sum_row_snd, &v_sum_row_fst,
+ &v_sum_row_snd);
+
+ // Get modifier and store result
+ if (blk_fw) {
+ highbd_average_4(&u_sum_row_fst, &u_sum_row_fst, &mul_fst, strength,
+ rounding, blk_fw[0]);
+ highbd_average_4(&u_sum_row_snd, &u_sum_row_snd, &mul_snd, strength,
+ rounding, blk_fw[1]);
+
+ highbd_average_4(&v_sum_row_fst, &v_sum_row_fst, &mul_fst, strength,
+ rounding, blk_fw[0]);
+ highbd_average_4(&v_sum_row_snd, &v_sum_row_snd, &mul_snd, strength,
+ rounding, blk_fw[1]);
+
+ } else {
+ highbd_average_8(&u_sum_row_fst, &u_sum_row_snd, &u_sum_row_fst,
+ &u_sum_row_snd, &mul_fst, &mul_snd, strength, rounding,
+ weight);
+ highbd_average_8(&v_sum_row_fst, &v_sum_row_snd, &v_sum_row_fst,
+ &v_sum_row_snd, &mul_fst, &mul_snd, strength, rounding,
+ weight);
+ }
+
+ highbd_accumulate_and_store_8(u_sum_row_fst, u_sum_row_snd, u_pre, u_count,
+ u_accum);
+ highbd_accumulate_and_store_8(v_sum_row_fst, v_sum_row_snd, v_pre, v_count,
+ v_accum);
+}
+
+// Perform temporal filter for the chroma components.
+static void highbd_apply_temporal_filter_chroma(
+ const uint16_t *y_src, int y_src_stride, const uint16_t *y_pre,
+ int y_pre_stride, const uint16_t *u_src, const uint16_t *v_src,
+ int uv_src_stride, const uint16_t *u_pre, const uint16_t *v_pre,
+ int uv_pre_stride, unsigned int block_width, unsigned int block_height,
+ int ss_x, int ss_y, int strength, const int *blk_fw, int use_whole_blk,
+ uint32_t *u_accum, uint16_t *u_count, uint32_t *v_accum, uint16_t *v_count,
+ const uint32_t *y_dist, const uint32_t *u_dist, const uint32_t *v_dist) {
+ const unsigned int uv_width = block_width >> ss_x,
+ uv_height = block_height >> ss_y;
+
+ unsigned int blk_col = 0, uv_blk_col = 0;
+ const unsigned int uv_blk_col_step = 8, blk_col_step = 8 << ss_x;
+ const unsigned int uv_mid_width = uv_width >> 1,
+ uv_last_width = uv_width - uv_blk_col_step;
+ int top_weight = blk_fw[0],
+ bottom_weight = use_whole_blk ? blk_fw[0] : blk_fw[2];
+ const uint32_t *const *neighbors_fst;
+ const uint32_t *const *neighbors_snd;
+
+ if (uv_width == 8) {
+ // Special Case: We are subsampling in x direction on a 16x16 block. Since
+ // we are operating on a row of 8 chroma pixels, we can't use the usual
+ // left-middle-right pattern.
+ assert(ss_x);
+
+ if (ss_y) {
+ neighbors_fst = HIGHBD_CHROMA_DOUBLE_SS_LEFT_COLUMN_NEIGHBORS;
+ neighbors_snd = HIGHBD_CHROMA_DOUBLE_SS_RIGHT_COLUMN_NEIGHBORS;
+ } else {
+ neighbors_fst = HIGHBD_CHROMA_SINGLE_SS_LEFT_COLUMN_NEIGHBORS;
+ neighbors_snd = HIGHBD_CHROMA_SINGLE_SS_RIGHT_COLUMN_NEIGHBORS;
+ }
+
+ if (use_whole_blk) {
+ highbd_apply_temporal_filter_chroma_8(
+ y_src + blk_col, y_src_stride, y_pre + blk_col, y_pre_stride,
+ u_src + uv_blk_col, v_src + uv_blk_col, uv_src_stride,
+ u_pre + uv_blk_col, v_pre + uv_blk_col, uv_pre_stride, uv_width,
+ uv_height, ss_x, ss_y, strength, u_accum + uv_blk_col,
+ u_count + uv_blk_col, v_accum + uv_blk_col, v_count + uv_blk_col,
+ y_dist + blk_col, u_dist + uv_blk_col, v_dist + uv_blk_col,
+ neighbors_fst, neighbors_snd, top_weight, bottom_weight, NULL);
+ } else {
+ highbd_apply_temporal_filter_chroma_8(
+ y_src + blk_col, y_src_stride, y_pre + blk_col, y_pre_stride,
+ u_src + uv_blk_col, v_src + uv_blk_col, uv_src_stride,
+ u_pre + uv_blk_col, v_pre + uv_blk_col, uv_pre_stride, uv_width,
+ uv_height, ss_x, ss_y, strength, u_accum + uv_blk_col,
+ u_count + uv_blk_col, v_accum + uv_blk_col, v_count + uv_blk_col,
+ y_dist + blk_col, u_dist + uv_blk_col, v_dist + uv_blk_col,
+ neighbors_fst, neighbors_snd, 0, 0, blk_fw);
+ }
+
+ return;
+ }
+
+ // Left
+ if (ss_x && ss_y) {
+ neighbors_fst = HIGHBD_CHROMA_DOUBLE_SS_LEFT_COLUMN_NEIGHBORS;
+ neighbors_snd = HIGHBD_CHROMA_DOUBLE_SS_MIDDLE_COLUMN_NEIGHBORS;
+ } else if (ss_x || ss_y) {
+ neighbors_fst = HIGHBD_CHROMA_SINGLE_SS_LEFT_COLUMN_NEIGHBORS;
+ neighbors_snd = HIGHBD_CHROMA_SINGLE_SS_MIDDLE_COLUMN_NEIGHBORS;
+ } else {
+ neighbors_fst = HIGHBD_CHROMA_NO_SS_LEFT_COLUMN_NEIGHBORS;
+ neighbors_snd = HIGHBD_CHROMA_NO_SS_MIDDLE_COLUMN_NEIGHBORS;
+ }
+
+ highbd_apply_temporal_filter_chroma_8(
+ y_src + blk_col, y_src_stride, y_pre + blk_col, y_pre_stride,
+ u_src + uv_blk_col, v_src + uv_blk_col, uv_src_stride, u_pre + uv_blk_col,
+ v_pre + uv_blk_col, uv_pre_stride, uv_width, uv_height, ss_x, ss_y,
+ strength, u_accum + uv_blk_col, u_count + uv_blk_col,
+ v_accum + uv_blk_col, v_count + uv_blk_col, y_dist + blk_col,
+ u_dist + uv_blk_col, v_dist + uv_blk_col, neighbors_fst, neighbors_snd,
+ top_weight, bottom_weight, NULL);
+
+ blk_col += blk_col_step;
+ uv_blk_col += uv_blk_col_step;
+
+ // Middle First
+ if (ss_x && ss_y) {
+ neighbors_fst = HIGHBD_CHROMA_DOUBLE_SS_MIDDLE_COLUMN_NEIGHBORS;
+ } else if (ss_x || ss_y) {
+ neighbors_fst = HIGHBD_CHROMA_SINGLE_SS_MIDDLE_COLUMN_NEIGHBORS;
+ } else {
+ neighbors_fst = HIGHBD_CHROMA_NO_SS_MIDDLE_COLUMN_NEIGHBORS;
+ }
+
+ for (; uv_blk_col < uv_mid_width;
+ blk_col += blk_col_step, uv_blk_col += uv_blk_col_step) {
+ highbd_apply_temporal_filter_chroma_8(
+ y_src + blk_col, y_src_stride, y_pre + blk_col, y_pre_stride,
+ u_src + uv_blk_col, v_src + uv_blk_col, uv_src_stride,
+ u_pre + uv_blk_col, v_pre + uv_blk_col, uv_pre_stride, uv_width,
+ uv_height, ss_x, ss_y, strength, u_accum + uv_blk_col,
+ u_count + uv_blk_col, v_accum + uv_blk_col, v_count + uv_blk_col,
+ y_dist + blk_col, u_dist + uv_blk_col, v_dist + uv_blk_col,
+ neighbors_fst, neighbors_snd, top_weight, bottom_weight, NULL);
+ }
+
+ if (!use_whole_blk) {
+ top_weight = blk_fw[1];
+ bottom_weight = blk_fw[3];
+ }
+
+ // Middle Second
+ for (; uv_blk_col < uv_last_width;
+ blk_col += blk_col_step, uv_blk_col += uv_blk_col_step) {
+ highbd_apply_temporal_filter_chroma_8(
+ y_src + blk_col, y_src_stride, y_pre + blk_col, y_pre_stride,
+ u_src + uv_blk_col, v_src + uv_blk_col, uv_src_stride,
+ u_pre + uv_blk_col, v_pre + uv_blk_col, uv_pre_stride, uv_width,
+ uv_height, ss_x, ss_y, strength, u_accum + uv_blk_col,
+ u_count + uv_blk_col, v_accum + uv_blk_col, v_count + uv_blk_col,
+ y_dist + blk_col, u_dist + uv_blk_col, v_dist + uv_blk_col,
+ neighbors_fst, neighbors_snd, top_weight, bottom_weight, NULL);
+ }
+
+ // Right
+ if (ss_x && ss_y) {
+ neighbors_snd = HIGHBD_CHROMA_DOUBLE_SS_RIGHT_COLUMN_NEIGHBORS;
+ } else if (ss_x || ss_y) {
+ neighbors_snd = HIGHBD_CHROMA_SINGLE_SS_RIGHT_COLUMN_NEIGHBORS;
+ } else {
+ neighbors_snd = HIGHBD_CHROMA_NO_SS_RIGHT_COLUMN_NEIGHBORS;
+ }
+
+ highbd_apply_temporal_filter_chroma_8(
+ y_src + blk_col, y_src_stride, y_pre + blk_col, y_pre_stride,
+ u_src + uv_blk_col, v_src + uv_blk_col, uv_src_stride, u_pre + uv_blk_col,
+ v_pre + uv_blk_col, uv_pre_stride, uv_width, uv_height, ss_x, ss_y,
+ strength, u_accum + uv_blk_col, u_count + uv_blk_col,
+ v_accum + uv_blk_col, v_count + uv_blk_col, y_dist + blk_col,
+ u_dist + uv_blk_col, v_dist + uv_blk_col, neighbors_fst, neighbors_snd,
+ top_weight, bottom_weight, NULL);
+}
+
+static void highbd_apply_temporal_filter_yuv(
+ const YV12_BUFFER_CONFIG *ref_frame, const MACROBLOCKD *mbd,
+ const BLOCK_SIZE block_size, const int mb_row, const int mb_col,
+ const int strength, const int use_subblock,
+ const int *subblock_filter_weights, const uint8_t *pred, uint32_t *accum,
+ uint16_t *count) {
+ const int use_whole_blk = !use_subblock;
+ const int *blk_fw = subblock_filter_weights;
+
+ // Block information (Y-plane).
+ const unsigned int block_height = block_size_high[block_size];
+ const unsigned int block_width = block_size_wide[block_size];
+ const int mb_pels = block_height * block_width;
+ const int y_src_stride = ref_frame->y_stride;
+ const int y_pre_stride = block_width;
+ const int mb_y_src_offset =
+ mb_row * block_height * ref_frame->y_stride + mb_col * block_width;
+
+ // Block information (UV-plane).
+ const int ss_y = mbd->plane[1].subsampling_y;
+ const int ss_x = mbd->plane[1].subsampling_x;
+ const unsigned int uv_height = block_height >> ss_y;
+ const unsigned int uv_width = block_width >> ss_x;
+ const int uv_src_stride = ref_frame->uv_stride;
+ const int uv_pre_stride = block_width >> ss_x;
+ const int mb_uv_src_offset =
+ mb_row * uv_height * ref_frame->uv_stride + mb_col * uv_width;
+
+ const uint8_t *y_src = ref_frame->y_buffer + mb_y_src_offset;
+ const uint8_t *u_src = ref_frame->u_buffer + mb_uv_src_offset;
+ const uint8_t *v_src = ref_frame->v_buffer + mb_uv_src_offset;
+ const uint8_t *y_pre = pred;
+ const uint8_t *u_pre = pred + mb_pels;
+ const uint8_t *v_pre = pred + mb_pels * 2;
+ uint32_t *y_accum = accum;
+ uint32_t *u_accum = accum + mb_pels;
+ uint32_t *v_accum = accum + mb_pels * 2;
+ uint16_t *y_count = count;
+ uint16_t *u_count = count + mb_pels;
+ uint16_t *v_count = count + mb_pels * 2;
+
+ const unsigned int chroma_height = block_height >> ss_y,
+ chroma_width = block_width >> ss_x;
+
+ DECLARE_ALIGNED(16, uint32_t, y_dist[BH * DIST_STRIDE]) = { 0 };
+ DECLARE_ALIGNED(16, uint32_t, u_dist[BH * DIST_STRIDE]) = { 0 };
+ DECLARE_ALIGNED(16, uint32_t, v_dist[BH * DIST_STRIDE]) = { 0 };
+
+ uint32_t *y_dist_ptr = y_dist + 1, *u_dist_ptr = u_dist + 1,
+ *v_dist_ptr = v_dist + 1;
+ const uint16_t *y_src_ptr = CONVERT_TO_SHORTPTR(y_src),
+ *u_src_ptr = CONVERT_TO_SHORTPTR(u_src),
+ *v_src_ptr = CONVERT_TO_SHORTPTR(v_src);
+ const uint16_t *y_pre_ptr = CONVERT_TO_SHORTPTR(y_pre),
+ *u_pre_ptr = CONVERT_TO_SHORTPTR(u_pre),
+ *v_pre_ptr = CONVERT_TO_SHORTPTR(v_pre);
+
+ // Loop variables
+ unsigned int row, blk_col;
+
+ assert(block_width <= BW && "block width too large");
+ assert(block_height <= BH && "block height too large");
+ assert(block_width % 16 == 0 && "block width must be multiple of 16");
+ assert(block_height % 2 == 0 && "block height must be even");
+ assert((ss_x == 0 || ss_x == 1) && (ss_y == 0 || ss_y == 1) &&
+ "invalid chroma subsampling");
+ assert(strength >= 0 && strength <= 14 &&
+ "invalid adjusted temporal filter strength");
+ assert(blk_fw[0] >= 0 && "filter weight must be positive");
+ assert(
+ (use_whole_blk || (blk_fw[1] >= 0 && blk_fw[2] >= 0 && blk_fw[3] >= 0)) &&
+ "subblock filter weight must be positive");
+ assert(blk_fw[0] <= 2 && "sublock filter weight must be less than 2");
+ assert(
+ (use_whole_blk || (blk_fw[1] <= 2 && blk_fw[2] <= 2 && blk_fw[3] <= 2)) &&
+ "subblock filter weight must be less than 2");
+
+ // Precompute the difference squared
+ for (row = 0; row < block_height; row++) {
+ for (blk_col = 0; blk_col < block_width; blk_col += 8) {
+ highbd_store_dist_8(y_src_ptr + blk_col, y_pre_ptr + blk_col,
+ y_dist_ptr + blk_col);
+ }
+ y_src_ptr += y_src_stride;
+ y_pre_ptr += y_pre_stride;
+ y_dist_ptr += DIST_STRIDE;
+ }
+
+ for (row = 0; row < chroma_height; row++) {
+ for (blk_col = 0; blk_col < chroma_width; blk_col += 8) {
+ highbd_store_dist_8(u_src_ptr + blk_col, u_pre_ptr + blk_col,
+ u_dist_ptr + blk_col);
+ highbd_store_dist_8(v_src_ptr + blk_col, v_pre_ptr + blk_col,
+ v_dist_ptr + blk_col);
+ }
+
+ u_src_ptr += uv_src_stride;
+ u_pre_ptr += uv_pre_stride;
+ u_dist_ptr += DIST_STRIDE;
+ v_src_ptr += uv_src_stride;
+ v_pre_ptr += uv_pre_stride;
+ v_dist_ptr += DIST_STRIDE;
+ }
+
+ y_src_ptr = CONVERT_TO_SHORTPTR(y_src),
+ u_src_ptr = CONVERT_TO_SHORTPTR(u_src),
+ v_src_ptr = CONVERT_TO_SHORTPTR(v_src);
+ y_pre_ptr = CONVERT_TO_SHORTPTR(y_pre),
+ u_pre_ptr = CONVERT_TO_SHORTPTR(u_pre),
+ v_pre_ptr = CONVERT_TO_SHORTPTR(v_pre);
+
+ y_dist_ptr = y_dist + 1;
+ u_dist_ptr = u_dist + 1;
+ v_dist_ptr = v_dist + 1;
+
+ highbd_apply_temporal_filter_luma(
+ y_src_ptr, y_src_stride, y_pre_ptr, y_pre_stride, u_src_ptr, v_src_ptr,
+ uv_src_stride, u_pre_ptr, v_pre_ptr, uv_pre_stride, block_width,
+ block_height, ss_x, ss_y, strength, blk_fw, use_whole_blk, y_accum,
+ y_count, y_dist_ptr, u_dist_ptr, v_dist_ptr);
+
+ highbd_apply_temporal_filter_chroma(
+ y_src_ptr, y_src_stride, y_pre_ptr, y_pre_stride, u_src_ptr, v_src_ptr,
+ uv_src_stride, u_pre_ptr, v_pre_ptr, uv_pre_stride, block_width,
+ block_height, ss_x, ss_y, strength, blk_fw, use_whole_blk, u_accum,
+ u_count, v_accum, v_count, y_dist_ptr, u_dist_ptr, v_dist_ptr);
+}
+
+/////////////////////////
+// High bit-depth Ends //
+/////////////////////////
+
+void av1_apply_temporal_filter_yuv_sse4_1(
+ const YV12_BUFFER_CONFIG *ref_frame, const MACROBLOCKD *mbd,
+ const BLOCK_SIZE block_size, const int mb_row, const int mb_col,
+ const int num_planes, const int strength, const int use_subblock,
+ const int *subblock_filter_weights, const uint8_t *pred, uint32_t *accum,
+ uint16_t *count) {
+ const int is_high_bitdepth = ref_frame->flags & YV12_FLAG_HIGHBITDEPTH;
+ // TODO(any): Need to support when `num_planes != 3`, like C implementation.
+ assert(num_planes == 3);
+ (void)num_planes;
+ if (is_high_bitdepth) {
+ highbd_apply_temporal_filter_yuv(
+ ref_frame, mbd, block_size, mb_row, mb_col, strength, use_subblock,
+ subblock_filter_weights, pred, accum, count);
+ } else {
+ apply_temporal_filter_yuv(ref_frame, mbd, block_size, mb_row, mb_col,
+ strength, use_subblock, subblock_filter_weights,
+ pred, accum, count);
+ }
+}
diff --git a/media/libaom/src/av1/encoder/x86/wedge_utils_avx2.c b/media/libaom/src/av1/encoder/x86/wedge_utils_avx2.c
index 2a792f14e6..c06bad8f79 100644
--- a/media/libaom/src/av1/encoder/x86/wedge_utils_avx2.c
+++ b/media/libaom/src/av1/encoder/x86/wedge_utils_avx2.c
@@ -84,8 +84,8 @@ uint64_t av1_wedge_sse_from_residuals_avx2(const int16_t *r1, const int16_t *d,
/**
* See av1_wedge_sign_from_residuals_c
*/
-int av1_wedge_sign_from_residuals_avx2(const int16_t *ds, const uint8_t *m,
- int N, int64_t limit) {
+int8_t av1_wedge_sign_from_residuals_avx2(const int16_t *ds, const uint8_t *m,
+ int N, int64_t limit) {
int64_t acc;
__m256i v_acc0_d = _mm256_setzero_si256();
diff --git a/media/libaom/src/av1/encoder/x86/wedge_utils_sse2.c b/media/libaom/src/av1/encoder/x86/wedge_utils_sse2.c
index 4d2e99f258..f3f4b8a750 100644
--- a/media/libaom/src/av1/encoder/x86/wedge_utils_sse2.c
+++ b/media/libaom/src/av1/encoder/x86/wedge_utils_sse2.c
@@ -97,8 +97,8 @@ uint64_t av1_wedge_sse_from_residuals_sse2(const int16_t *r1, const int16_t *d,
/**
* See av1_wedge_sign_from_residuals_c
*/
-int av1_wedge_sign_from_residuals_sse2(const int16_t *ds, const uint8_t *m,
- int N, int64_t limit) {
+int8_t av1_wedge_sign_from_residuals_sse2(const int16_t *ds, const uint8_t *m,
+ int N, int64_t limit) {
int64_t acc;
__m128i v_sign_d;
@@ -193,8 +193,8 @@ static INLINE __m128i negm_epi16(__m128i v_v_w, __m128i v_mask_w) {
*/
void av1_wedge_compute_delta_squares_sse2(int16_t *d, const int16_t *a,
const int16_t *b, int N) {
- const __m128i v_neg_w =
- _mm_set_epi16(0xffff, 0, 0xffff, 0, 0xffff, 0, 0xffff, 0);
+ const __m128i v_neg_w = _mm_set_epi16((short)0xffff, 0, (short)0xffff, 0,
+ (short)0xffff, 0, (short)0xffff, 0);
assert(N % 64 == 0);