summaryrefslogtreecommitdiff
path: root/js/src/jsmath.cpp
diff options
context:
space:
mode:
authorMatt A. Tobin <mattatobin@localhost.localdomain>2018-02-02 04:16:08 -0500
committerMatt A. Tobin <mattatobin@localhost.localdomain>2018-02-02 04:16:08 -0500
commit5f8de423f190bbb79a62f804151bc24824fa32d8 (patch)
tree10027f336435511475e392454359edea8e25895d /js/src/jsmath.cpp
parent49ee0794b5d912db1f95dce6eb52d781dc210db5 (diff)
downloaduxp-5f8de423f190bbb79a62f804151bc24824fa32d8.tar.gz
Add m-esr52 at 52.6.0
Diffstat (limited to 'js/src/jsmath.cpp')
-rw-r--r--js/src/jsmath.cpp1442
1 files changed, 1442 insertions, 0 deletions
diff --git a/js/src/jsmath.cpp b/js/src/jsmath.cpp
new file mode 100644
index 0000000000..08fbe048c0
--- /dev/null
+++ b/js/src/jsmath.cpp
@@ -0,0 +1,1442 @@
+/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
+ * vim: set ts=8 sts=4 et sw=4 tw=99:
+ * This Source Code Form is subject to the terms of the Mozilla Public
+ * License, v. 2.0. If a copy of the MPL was not distributed with this
+ * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
+
+/*
+ * JS math package.
+ */
+
+#include "jsmath.h"
+
+#include "mozilla/FloatingPoint.h"
+#include "mozilla/MathAlgorithms.h"
+#include "mozilla/MemoryReporting.h"
+#include "mozilla/Unused.h"
+
+#include <algorithm> // for std::max
+#include <fcntl.h>
+
+#ifdef XP_UNIX
+# include <unistd.h>
+#endif
+
+#include "fdlibm.h"
+
+#ifdef XP_WIN
+# include "jswin.h"
+#endif
+
+#include "jsapi.h"
+#include "jsatom.h"
+#include "jscntxt.h"
+#include "jscompartment.h"
+#include "jslibmath.h"
+#include "jstypes.h"
+
+#include "jit/InlinableNatives.h"
+#include "js/Class.h"
+#include "vm/Time.h"
+
+#include "jsobjinlines.h"
+
+#if defined(XP_WIN)
+// #define needed to link in RtlGenRandom(), a.k.a. SystemFunction036. See the
+// "Community Additions" comment on MSDN here:
+// https://msdn.microsoft.com/en-us/library/windows/desktop/aa387694.aspx
+# define SystemFunction036 NTAPI SystemFunction036
+# include <ntsecapi.h>
+# undef SystemFunction036
+#endif
+
+#if defined(ANDROID) || defined(XP_DARWIN) || defined(__DragonFly__) || \
+ defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)
+# include <stdlib.h>
+# define HAVE_ARC4RANDOM
+#endif
+
+#if defined(__linux__)
+# include <linux/random.h> // For GRND_NONBLOCK.
+# include <sys/syscall.h> // For SYS_getrandom.
+
+// Older glibc versions don't define SYS_getrandom, so we define it here if
+// it's not available. See bug 995069.
+# if defined(__x86_64__)
+# define GETRANDOM_NR 318
+# elif defined(__i386__)
+# define GETRANDOM_NR 355
+# elif defined(__arm__)
+# define GETRANDOM_NR 384
+# endif
+
+# if defined(SYS_getrandom)
+// We have SYS_getrandom. Use it to check GETRANDOM_NR. Only do this if we set
+// GETRANDOM_NR so tier 3 platforms with recent glibc are not forced to define
+// it for no good reason.
+# if defined(GETRANDOM_NR)
+static_assert(GETRANDOM_NR == SYS_getrandom,
+ "GETRANDOM_NR should match the actual SYS_getrandom value");
+# endif
+# else
+# define SYS_getrandom GETRANDOM_NR
+# endif
+
+# if defined(GRND_NONBLOCK)
+static_assert(GRND_NONBLOCK == 1, "If GRND_NONBLOCK is not 1 the #define below is wrong");
+# else
+# define GRND_NONBLOCK 1
+# endif
+
+#endif // defined(__linux__)
+
+using namespace js;
+
+using mozilla::Abs;
+using mozilla::NumberEqualsInt32;
+using mozilla::NumberIsInt32;
+using mozilla::ExponentComponent;
+using mozilla::FloatingPoint;
+using mozilla::IsFinite;
+using mozilla::IsInfinite;
+using mozilla::IsNaN;
+using mozilla::IsNegative;
+using mozilla::IsNegativeZero;
+using mozilla::PositiveInfinity;
+using mozilla::NegativeInfinity;
+using JS::ToNumber;
+using JS::GenericNaN;
+
+static const JSConstDoubleSpec math_constants[] = {
+ {"E" , M_E },
+ {"LOG2E" , M_LOG2E },
+ {"LOG10E" , M_LOG10E },
+ {"LN2" , M_LN2 },
+ {"LN10" , M_LN10 },
+ {"PI" , M_PI },
+ {"SQRT2" , M_SQRT2 },
+ {"SQRT1_2", M_SQRT1_2 },
+ {0,0}
+};
+
+MathCache::MathCache() {
+ memset(table, 0, sizeof(table));
+
+ /* See comments in lookup(). */
+ MOZ_ASSERT(IsNegativeZero(-0.0));
+ MOZ_ASSERT(!IsNegativeZero(+0.0));
+ MOZ_ASSERT(hash(-0.0, MathCache::Sin) != hash(+0.0, MathCache::Sin));
+}
+
+size_t
+MathCache::sizeOfIncludingThis(mozilla::MallocSizeOf mallocSizeOf)
+{
+ return mallocSizeOf(this);
+}
+
+const Class js::MathClass = {
+ js_Math_str,
+ JSCLASS_HAS_CACHED_PROTO(JSProto_Math)
+};
+
+bool
+js::math_abs_handle(JSContext* cx, js::HandleValue v, js::MutableHandleValue r)
+{
+ double x;
+ if (!ToNumber(cx, v, &x))
+ return false;
+
+ double z = Abs(x);
+ r.setNumber(z);
+
+ return true;
+}
+
+bool
+js::math_abs(JSContext* cx, unsigned argc, Value* vp)
+{
+ CallArgs args = CallArgsFromVp(argc, vp);
+
+ if (args.length() == 0) {
+ args.rval().setNaN();
+ return true;
+ }
+
+ return math_abs_handle(cx, args[0], args.rval());
+}
+
+double
+js::math_acos_impl(MathCache* cache, double x)
+{
+ return cache->lookup(fdlibm::acos, x, MathCache::Acos);
+}
+
+double
+js::math_acos_uncached(double x)
+{
+ return fdlibm::acos(x);
+}
+
+bool
+js::math_acos(JSContext* cx, unsigned argc, Value* vp)
+{
+ CallArgs args = CallArgsFromVp(argc, vp);
+
+ if (args.length() == 0) {
+ args.rval().setNaN();
+ return true;
+ }
+
+ double x;
+ if (!ToNumber(cx, args[0], &x))
+ return false;
+
+ MathCache* mathCache = cx->caches.getMathCache(cx);
+ if (!mathCache)
+ return false;
+
+ double z = math_acos_impl(mathCache, x);
+ args.rval().setDouble(z);
+ return true;
+}
+
+double
+js::math_asin_impl(MathCache* cache, double x)
+{
+ return cache->lookup(fdlibm::asin, x, MathCache::Asin);
+}
+
+double
+js::math_asin_uncached(double x)
+{
+ return fdlibm::asin(x);
+}
+
+bool
+js::math_asin(JSContext* cx, unsigned argc, Value* vp)
+{
+ CallArgs args = CallArgsFromVp(argc, vp);
+
+ if (args.length() == 0) {
+ args.rval().setNaN();
+ return true;
+ }
+
+ double x;
+ if (!ToNumber(cx, args[0], &x))
+ return false;
+
+ MathCache* mathCache = cx->caches.getMathCache(cx);
+ if (!mathCache)
+ return false;
+
+ double z = math_asin_impl(mathCache, x);
+ args.rval().setDouble(z);
+ return true;
+}
+
+double
+js::math_atan_impl(MathCache* cache, double x)
+{
+ return cache->lookup(fdlibm::atan, x, MathCache::Atan);
+}
+
+double
+js::math_atan_uncached(double x)
+{
+ return fdlibm::atan(x);
+}
+
+bool
+js::math_atan(JSContext* cx, unsigned argc, Value* vp)
+{
+ CallArgs args = CallArgsFromVp(argc, vp);
+
+ if (args.length() == 0) {
+ args.rval().setNaN();
+ return true;
+ }
+
+ double x;
+ if (!ToNumber(cx, args[0], &x))
+ return false;
+
+ MathCache* mathCache = cx->caches.getMathCache(cx);
+ if (!mathCache)
+ return false;
+
+ double z = math_atan_impl(mathCache, x);
+ args.rval().setDouble(z);
+ return true;
+}
+
+double
+js::ecmaAtan2(double y, double x)
+{
+ return fdlibm::atan2(y, x);
+}
+
+bool
+js::math_atan2_handle(JSContext* cx, HandleValue y, HandleValue x, MutableHandleValue res)
+{
+ double dy;
+ if (!ToNumber(cx, y, &dy))
+ return false;
+
+ double dx;
+ if (!ToNumber(cx, x, &dx))
+ return false;
+
+ double z = ecmaAtan2(dy, dx);
+ res.setDouble(z);
+ return true;
+}
+
+bool
+js::math_atan2(JSContext* cx, unsigned argc, Value* vp)
+{
+ CallArgs args = CallArgsFromVp(argc, vp);
+
+ return math_atan2_handle(cx, args.get(0), args.get(1), args.rval());
+}
+
+double
+js::math_ceil_impl(double x)
+{
+ return fdlibm::ceil(x);
+}
+
+bool
+js::math_ceil_handle(JSContext* cx, HandleValue v, MutableHandleValue res)
+{
+ double d;
+ if(!ToNumber(cx, v, &d))
+ return false;
+
+ double result = math_ceil_impl(d);
+ res.setNumber(result);
+ return true;
+}
+
+bool
+js::math_ceil(JSContext* cx, unsigned argc, Value* vp)
+{
+ CallArgs args = CallArgsFromVp(argc, vp);
+
+ if (args.length() == 0) {
+ args.rval().setNaN();
+ return true;
+ }
+
+ return math_ceil_handle(cx, args[0], args.rval());
+}
+
+bool
+js::math_clz32(JSContext* cx, unsigned argc, Value* vp)
+{
+ CallArgs args = CallArgsFromVp(argc, vp);
+
+ if (args.length() == 0) {
+ args.rval().setInt32(32);
+ return true;
+ }
+
+ uint32_t n;
+ if (!ToUint32(cx, args[0], &n))
+ return false;
+
+ if (n == 0) {
+ args.rval().setInt32(32);
+ return true;
+ }
+
+ args.rval().setInt32(mozilla::CountLeadingZeroes32(n));
+ return true;
+}
+
+double
+js::math_cos_impl(MathCache* cache, double x)
+{
+ return cache->lookup(cos, x, MathCache::Cos);
+}
+
+double
+js::math_cos_uncached(double x)
+{
+ return cos(x);
+}
+
+bool
+js::math_cos(JSContext* cx, unsigned argc, Value* vp)
+{
+ CallArgs args = CallArgsFromVp(argc, vp);
+
+ if (args.length() == 0) {
+ args.rval().setNaN();
+ return true;
+ }
+
+ double x;
+ if (!ToNumber(cx, args[0], &x))
+ return false;
+
+ MathCache* mathCache = cx->caches.getMathCache(cx);
+ if (!mathCache)
+ return false;
+
+ double z = math_cos_impl(mathCache, x);
+ args.rval().setDouble(z);
+ return true;
+}
+
+double
+js::math_exp_impl(MathCache* cache, double x)
+{
+ return cache->lookup(fdlibm::exp, x, MathCache::Exp);
+}
+
+double
+js::math_exp_uncached(double x)
+{
+ return fdlibm::exp(x);
+}
+
+bool
+js::math_exp(JSContext* cx, unsigned argc, Value* vp)
+{
+ CallArgs args = CallArgsFromVp(argc, vp);
+
+ if (args.length() == 0) {
+ args.rval().setNaN();
+ return true;
+ }
+
+ double x;
+ if (!ToNumber(cx, args[0], &x))
+ return false;
+
+ MathCache* mathCache = cx->caches.getMathCache(cx);
+ if (!mathCache)
+ return false;
+
+ double z = math_exp_impl(mathCache, x);
+ args.rval().setNumber(z);
+ return true;
+}
+
+double
+js::math_floor_impl(double x)
+{
+ return fdlibm::floor(x);
+}
+
+bool
+js::math_floor_handle(JSContext* cx, HandleValue v, MutableHandleValue r)
+{
+ double d;
+ if (!ToNumber(cx, v, &d))
+ return false;
+
+ double z = math_floor_impl(d);
+ r.setNumber(z);
+
+ return true;
+}
+
+bool
+js::math_floor(JSContext* cx, unsigned argc, Value* vp)
+{
+ CallArgs args = CallArgsFromVp(argc, vp);
+
+ if (args.length() == 0) {
+ args.rval().setNaN();
+ return true;
+ }
+
+ return math_floor_handle(cx, args[0], args.rval());
+}
+
+bool
+js::math_imul_handle(JSContext* cx, HandleValue lhs, HandleValue rhs, MutableHandleValue res)
+{
+ uint32_t a = 0, b = 0;
+ if (!lhs.isUndefined() && !ToUint32(cx, lhs, &a))
+ return false;
+ if (!rhs.isUndefined() && !ToUint32(cx, rhs, &b))
+ return false;
+
+ uint32_t product = a * b;
+ res.setInt32(product > INT32_MAX
+ ? int32_t(INT32_MIN + (product - INT32_MAX - 1))
+ : int32_t(product));
+ return true;
+}
+
+bool
+js::math_imul(JSContext* cx, unsigned argc, Value* vp)
+{
+ CallArgs args = CallArgsFromVp(argc, vp);
+
+ return math_imul_handle(cx, args.get(0), args.get(1), args.rval());
+}
+
+// Implements Math.fround (20.2.2.16) up to step 3
+bool
+js::RoundFloat32(JSContext* cx, HandleValue v, float* out)
+{
+ double d;
+ bool success = ToNumber(cx, v, &d);
+ *out = static_cast<float>(d);
+ return success;
+}
+
+bool
+js::RoundFloat32(JSContext* cx, HandleValue arg, MutableHandleValue res)
+{
+ float f;
+ if (!RoundFloat32(cx, arg, &f))
+ return false;
+
+ res.setDouble(static_cast<double>(f));
+ return true;
+}
+
+bool
+js::math_fround(JSContext* cx, unsigned argc, Value* vp)
+{
+ CallArgs args = CallArgsFromVp(argc, vp);
+
+ if (args.length() == 0) {
+ args.rval().setNaN();
+ return true;
+ }
+
+ return RoundFloat32(cx, args[0], args.rval());
+}
+
+double
+js::math_log_impl(MathCache* cache, double x)
+{
+ return cache->lookup(math_log_uncached, x, MathCache::Log);
+}
+
+double
+js::math_log_uncached(double x)
+{
+ return fdlibm::log(x);
+}
+
+bool
+js::math_log_handle(JSContext* cx, HandleValue val, MutableHandleValue res)
+{
+ double in;
+ if (!ToNumber(cx, val, &in))
+ return false;
+
+ MathCache* mathCache = cx->caches.getMathCache(cx);
+ if (!mathCache)
+ return false;
+
+ double out = math_log_impl(mathCache, in);
+ res.setNumber(out);
+ return true;
+}
+
+bool
+js::math_log(JSContext* cx, unsigned argc, Value* vp)
+{
+ CallArgs args = CallArgsFromVp(argc, vp);
+
+ if (args.length() == 0) {
+ args.rval().setNaN();
+ return true;
+ }
+
+ return math_log_handle(cx, args[0], args.rval());
+}
+
+double
+js::math_max_impl(double x, double y)
+{
+ // Math.max(num, NaN) => NaN, Math.max(-0, +0) => +0
+ if (x > y || IsNaN(x) || (x == y && IsNegative(y)))
+ return x;
+ return y;
+}
+
+bool
+js::math_max(JSContext* cx, unsigned argc, Value* vp)
+{
+ CallArgs args = CallArgsFromVp(argc, vp);
+
+ double maxval = NegativeInfinity<double>();
+ for (unsigned i = 0; i < args.length(); i++) {
+ double x;
+ if (!ToNumber(cx, args[i], &x))
+ return false;
+ maxval = math_max_impl(x, maxval);
+ }
+ args.rval().setNumber(maxval);
+ return true;
+}
+
+double
+js::math_min_impl(double x, double y)
+{
+ // Math.min(num, NaN) => NaN, Math.min(-0, +0) => -0
+ if (x < y || IsNaN(x) || (x == y && IsNegativeZero(x)))
+ return x;
+ return y;
+}
+
+bool
+js::math_min(JSContext* cx, unsigned argc, Value* vp)
+{
+ CallArgs args = CallArgsFromVp(argc, vp);
+
+ double minval = PositiveInfinity<double>();
+ for (unsigned i = 0; i < args.length(); i++) {
+ double x;
+ if (!ToNumber(cx, args[i], &x))
+ return false;
+ minval = math_min_impl(x, minval);
+ }
+ args.rval().setNumber(minval);
+ return true;
+}
+
+bool
+js::minmax_impl(JSContext* cx, bool max, HandleValue a, HandleValue b, MutableHandleValue res)
+{
+ double x, y;
+
+ if (!ToNumber(cx, a, &x))
+ return false;
+ if (!ToNumber(cx, b, &y))
+ return false;
+
+ if (max)
+ res.setNumber(math_max_impl(x, y));
+ else
+ res.setNumber(math_min_impl(x, y));
+
+ return true;
+}
+
+double
+js::powi(double x, int y)
+{
+ unsigned n = (y < 0) ? -y : y;
+ double m = x;
+ double p = 1;
+ while (true) {
+ if ((n & 1) != 0) p *= m;
+ n >>= 1;
+ if (n == 0) {
+ if (y < 0) {
+ // Unfortunately, we have to be careful when p has reached
+ // infinity in the computation, because sometimes the higher
+ // internal precision in the pow() implementation would have
+ // given us a finite p. This happens very rarely.
+
+ double result = 1.0 / p;
+ return (result == 0 && IsInfinite(p))
+ ? pow(x, static_cast<double>(y)) // Avoid pow(double, int).
+ : result;
+ }
+
+ return p;
+ }
+ m *= m;
+ }
+}
+
+double
+js::ecmaPow(double x, double y)
+{
+ /*
+ * Use powi if the exponent is an integer-valued double. We don't have to
+ * check for NaN since a comparison with NaN is always false.
+ */
+ int32_t yi;
+ if (NumberEqualsInt32(y, &yi))
+ return powi(x, yi);
+
+ /*
+ * Because C99 and ECMA specify different behavior for pow(),
+ * we need to wrap the libm call to make it ECMA compliant.
+ */
+ if (!IsFinite(y) && (x == 1.0 || x == -1.0))
+ return GenericNaN();
+
+ /* pow(x, +-0) is always 1, even for x = NaN (MSVC gets this wrong). */
+ if (y == 0)
+ return 1;
+
+ /*
+ * Special case for square roots. Note that pow(x, 0.5) != sqrt(x)
+ * when x = -0.0, so we have to guard for this.
+ */
+ if (IsFinite(x) && x != 0.0) {
+ if (y == 0.5)
+ return sqrt(x);
+ if (y == -0.5)
+ return 1.0 / sqrt(x);
+ }
+ return pow(x, y);
+}
+
+bool
+js::math_pow_handle(JSContext* cx, HandleValue base, HandleValue power, MutableHandleValue result)
+{
+ double x;
+ if (!ToNumber(cx, base, &x))
+ return false;
+
+ double y;
+ if (!ToNumber(cx, power, &y))
+ return false;
+
+ double z = ecmaPow(x, y);
+ result.setNumber(z);
+ return true;
+}
+
+bool
+js::math_pow(JSContext* cx, unsigned argc, Value* vp)
+{
+ CallArgs args = CallArgsFromVp(argc, vp);
+
+ return math_pow_handle(cx, args.get(0), args.get(1), args.rval());
+}
+
+uint64_t
+js::GenerateRandomSeed()
+{
+ uint64_t seed = 0;
+
+#if defined(XP_WIN)
+ MOZ_ALWAYS_TRUE(RtlGenRandom(&seed, sizeof(seed)));
+#elif defined(HAVE_ARC4RANDOM)
+ seed = (static_cast<uint64_t>(arc4random()) << 32) | arc4random();
+#elif defined(XP_UNIX)
+ bool done = false;
+# if defined(__linux__)
+ // Try the relatively new getrandom syscall first. It's the preferred way
+ // on Linux as /dev/urandom may not work inside chroots and is harder to
+ // sandbox (see bug 995069).
+ int ret = syscall(SYS_getrandom, &seed, sizeof(seed), GRND_NONBLOCK);
+ done = (ret == sizeof(seed));
+# endif
+ if (!done) {
+ int fd = open("/dev/urandom", O_RDONLY);
+ if (fd >= 0) {
+ mozilla::Unused << read(fd, static_cast<void*>(&seed), sizeof(seed));
+ close(fd);
+ }
+ }
+#else
+# error "Platform needs to implement GenerateRandomSeed()"
+#endif
+
+ // Also mix in PRMJ_Now() in case we couldn't read random bits from the OS.
+ uint64_t timestamp = PRMJ_Now();
+ return seed ^ timestamp ^ (timestamp << 32);
+}
+
+void
+js::GenerateXorShift128PlusSeed(mozilla::Array<uint64_t, 2>& seed)
+{
+ // XorShift128PlusRNG must be initialized with a non-zero seed.
+ do {
+ seed[0] = GenerateRandomSeed();
+ seed[1] = GenerateRandomSeed();
+ } while (seed[0] == 0 && seed[1] == 0);
+}
+
+void
+JSCompartment::ensureRandomNumberGenerator()
+{
+ if (randomNumberGenerator.isNothing()) {
+ mozilla::Array<uint64_t, 2> seed;
+ GenerateXorShift128PlusSeed(seed);
+ randomNumberGenerator.emplace(seed[0], seed[1]);
+ }
+}
+
+double
+js::math_random_impl(JSContext* cx)
+{
+ JSCompartment* comp = cx->compartment();
+ comp->ensureRandomNumberGenerator();
+ return comp->randomNumberGenerator.ref().nextDouble();
+}
+
+bool
+js::math_random(JSContext* cx, unsigned argc, Value* vp)
+{
+ CallArgs args = CallArgsFromVp(argc, vp);
+ args.rval().setNumber(math_random_impl(cx));
+ return true;
+}
+
+bool
+js::math_round_handle(JSContext* cx, HandleValue arg, MutableHandleValue res)
+{
+ double d;
+ if (!ToNumber(cx, arg, &d))
+ return false;
+
+ d = math_round_impl(d);
+ res.setNumber(d);
+ return true;
+}
+
+template<typename T>
+T
+js::GetBiggestNumberLessThan(T x)
+{
+ MOZ_ASSERT(!IsNegative(x));
+ MOZ_ASSERT(IsFinite(x));
+ typedef typename mozilla::FloatingPoint<T>::Bits Bits;
+ Bits bits = mozilla::BitwiseCast<Bits>(x);
+ MOZ_ASSERT(bits > 0, "will underflow");
+ return mozilla::BitwiseCast<T>(bits - 1);
+}
+
+template double js::GetBiggestNumberLessThan<>(double x);
+template float js::GetBiggestNumberLessThan<>(float x);
+
+double
+js::math_round_impl(double x)
+{
+ int32_t ignored;
+ if (NumberIsInt32(x, &ignored))
+ return x;
+
+ /* Some numbers are so big that adding 0.5 would give the wrong number. */
+ if (ExponentComponent(x) >= int_fast16_t(FloatingPoint<double>::kExponentShift))
+ return x;
+
+ double add = (x >= 0) ? GetBiggestNumberLessThan(0.5) : 0.5;
+ return js_copysign(fdlibm::floor(x + add), x);
+}
+
+float
+js::math_roundf_impl(float x)
+{
+ int32_t ignored;
+ if (NumberIsInt32(x, &ignored))
+ return x;
+
+ /* Some numbers are so big that adding 0.5 would give the wrong number. */
+ if (ExponentComponent(x) >= int_fast16_t(FloatingPoint<float>::kExponentShift))
+ return x;
+
+ float add = (x >= 0) ? GetBiggestNumberLessThan(0.5f) : 0.5f;
+ return js_copysign(fdlibm::floorf(x + add), x);
+}
+
+bool /* ES5 15.8.2.15. */
+js::math_round(JSContext* cx, unsigned argc, Value* vp)
+{
+ CallArgs args = CallArgsFromVp(argc, vp);
+
+ if (args.length() == 0) {
+ args.rval().setNaN();
+ return true;
+ }
+
+ return math_round_handle(cx, args[0], args.rval());
+}
+
+double
+js::math_sin_impl(MathCache* cache, double x)
+{
+ return cache->lookup(math_sin_uncached, x, MathCache::Sin);
+}
+
+double
+js::math_sin_uncached(double x)
+{
+#ifdef _WIN64
+ // Workaround MSVC bug where sin(-0) is +0 instead of -0 on x64 on
+ // CPUs without FMA3 (pre-Haswell). See bug 1076670.
+ if (IsNegativeZero(x))
+ return -0.0;
+#endif
+ return sin(x);
+}
+
+bool
+js::math_sin_handle(JSContext* cx, HandleValue val, MutableHandleValue res)
+{
+ double in;
+ if (!ToNumber(cx, val, &in))
+ return false;
+
+ MathCache* mathCache = cx->caches.getMathCache(cx);
+ if (!mathCache)
+ return false;
+
+ double out = math_sin_impl(mathCache, in);
+ res.setDouble(out);
+ return true;
+}
+
+bool
+js::math_sin(JSContext* cx, unsigned argc, Value* vp)
+{
+ CallArgs args = CallArgsFromVp(argc, vp);
+
+ if (args.length() == 0) {
+ args.rval().setNaN();
+ return true;
+ }
+
+ return math_sin_handle(cx, args[0], args.rval());
+}
+
+void
+js::math_sincos_uncached(double x, double *sin, double *cos)
+{
+#if defined(HAVE_SINCOS)
+ sincos(x, sin, cos);
+#elif defined(HAVE___SINCOS)
+ __sincos(x, sin, cos);
+#else
+ *sin = js::math_sin_uncached(x);
+ *cos = js::math_cos_uncached(x);
+#endif
+}
+
+void
+js::math_sincos_impl(MathCache* mathCache, double x, double *sin, double *cos)
+{
+ unsigned indexSin;
+ unsigned indexCos;
+ bool hasSin = mathCache->isCached(x, MathCache::Sin, sin, &indexSin);
+ bool hasCos = mathCache->isCached(x, MathCache::Cos, cos, &indexCos);
+ if (!(hasSin || hasCos)) {
+ js::math_sincos_uncached(x, sin, cos);
+ mathCache->store(MathCache::Sin, x, *sin, indexSin);
+ mathCache->store(MathCache::Cos, x, *cos, indexCos);
+ return;
+ }
+
+ if (!hasSin)
+ *sin = js::math_sin_impl(mathCache, x);
+
+ if (!hasCos)
+ *cos = js::math_cos_impl(mathCache, x);
+}
+
+bool
+js::math_sqrt_handle(JSContext* cx, HandleValue number, MutableHandleValue result)
+{
+ double x;
+ if (!ToNumber(cx, number, &x))
+ return false;
+
+ MathCache* mathCache = cx->caches.getMathCache(cx);
+ if (!mathCache)
+ return false;
+
+ double z = mathCache->lookup(sqrt, x, MathCache::Sqrt);
+ result.setDouble(z);
+ return true;
+}
+
+bool
+js::math_sqrt(JSContext* cx, unsigned argc, Value* vp)
+{
+ CallArgs args = CallArgsFromVp(argc, vp);
+
+ if (args.length() == 0) {
+ args.rval().setNaN();
+ return true;
+ }
+
+ return math_sqrt_handle(cx, args[0], args.rval());
+}
+
+double
+js::math_tan_impl(MathCache* cache, double x)
+{
+ return cache->lookup(tan, x, MathCache::Tan);
+}
+
+double
+js::math_tan_uncached(double x)
+{
+ return tan(x);
+}
+
+bool
+js::math_tan(JSContext* cx, unsigned argc, Value* vp)
+{
+ CallArgs args = CallArgsFromVp(argc, vp);
+
+ if (args.length() == 0) {
+ args.rval().setNaN();
+ return true;
+ }
+
+ double x;
+ if (!ToNumber(cx, args[0], &x))
+ return false;
+
+ MathCache* mathCache = cx->caches.getMathCache(cx);
+ if (!mathCache)
+ return false;
+
+ double z = math_tan_impl(mathCache, x);
+ args.rval().setDouble(z);
+ return true;
+}
+
+typedef double (*UnaryMathFunctionType)(MathCache* cache, double);
+
+template <UnaryMathFunctionType F>
+static bool math_function(JSContext* cx, unsigned argc, Value* vp)
+{
+ CallArgs args = CallArgsFromVp(argc, vp);
+ if (args.length() == 0) {
+ args.rval().setNumber(GenericNaN());
+ return true;
+ }
+
+ double x;
+ if (!ToNumber(cx, args[0], &x))
+ return false;
+
+ MathCache* mathCache = cx->caches.getMathCache(cx);
+ if (!mathCache)
+ return false;
+ double z = F(mathCache, x);
+ args.rval().setNumber(z);
+
+ return true;
+}
+
+double
+js::math_log10_impl(MathCache* cache, double x)
+{
+ return cache->lookup(fdlibm::log10, x, MathCache::Log10);
+}
+
+double
+js::math_log10_uncached(double x)
+{
+ return fdlibm::log10(x);
+}
+
+bool
+js::math_log10(JSContext* cx, unsigned argc, Value* vp)
+{
+ return math_function<math_log10_impl>(cx, argc, vp);
+}
+
+double
+js::math_log2_impl(MathCache* cache, double x)
+{
+ return cache->lookup(fdlibm::log2, x, MathCache::Log2);
+}
+
+double
+js::math_log2_uncached(double x)
+{
+ return fdlibm::log2(x);
+}
+
+bool
+js::math_log2(JSContext* cx, unsigned argc, Value* vp)
+{
+ return math_function<math_log2_impl>(cx, argc, vp);
+}
+
+double
+js::math_log1p_impl(MathCache* cache, double x)
+{
+ return cache->lookup(fdlibm::log1p, x, MathCache::Log1p);
+}
+
+double
+js::math_log1p_uncached(double x)
+{
+ return fdlibm::log1p(x);
+}
+
+bool
+js::math_log1p(JSContext* cx, unsigned argc, Value* vp)
+{
+ return math_function<math_log1p_impl>(cx, argc, vp);
+}
+
+double
+js::math_expm1_impl(MathCache* cache, double x)
+{
+ return cache->lookup(fdlibm::expm1, x, MathCache::Expm1);
+}
+
+double
+js::math_expm1_uncached(double x)
+{
+ return fdlibm::expm1(x);
+}
+
+bool
+js::math_expm1(JSContext* cx, unsigned argc, Value* vp)
+{
+ return math_function<math_expm1_impl>(cx, argc, vp);
+}
+
+double
+js::math_cosh_impl(MathCache* cache, double x)
+{
+ return cache->lookup(fdlibm::cosh, x, MathCache::Cosh);
+}
+
+double
+js::math_cosh_uncached(double x)
+{
+ return fdlibm::cosh(x);
+}
+
+bool
+js::math_cosh(JSContext* cx, unsigned argc, Value* vp)
+{
+ return math_function<math_cosh_impl>(cx, argc, vp);
+}
+
+double
+js::math_sinh_impl(MathCache* cache, double x)
+{
+ return cache->lookup(fdlibm::sinh, x, MathCache::Sinh);
+}
+
+double
+js::math_sinh_uncached(double x)
+{
+ return fdlibm::sinh(x);
+}
+
+bool
+js::math_sinh(JSContext* cx, unsigned argc, Value* vp)
+{
+ return math_function<math_sinh_impl>(cx, argc, vp);
+}
+
+double
+js::math_tanh_impl(MathCache* cache, double x)
+{
+ return cache->lookup(fdlibm::tanh, x, MathCache::Tanh);
+}
+
+double
+js::math_tanh_uncached(double x)
+{
+ return fdlibm::tanh(x);
+}
+
+bool
+js::math_tanh(JSContext* cx, unsigned argc, Value* vp)
+{
+ return math_function<math_tanh_impl>(cx, argc, vp);
+}
+
+double
+js::math_acosh_impl(MathCache* cache, double x)
+{
+ return cache->lookup(fdlibm::acosh, x, MathCache::Acosh);
+}
+
+double
+js::math_acosh_uncached(double x)
+{
+ return fdlibm::acosh(x);
+}
+
+bool
+js::math_acosh(JSContext* cx, unsigned argc, Value* vp)
+{
+ return math_function<math_acosh_impl>(cx, argc, vp);
+}
+
+double
+js::math_asinh_impl(MathCache* cache, double x)
+{
+ return cache->lookup(fdlibm::asinh, x, MathCache::Asinh);
+}
+
+double
+js::math_asinh_uncached(double x)
+{
+ return fdlibm::asinh(x);
+}
+
+bool
+js::math_asinh(JSContext* cx, unsigned argc, Value* vp)
+{
+ return math_function<math_asinh_impl>(cx, argc, vp);
+}
+
+double
+js::math_atanh_impl(MathCache* cache, double x)
+{
+ return cache->lookup(fdlibm::atanh, x, MathCache::Atanh);
+}
+
+double
+js::math_atanh_uncached(double x)
+{
+ return fdlibm::atanh(x);
+}
+
+bool
+js::math_atanh(JSContext* cx, unsigned argc, Value* vp)
+{
+ return math_function<math_atanh_impl>(cx, argc, vp);
+}
+
+/* Consistency wrapper for platform deviations in hypot() */
+double
+js::ecmaHypot(double x, double y)
+{
+ return fdlibm::hypot(x, y);
+}
+
+static inline
+void
+hypot_step(double& scale, double& sumsq, double x)
+{
+ double xabs = mozilla::Abs(x);
+ if (scale < xabs) {
+ sumsq = 1 + sumsq * (scale / xabs) * (scale / xabs);
+ scale = xabs;
+ } else if (scale != 0) {
+ sumsq += (xabs / scale) * (xabs / scale);
+ }
+}
+
+double
+js::hypot4(double x, double y, double z, double w)
+{
+ /* Check for infinity or NaNs so that we can return immediatelly.
+ * Does not need to be WIN_XP specific as ecmaHypot
+ */
+ if (mozilla::IsInfinite(x) || mozilla::IsInfinite(y) ||
+ mozilla::IsInfinite(z) || mozilla::IsInfinite(w))
+ return mozilla::PositiveInfinity<double>();
+
+ if (mozilla::IsNaN(x) || mozilla::IsNaN(y) || mozilla::IsNaN(z) ||
+ mozilla::IsNaN(w))
+ return GenericNaN();
+
+ double scale = 0;
+ double sumsq = 1;
+
+ hypot_step(scale, sumsq, x);
+ hypot_step(scale, sumsq, y);
+ hypot_step(scale, sumsq, z);
+ hypot_step(scale, sumsq, w);
+
+ return scale * sqrt(sumsq);
+}
+
+double
+js::hypot3(double x, double y, double z)
+{
+ return hypot4(x, y, z, 0.0);
+}
+
+bool
+js::math_hypot(JSContext* cx, unsigned argc, Value* vp)
+{
+ CallArgs args = CallArgsFromVp(argc, vp);
+ return math_hypot_handle(cx, args, args.rval());
+}
+
+bool
+js::math_hypot_handle(JSContext* cx, HandleValueArray args, MutableHandleValue res)
+{
+ // IonMonkey calls the system hypot function directly if two arguments are
+ // given. Do that here as well to get the same results.
+ if (args.length() == 2) {
+ double x, y;
+ if (!ToNumber(cx, args[0], &x))
+ return false;
+ if (!ToNumber(cx, args[1], &y))
+ return false;
+
+ double result = ecmaHypot(x, y);
+ res.setNumber(result);
+ return true;
+ }
+
+ bool isInfinite = false;
+ bool isNaN = false;
+
+ double scale = 0;
+ double sumsq = 1;
+
+ for (unsigned i = 0; i < args.length(); i++) {
+ double x;
+ if (!ToNumber(cx, args[i], &x))
+ return false;
+
+ isInfinite |= mozilla::IsInfinite(x);
+ isNaN |= mozilla::IsNaN(x);
+ if (isInfinite || isNaN)
+ continue;
+
+ hypot_step(scale, sumsq, x);
+ }
+
+ double result = isInfinite ? PositiveInfinity<double>() :
+ isNaN ? GenericNaN() :
+ scale * sqrt(sumsq);
+ res.setNumber(result);
+ return true;
+}
+
+double
+js::math_trunc_impl(MathCache* cache, double x)
+{
+ return cache->lookup(fdlibm::trunc, x, MathCache::Trunc);
+}
+
+double
+js::math_trunc_uncached(double x)
+{
+ return fdlibm::trunc(x);
+}
+
+bool
+js::math_trunc(JSContext* cx, unsigned argc, Value* vp)
+{
+ return math_function<math_trunc_impl>(cx, argc, vp);
+}
+
+static double sign(double x)
+{
+ if (mozilla::IsNaN(x))
+ return GenericNaN();
+
+ return x == 0 ? x : x < 0 ? -1 : 1;
+}
+
+double
+js::math_sign_impl(MathCache* cache, double x)
+{
+ return cache->lookup(sign, x, MathCache::Sign);
+}
+
+double
+js::math_sign_uncached(double x)
+{
+ return sign(x);
+}
+
+bool
+js::math_sign(JSContext* cx, unsigned argc, Value* vp)
+{
+ return math_function<math_sign_impl>(cx, argc, vp);
+}
+
+double
+js::math_cbrt_impl(MathCache* cache, double x)
+{
+ return cache->lookup(fdlibm::cbrt, x, MathCache::Cbrt);
+}
+
+double
+js::math_cbrt_uncached(double x)
+{
+ return fdlibm::cbrt(x);
+}
+
+bool
+js::math_cbrt(JSContext* cx, unsigned argc, Value* vp)
+{
+ return math_function<math_cbrt_impl>(cx, argc, vp);
+}
+
+#if JS_HAS_TOSOURCE
+static bool
+math_toSource(JSContext* cx, unsigned argc, Value* vp)
+{
+ CallArgs args = CallArgsFromVp(argc, vp);
+ args.rval().setString(cx->names().Math);
+ return true;
+}
+#endif
+
+static const JSFunctionSpec math_static_methods[] = {
+#if JS_HAS_TOSOURCE
+ JS_FN(js_toSource_str, math_toSource, 0, 0),
+#endif
+ JS_INLINABLE_FN("abs", math_abs, 1, 0, MathAbs),
+ JS_INLINABLE_FN("acos", math_acos, 1, 0, MathACos),
+ JS_INLINABLE_FN("asin", math_asin, 1, 0, MathASin),
+ JS_INLINABLE_FN("atan", math_atan, 1, 0, MathATan),
+ JS_INLINABLE_FN("atan2", math_atan2, 2, 0, MathATan2),
+ JS_INLINABLE_FN("ceil", math_ceil, 1, 0, MathCeil),
+ JS_INLINABLE_FN("clz32", math_clz32, 1, 0, MathClz32),
+ JS_INLINABLE_FN("cos", math_cos, 1, 0, MathCos),
+ JS_INLINABLE_FN("exp", math_exp, 1, 0, MathExp),
+ JS_INLINABLE_FN("floor", math_floor, 1, 0, MathFloor),
+ JS_INLINABLE_FN("imul", math_imul, 2, 0, MathImul),
+ JS_INLINABLE_FN("fround", math_fround, 1, 0, MathFRound),
+ JS_INLINABLE_FN("log", math_log, 1, 0, MathLog),
+ JS_INLINABLE_FN("max", math_max, 2, 0, MathMax),
+ JS_INLINABLE_FN("min", math_min, 2, 0, MathMin),
+ JS_INLINABLE_FN("pow", math_pow, 2, 0, MathPow),
+ JS_INLINABLE_FN("random", math_random, 0, 0, MathRandom),
+ JS_INLINABLE_FN("round", math_round, 1, 0, MathRound),
+ JS_INLINABLE_FN("sin", math_sin, 1, 0, MathSin),
+ JS_INLINABLE_FN("sqrt", math_sqrt, 1, 0, MathSqrt),
+ JS_INLINABLE_FN("tan", math_tan, 1, 0, MathTan),
+ JS_INLINABLE_FN("log10", math_log10, 1, 0, MathLog10),
+ JS_INLINABLE_FN("log2", math_log2, 1, 0, MathLog2),
+ JS_INLINABLE_FN("log1p", math_log1p, 1, 0, MathLog1P),
+ JS_INLINABLE_FN("expm1", math_expm1, 1, 0, MathExpM1),
+ JS_INLINABLE_FN("cosh", math_cosh, 1, 0, MathCosH),
+ JS_INLINABLE_FN("sinh", math_sinh, 1, 0, MathSinH),
+ JS_INLINABLE_FN("tanh", math_tanh, 1, 0, MathTanH),
+ JS_INLINABLE_FN("acosh", math_acosh, 1, 0, MathACosH),
+ JS_INLINABLE_FN("asinh", math_asinh, 1, 0, MathASinH),
+ JS_INLINABLE_FN("atanh", math_atanh, 1, 0, MathATanH),
+ JS_INLINABLE_FN("hypot", math_hypot, 2, 0, MathHypot),
+ JS_INLINABLE_FN("trunc", math_trunc, 1, 0, MathTrunc),
+ JS_INLINABLE_FN("sign", math_sign, 1, 0, MathSign),
+ JS_INLINABLE_FN("cbrt", math_cbrt, 1, 0, MathCbrt),
+ JS_FS_END
+};
+
+JSObject*
+js::InitMathClass(JSContext* cx, HandleObject obj)
+{
+ RootedObject proto(cx, obj->as<GlobalObject>().getOrCreateObjectPrototype(cx));
+ if (!proto)
+ return nullptr;
+ RootedObject Math(cx, NewObjectWithGivenProto(cx, &MathClass, proto, SingletonObject));
+ if (!Math)
+ return nullptr;
+
+ if (!JS_DefineProperty(cx, obj, js_Math_str, Math, JSPROP_RESOLVING,
+ JS_STUBGETTER, JS_STUBSETTER))
+ {
+ return nullptr;
+ }
+ if (!JS_DefineFunctions(cx, Math, math_static_methods))
+ return nullptr;
+ if (!JS_DefineConstDoubles(cx, Math, math_constants))
+ return nullptr;
+ if (!DefineToStringTag(cx, Math, cx->names().Math))
+ return nullptr;
+
+ obj->as<GlobalObject>().setConstructor(JSProto_Math, ObjectValue(*Math));
+
+ return Math;
+}