diff options
author | Matt A. Tobin <mattatobin@localhost.localdomain> | 2018-02-02 04:16:08 -0500 |
---|---|---|
committer | Matt A. Tobin <mattatobin@localhost.localdomain> | 2018-02-02 04:16:08 -0500 |
commit | 5f8de423f190bbb79a62f804151bc24824fa32d8 (patch) | |
tree | 10027f336435511475e392454359edea8e25895d /js/src/jsmath.cpp | |
parent | 49ee0794b5d912db1f95dce6eb52d781dc210db5 (diff) | |
download | uxp-5f8de423f190bbb79a62f804151bc24824fa32d8.tar.gz |
Add m-esr52 at 52.6.0
Diffstat (limited to 'js/src/jsmath.cpp')
-rw-r--r-- | js/src/jsmath.cpp | 1442 |
1 files changed, 1442 insertions, 0 deletions
diff --git a/js/src/jsmath.cpp b/js/src/jsmath.cpp new file mode 100644 index 0000000000..08fbe048c0 --- /dev/null +++ b/js/src/jsmath.cpp @@ -0,0 +1,1442 @@ +/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*- + * vim: set ts=8 sts=4 et sw=4 tw=99: + * This Source Code Form is subject to the terms of the Mozilla Public + * License, v. 2.0. If a copy of the MPL was not distributed with this + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ + +/* + * JS math package. + */ + +#include "jsmath.h" + +#include "mozilla/FloatingPoint.h" +#include "mozilla/MathAlgorithms.h" +#include "mozilla/MemoryReporting.h" +#include "mozilla/Unused.h" + +#include <algorithm> // for std::max +#include <fcntl.h> + +#ifdef XP_UNIX +# include <unistd.h> +#endif + +#include "fdlibm.h" + +#ifdef XP_WIN +# include "jswin.h" +#endif + +#include "jsapi.h" +#include "jsatom.h" +#include "jscntxt.h" +#include "jscompartment.h" +#include "jslibmath.h" +#include "jstypes.h" + +#include "jit/InlinableNatives.h" +#include "js/Class.h" +#include "vm/Time.h" + +#include "jsobjinlines.h" + +#if defined(XP_WIN) +// #define needed to link in RtlGenRandom(), a.k.a. SystemFunction036. See the +// "Community Additions" comment on MSDN here: +// https://msdn.microsoft.com/en-us/library/windows/desktop/aa387694.aspx +# define SystemFunction036 NTAPI SystemFunction036 +# include <ntsecapi.h> +# undef SystemFunction036 +#endif + +#if defined(ANDROID) || defined(XP_DARWIN) || defined(__DragonFly__) || \ + defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__) +# include <stdlib.h> +# define HAVE_ARC4RANDOM +#endif + +#if defined(__linux__) +# include <linux/random.h> // For GRND_NONBLOCK. +# include <sys/syscall.h> // For SYS_getrandom. + +// Older glibc versions don't define SYS_getrandom, so we define it here if +// it's not available. See bug 995069. +# if defined(__x86_64__) +# define GETRANDOM_NR 318 +# elif defined(__i386__) +# define GETRANDOM_NR 355 +# elif defined(__arm__) +# define GETRANDOM_NR 384 +# endif + +# if defined(SYS_getrandom) +// We have SYS_getrandom. Use it to check GETRANDOM_NR. Only do this if we set +// GETRANDOM_NR so tier 3 platforms with recent glibc are not forced to define +// it for no good reason. +# if defined(GETRANDOM_NR) +static_assert(GETRANDOM_NR == SYS_getrandom, + "GETRANDOM_NR should match the actual SYS_getrandom value"); +# endif +# else +# define SYS_getrandom GETRANDOM_NR +# endif + +# if defined(GRND_NONBLOCK) +static_assert(GRND_NONBLOCK == 1, "If GRND_NONBLOCK is not 1 the #define below is wrong"); +# else +# define GRND_NONBLOCK 1 +# endif + +#endif // defined(__linux__) + +using namespace js; + +using mozilla::Abs; +using mozilla::NumberEqualsInt32; +using mozilla::NumberIsInt32; +using mozilla::ExponentComponent; +using mozilla::FloatingPoint; +using mozilla::IsFinite; +using mozilla::IsInfinite; +using mozilla::IsNaN; +using mozilla::IsNegative; +using mozilla::IsNegativeZero; +using mozilla::PositiveInfinity; +using mozilla::NegativeInfinity; +using JS::ToNumber; +using JS::GenericNaN; + +static const JSConstDoubleSpec math_constants[] = { + {"E" , M_E }, + {"LOG2E" , M_LOG2E }, + {"LOG10E" , M_LOG10E }, + {"LN2" , M_LN2 }, + {"LN10" , M_LN10 }, + {"PI" , M_PI }, + {"SQRT2" , M_SQRT2 }, + {"SQRT1_2", M_SQRT1_2 }, + {0,0} +}; + +MathCache::MathCache() { + memset(table, 0, sizeof(table)); + + /* See comments in lookup(). */ + MOZ_ASSERT(IsNegativeZero(-0.0)); + MOZ_ASSERT(!IsNegativeZero(+0.0)); + MOZ_ASSERT(hash(-0.0, MathCache::Sin) != hash(+0.0, MathCache::Sin)); +} + +size_t +MathCache::sizeOfIncludingThis(mozilla::MallocSizeOf mallocSizeOf) +{ + return mallocSizeOf(this); +} + +const Class js::MathClass = { + js_Math_str, + JSCLASS_HAS_CACHED_PROTO(JSProto_Math) +}; + +bool +js::math_abs_handle(JSContext* cx, js::HandleValue v, js::MutableHandleValue r) +{ + double x; + if (!ToNumber(cx, v, &x)) + return false; + + double z = Abs(x); + r.setNumber(z); + + return true; +} + +bool +js::math_abs(JSContext* cx, unsigned argc, Value* vp) +{ + CallArgs args = CallArgsFromVp(argc, vp); + + if (args.length() == 0) { + args.rval().setNaN(); + return true; + } + + return math_abs_handle(cx, args[0], args.rval()); +} + +double +js::math_acos_impl(MathCache* cache, double x) +{ + return cache->lookup(fdlibm::acos, x, MathCache::Acos); +} + +double +js::math_acos_uncached(double x) +{ + return fdlibm::acos(x); +} + +bool +js::math_acos(JSContext* cx, unsigned argc, Value* vp) +{ + CallArgs args = CallArgsFromVp(argc, vp); + + if (args.length() == 0) { + args.rval().setNaN(); + return true; + } + + double x; + if (!ToNumber(cx, args[0], &x)) + return false; + + MathCache* mathCache = cx->caches.getMathCache(cx); + if (!mathCache) + return false; + + double z = math_acos_impl(mathCache, x); + args.rval().setDouble(z); + return true; +} + +double +js::math_asin_impl(MathCache* cache, double x) +{ + return cache->lookup(fdlibm::asin, x, MathCache::Asin); +} + +double +js::math_asin_uncached(double x) +{ + return fdlibm::asin(x); +} + +bool +js::math_asin(JSContext* cx, unsigned argc, Value* vp) +{ + CallArgs args = CallArgsFromVp(argc, vp); + + if (args.length() == 0) { + args.rval().setNaN(); + return true; + } + + double x; + if (!ToNumber(cx, args[0], &x)) + return false; + + MathCache* mathCache = cx->caches.getMathCache(cx); + if (!mathCache) + return false; + + double z = math_asin_impl(mathCache, x); + args.rval().setDouble(z); + return true; +} + +double +js::math_atan_impl(MathCache* cache, double x) +{ + return cache->lookup(fdlibm::atan, x, MathCache::Atan); +} + +double +js::math_atan_uncached(double x) +{ + return fdlibm::atan(x); +} + +bool +js::math_atan(JSContext* cx, unsigned argc, Value* vp) +{ + CallArgs args = CallArgsFromVp(argc, vp); + + if (args.length() == 0) { + args.rval().setNaN(); + return true; + } + + double x; + if (!ToNumber(cx, args[0], &x)) + return false; + + MathCache* mathCache = cx->caches.getMathCache(cx); + if (!mathCache) + return false; + + double z = math_atan_impl(mathCache, x); + args.rval().setDouble(z); + return true; +} + +double +js::ecmaAtan2(double y, double x) +{ + return fdlibm::atan2(y, x); +} + +bool +js::math_atan2_handle(JSContext* cx, HandleValue y, HandleValue x, MutableHandleValue res) +{ + double dy; + if (!ToNumber(cx, y, &dy)) + return false; + + double dx; + if (!ToNumber(cx, x, &dx)) + return false; + + double z = ecmaAtan2(dy, dx); + res.setDouble(z); + return true; +} + +bool +js::math_atan2(JSContext* cx, unsigned argc, Value* vp) +{ + CallArgs args = CallArgsFromVp(argc, vp); + + return math_atan2_handle(cx, args.get(0), args.get(1), args.rval()); +} + +double +js::math_ceil_impl(double x) +{ + return fdlibm::ceil(x); +} + +bool +js::math_ceil_handle(JSContext* cx, HandleValue v, MutableHandleValue res) +{ + double d; + if(!ToNumber(cx, v, &d)) + return false; + + double result = math_ceil_impl(d); + res.setNumber(result); + return true; +} + +bool +js::math_ceil(JSContext* cx, unsigned argc, Value* vp) +{ + CallArgs args = CallArgsFromVp(argc, vp); + + if (args.length() == 0) { + args.rval().setNaN(); + return true; + } + + return math_ceil_handle(cx, args[0], args.rval()); +} + +bool +js::math_clz32(JSContext* cx, unsigned argc, Value* vp) +{ + CallArgs args = CallArgsFromVp(argc, vp); + + if (args.length() == 0) { + args.rval().setInt32(32); + return true; + } + + uint32_t n; + if (!ToUint32(cx, args[0], &n)) + return false; + + if (n == 0) { + args.rval().setInt32(32); + return true; + } + + args.rval().setInt32(mozilla::CountLeadingZeroes32(n)); + return true; +} + +double +js::math_cos_impl(MathCache* cache, double x) +{ + return cache->lookup(cos, x, MathCache::Cos); +} + +double +js::math_cos_uncached(double x) +{ + return cos(x); +} + +bool +js::math_cos(JSContext* cx, unsigned argc, Value* vp) +{ + CallArgs args = CallArgsFromVp(argc, vp); + + if (args.length() == 0) { + args.rval().setNaN(); + return true; + } + + double x; + if (!ToNumber(cx, args[0], &x)) + return false; + + MathCache* mathCache = cx->caches.getMathCache(cx); + if (!mathCache) + return false; + + double z = math_cos_impl(mathCache, x); + args.rval().setDouble(z); + return true; +} + +double +js::math_exp_impl(MathCache* cache, double x) +{ + return cache->lookup(fdlibm::exp, x, MathCache::Exp); +} + +double +js::math_exp_uncached(double x) +{ + return fdlibm::exp(x); +} + +bool +js::math_exp(JSContext* cx, unsigned argc, Value* vp) +{ + CallArgs args = CallArgsFromVp(argc, vp); + + if (args.length() == 0) { + args.rval().setNaN(); + return true; + } + + double x; + if (!ToNumber(cx, args[0], &x)) + return false; + + MathCache* mathCache = cx->caches.getMathCache(cx); + if (!mathCache) + return false; + + double z = math_exp_impl(mathCache, x); + args.rval().setNumber(z); + return true; +} + +double +js::math_floor_impl(double x) +{ + return fdlibm::floor(x); +} + +bool +js::math_floor_handle(JSContext* cx, HandleValue v, MutableHandleValue r) +{ + double d; + if (!ToNumber(cx, v, &d)) + return false; + + double z = math_floor_impl(d); + r.setNumber(z); + + return true; +} + +bool +js::math_floor(JSContext* cx, unsigned argc, Value* vp) +{ + CallArgs args = CallArgsFromVp(argc, vp); + + if (args.length() == 0) { + args.rval().setNaN(); + return true; + } + + return math_floor_handle(cx, args[0], args.rval()); +} + +bool +js::math_imul_handle(JSContext* cx, HandleValue lhs, HandleValue rhs, MutableHandleValue res) +{ + uint32_t a = 0, b = 0; + if (!lhs.isUndefined() && !ToUint32(cx, lhs, &a)) + return false; + if (!rhs.isUndefined() && !ToUint32(cx, rhs, &b)) + return false; + + uint32_t product = a * b; + res.setInt32(product > INT32_MAX + ? int32_t(INT32_MIN + (product - INT32_MAX - 1)) + : int32_t(product)); + return true; +} + +bool +js::math_imul(JSContext* cx, unsigned argc, Value* vp) +{ + CallArgs args = CallArgsFromVp(argc, vp); + + return math_imul_handle(cx, args.get(0), args.get(1), args.rval()); +} + +// Implements Math.fround (20.2.2.16) up to step 3 +bool +js::RoundFloat32(JSContext* cx, HandleValue v, float* out) +{ + double d; + bool success = ToNumber(cx, v, &d); + *out = static_cast<float>(d); + return success; +} + +bool +js::RoundFloat32(JSContext* cx, HandleValue arg, MutableHandleValue res) +{ + float f; + if (!RoundFloat32(cx, arg, &f)) + return false; + + res.setDouble(static_cast<double>(f)); + return true; +} + +bool +js::math_fround(JSContext* cx, unsigned argc, Value* vp) +{ + CallArgs args = CallArgsFromVp(argc, vp); + + if (args.length() == 0) { + args.rval().setNaN(); + return true; + } + + return RoundFloat32(cx, args[0], args.rval()); +} + +double +js::math_log_impl(MathCache* cache, double x) +{ + return cache->lookup(math_log_uncached, x, MathCache::Log); +} + +double +js::math_log_uncached(double x) +{ + return fdlibm::log(x); +} + +bool +js::math_log_handle(JSContext* cx, HandleValue val, MutableHandleValue res) +{ + double in; + if (!ToNumber(cx, val, &in)) + return false; + + MathCache* mathCache = cx->caches.getMathCache(cx); + if (!mathCache) + return false; + + double out = math_log_impl(mathCache, in); + res.setNumber(out); + return true; +} + +bool +js::math_log(JSContext* cx, unsigned argc, Value* vp) +{ + CallArgs args = CallArgsFromVp(argc, vp); + + if (args.length() == 0) { + args.rval().setNaN(); + return true; + } + + return math_log_handle(cx, args[0], args.rval()); +} + +double +js::math_max_impl(double x, double y) +{ + // Math.max(num, NaN) => NaN, Math.max(-0, +0) => +0 + if (x > y || IsNaN(x) || (x == y && IsNegative(y))) + return x; + return y; +} + +bool +js::math_max(JSContext* cx, unsigned argc, Value* vp) +{ + CallArgs args = CallArgsFromVp(argc, vp); + + double maxval = NegativeInfinity<double>(); + for (unsigned i = 0; i < args.length(); i++) { + double x; + if (!ToNumber(cx, args[i], &x)) + return false; + maxval = math_max_impl(x, maxval); + } + args.rval().setNumber(maxval); + return true; +} + +double +js::math_min_impl(double x, double y) +{ + // Math.min(num, NaN) => NaN, Math.min(-0, +0) => -0 + if (x < y || IsNaN(x) || (x == y && IsNegativeZero(x))) + return x; + return y; +} + +bool +js::math_min(JSContext* cx, unsigned argc, Value* vp) +{ + CallArgs args = CallArgsFromVp(argc, vp); + + double minval = PositiveInfinity<double>(); + for (unsigned i = 0; i < args.length(); i++) { + double x; + if (!ToNumber(cx, args[i], &x)) + return false; + minval = math_min_impl(x, minval); + } + args.rval().setNumber(minval); + return true; +} + +bool +js::minmax_impl(JSContext* cx, bool max, HandleValue a, HandleValue b, MutableHandleValue res) +{ + double x, y; + + if (!ToNumber(cx, a, &x)) + return false; + if (!ToNumber(cx, b, &y)) + return false; + + if (max) + res.setNumber(math_max_impl(x, y)); + else + res.setNumber(math_min_impl(x, y)); + + return true; +} + +double +js::powi(double x, int y) +{ + unsigned n = (y < 0) ? -y : y; + double m = x; + double p = 1; + while (true) { + if ((n & 1) != 0) p *= m; + n >>= 1; + if (n == 0) { + if (y < 0) { + // Unfortunately, we have to be careful when p has reached + // infinity in the computation, because sometimes the higher + // internal precision in the pow() implementation would have + // given us a finite p. This happens very rarely. + + double result = 1.0 / p; + return (result == 0 && IsInfinite(p)) + ? pow(x, static_cast<double>(y)) // Avoid pow(double, int). + : result; + } + + return p; + } + m *= m; + } +} + +double +js::ecmaPow(double x, double y) +{ + /* + * Use powi if the exponent is an integer-valued double. We don't have to + * check for NaN since a comparison with NaN is always false. + */ + int32_t yi; + if (NumberEqualsInt32(y, &yi)) + return powi(x, yi); + + /* + * Because C99 and ECMA specify different behavior for pow(), + * we need to wrap the libm call to make it ECMA compliant. + */ + if (!IsFinite(y) && (x == 1.0 || x == -1.0)) + return GenericNaN(); + + /* pow(x, +-0) is always 1, even for x = NaN (MSVC gets this wrong). */ + if (y == 0) + return 1; + + /* + * Special case for square roots. Note that pow(x, 0.5) != sqrt(x) + * when x = -0.0, so we have to guard for this. + */ + if (IsFinite(x) && x != 0.0) { + if (y == 0.5) + return sqrt(x); + if (y == -0.5) + return 1.0 / sqrt(x); + } + return pow(x, y); +} + +bool +js::math_pow_handle(JSContext* cx, HandleValue base, HandleValue power, MutableHandleValue result) +{ + double x; + if (!ToNumber(cx, base, &x)) + return false; + + double y; + if (!ToNumber(cx, power, &y)) + return false; + + double z = ecmaPow(x, y); + result.setNumber(z); + return true; +} + +bool +js::math_pow(JSContext* cx, unsigned argc, Value* vp) +{ + CallArgs args = CallArgsFromVp(argc, vp); + + return math_pow_handle(cx, args.get(0), args.get(1), args.rval()); +} + +uint64_t +js::GenerateRandomSeed() +{ + uint64_t seed = 0; + +#if defined(XP_WIN) + MOZ_ALWAYS_TRUE(RtlGenRandom(&seed, sizeof(seed))); +#elif defined(HAVE_ARC4RANDOM) + seed = (static_cast<uint64_t>(arc4random()) << 32) | arc4random(); +#elif defined(XP_UNIX) + bool done = false; +# if defined(__linux__) + // Try the relatively new getrandom syscall first. It's the preferred way + // on Linux as /dev/urandom may not work inside chroots and is harder to + // sandbox (see bug 995069). + int ret = syscall(SYS_getrandom, &seed, sizeof(seed), GRND_NONBLOCK); + done = (ret == sizeof(seed)); +# endif + if (!done) { + int fd = open("/dev/urandom", O_RDONLY); + if (fd >= 0) { + mozilla::Unused << read(fd, static_cast<void*>(&seed), sizeof(seed)); + close(fd); + } + } +#else +# error "Platform needs to implement GenerateRandomSeed()" +#endif + + // Also mix in PRMJ_Now() in case we couldn't read random bits from the OS. + uint64_t timestamp = PRMJ_Now(); + return seed ^ timestamp ^ (timestamp << 32); +} + +void +js::GenerateXorShift128PlusSeed(mozilla::Array<uint64_t, 2>& seed) +{ + // XorShift128PlusRNG must be initialized with a non-zero seed. + do { + seed[0] = GenerateRandomSeed(); + seed[1] = GenerateRandomSeed(); + } while (seed[0] == 0 && seed[1] == 0); +} + +void +JSCompartment::ensureRandomNumberGenerator() +{ + if (randomNumberGenerator.isNothing()) { + mozilla::Array<uint64_t, 2> seed; + GenerateXorShift128PlusSeed(seed); + randomNumberGenerator.emplace(seed[0], seed[1]); + } +} + +double +js::math_random_impl(JSContext* cx) +{ + JSCompartment* comp = cx->compartment(); + comp->ensureRandomNumberGenerator(); + return comp->randomNumberGenerator.ref().nextDouble(); +} + +bool +js::math_random(JSContext* cx, unsigned argc, Value* vp) +{ + CallArgs args = CallArgsFromVp(argc, vp); + args.rval().setNumber(math_random_impl(cx)); + return true; +} + +bool +js::math_round_handle(JSContext* cx, HandleValue arg, MutableHandleValue res) +{ + double d; + if (!ToNumber(cx, arg, &d)) + return false; + + d = math_round_impl(d); + res.setNumber(d); + return true; +} + +template<typename T> +T +js::GetBiggestNumberLessThan(T x) +{ + MOZ_ASSERT(!IsNegative(x)); + MOZ_ASSERT(IsFinite(x)); + typedef typename mozilla::FloatingPoint<T>::Bits Bits; + Bits bits = mozilla::BitwiseCast<Bits>(x); + MOZ_ASSERT(bits > 0, "will underflow"); + return mozilla::BitwiseCast<T>(bits - 1); +} + +template double js::GetBiggestNumberLessThan<>(double x); +template float js::GetBiggestNumberLessThan<>(float x); + +double +js::math_round_impl(double x) +{ + int32_t ignored; + if (NumberIsInt32(x, &ignored)) + return x; + + /* Some numbers are so big that adding 0.5 would give the wrong number. */ + if (ExponentComponent(x) >= int_fast16_t(FloatingPoint<double>::kExponentShift)) + return x; + + double add = (x >= 0) ? GetBiggestNumberLessThan(0.5) : 0.5; + return js_copysign(fdlibm::floor(x + add), x); +} + +float +js::math_roundf_impl(float x) +{ + int32_t ignored; + if (NumberIsInt32(x, &ignored)) + return x; + + /* Some numbers are so big that adding 0.5 would give the wrong number. */ + if (ExponentComponent(x) >= int_fast16_t(FloatingPoint<float>::kExponentShift)) + return x; + + float add = (x >= 0) ? GetBiggestNumberLessThan(0.5f) : 0.5f; + return js_copysign(fdlibm::floorf(x + add), x); +} + +bool /* ES5 15.8.2.15. */ +js::math_round(JSContext* cx, unsigned argc, Value* vp) +{ + CallArgs args = CallArgsFromVp(argc, vp); + + if (args.length() == 0) { + args.rval().setNaN(); + return true; + } + + return math_round_handle(cx, args[0], args.rval()); +} + +double +js::math_sin_impl(MathCache* cache, double x) +{ + return cache->lookup(math_sin_uncached, x, MathCache::Sin); +} + +double +js::math_sin_uncached(double x) +{ +#ifdef _WIN64 + // Workaround MSVC bug where sin(-0) is +0 instead of -0 on x64 on + // CPUs without FMA3 (pre-Haswell). See bug 1076670. + if (IsNegativeZero(x)) + return -0.0; +#endif + return sin(x); +} + +bool +js::math_sin_handle(JSContext* cx, HandleValue val, MutableHandleValue res) +{ + double in; + if (!ToNumber(cx, val, &in)) + return false; + + MathCache* mathCache = cx->caches.getMathCache(cx); + if (!mathCache) + return false; + + double out = math_sin_impl(mathCache, in); + res.setDouble(out); + return true; +} + +bool +js::math_sin(JSContext* cx, unsigned argc, Value* vp) +{ + CallArgs args = CallArgsFromVp(argc, vp); + + if (args.length() == 0) { + args.rval().setNaN(); + return true; + } + + return math_sin_handle(cx, args[0], args.rval()); +} + +void +js::math_sincos_uncached(double x, double *sin, double *cos) +{ +#if defined(HAVE_SINCOS) + sincos(x, sin, cos); +#elif defined(HAVE___SINCOS) + __sincos(x, sin, cos); +#else + *sin = js::math_sin_uncached(x); + *cos = js::math_cos_uncached(x); +#endif +} + +void +js::math_sincos_impl(MathCache* mathCache, double x, double *sin, double *cos) +{ + unsigned indexSin; + unsigned indexCos; + bool hasSin = mathCache->isCached(x, MathCache::Sin, sin, &indexSin); + bool hasCos = mathCache->isCached(x, MathCache::Cos, cos, &indexCos); + if (!(hasSin || hasCos)) { + js::math_sincos_uncached(x, sin, cos); + mathCache->store(MathCache::Sin, x, *sin, indexSin); + mathCache->store(MathCache::Cos, x, *cos, indexCos); + return; + } + + if (!hasSin) + *sin = js::math_sin_impl(mathCache, x); + + if (!hasCos) + *cos = js::math_cos_impl(mathCache, x); +} + +bool +js::math_sqrt_handle(JSContext* cx, HandleValue number, MutableHandleValue result) +{ + double x; + if (!ToNumber(cx, number, &x)) + return false; + + MathCache* mathCache = cx->caches.getMathCache(cx); + if (!mathCache) + return false; + + double z = mathCache->lookup(sqrt, x, MathCache::Sqrt); + result.setDouble(z); + return true; +} + +bool +js::math_sqrt(JSContext* cx, unsigned argc, Value* vp) +{ + CallArgs args = CallArgsFromVp(argc, vp); + + if (args.length() == 0) { + args.rval().setNaN(); + return true; + } + + return math_sqrt_handle(cx, args[0], args.rval()); +} + +double +js::math_tan_impl(MathCache* cache, double x) +{ + return cache->lookup(tan, x, MathCache::Tan); +} + +double +js::math_tan_uncached(double x) +{ + return tan(x); +} + +bool +js::math_tan(JSContext* cx, unsigned argc, Value* vp) +{ + CallArgs args = CallArgsFromVp(argc, vp); + + if (args.length() == 0) { + args.rval().setNaN(); + return true; + } + + double x; + if (!ToNumber(cx, args[0], &x)) + return false; + + MathCache* mathCache = cx->caches.getMathCache(cx); + if (!mathCache) + return false; + + double z = math_tan_impl(mathCache, x); + args.rval().setDouble(z); + return true; +} + +typedef double (*UnaryMathFunctionType)(MathCache* cache, double); + +template <UnaryMathFunctionType F> +static bool math_function(JSContext* cx, unsigned argc, Value* vp) +{ + CallArgs args = CallArgsFromVp(argc, vp); + if (args.length() == 0) { + args.rval().setNumber(GenericNaN()); + return true; + } + + double x; + if (!ToNumber(cx, args[0], &x)) + return false; + + MathCache* mathCache = cx->caches.getMathCache(cx); + if (!mathCache) + return false; + double z = F(mathCache, x); + args.rval().setNumber(z); + + return true; +} + +double +js::math_log10_impl(MathCache* cache, double x) +{ + return cache->lookup(fdlibm::log10, x, MathCache::Log10); +} + +double +js::math_log10_uncached(double x) +{ + return fdlibm::log10(x); +} + +bool +js::math_log10(JSContext* cx, unsigned argc, Value* vp) +{ + return math_function<math_log10_impl>(cx, argc, vp); +} + +double +js::math_log2_impl(MathCache* cache, double x) +{ + return cache->lookup(fdlibm::log2, x, MathCache::Log2); +} + +double +js::math_log2_uncached(double x) +{ + return fdlibm::log2(x); +} + +bool +js::math_log2(JSContext* cx, unsigned argc, Value* vp) +{ + return math_function<math_log2_impl>(cx, argc, vp); +} + +double +js::math_log1p_impl(MathCache* cache, double x) +{ + return cache->lookup(fdlibm::log1p, x, MathCache::Log1p); +} + +double +js::math_log1p_uncached(double x) +{ + return fdlibm::log1p(x); +} + +bool +js::math_log1p(JSContext* cx, unsigned argc, Value* vp) +{ + return math_function<math_log1p_impl>(cx, argc, vp); +} + +double +js::math_expm1_impl(MathCache* cache, double x) +{ + return cache->lookup(fdlibm::expm1, x, MathCache::Expm1); +} + +double +js::math_expm1_uncached(double x) +{ + return fdlibm::expm1(x); +} + +bool +js::math_expm1(JSContext* cx, unsigned argc, Value* vp) +{ + return math_function<math_expm1_impl>(cx, argc, vp); +} + +double +js::math_cosh_impl(MathCache* cache, double x) +{ + return cache->lookup(fdlibm::cosh, x, MathCache::Cosh); +} + +double +js::math_cosh_uncached(double x) +{ + return fdlibm::cosh(x); +} + +bool +js::math_cosh(JSContext* cx, unsigned argc, Value* vp) +{ + return math_function<math_cosh_impl>(cx, argc, vp); +} + +double +js::math_sinh_impl(MathCache* cache, double x) +{ + return cache->lookup(fdlibm::sinh, x, MathCache::Sinh); +} + +double +js::math_sinh_uncached(double x) +{ + return fdlibm::sinh(x); +} + +bool +js::math_sinh(JSContext* cx, unsigned argc, Value* vp) +{ + return math_function<math_sinh_impl>(cx, argc, vp); +} + +double +js::math_tanh_impl(MathCache* cache, double x) +{ + return cache->lookup(fdlibm::tanh, x, MathCache::Tanh); +} + +double +js::math_tanh_uncached(double x) +{ + return fdlibm::tanh(x); +} + +bool +js::math_tanh(JSContext* cx, unsigned argc, Value* vp) +{ + return math_function<math_tanh_impl>(cx, argc, vp); +} + +double +js::math_acosh_impl(MathCache* cache, double x) +{ + return cache->lookup(fdlibm::acosh, x, MathCache::Acosh); +} + +double +js::math_acosh_uncached(double x) +{ + return fdlibm::acosh(x); +} + +bool +js::math_acosh(JSContext* cx, unsigned argc, Value* vp) +{ + return math_function<math_acosh_impl>(cx, argc, vp); +} + +double +js::math_asinh_impl(MathCache* cache, double x) +{ + return cache->lookup(fdlibm::asinh, x, MathCache::Asinh); +} + +double +js::math_asinh_uncached(double x) +{ + return fdlibm::asinh(x); +} + +bool +js::math_asinh(JSContext* cx, unsigned argc, Value* vp) +{ + return math_function<math_asinh_impl>(cx, argc, vp); +} + +double +js::math_atanh_impl(MathCache* cache, double x) +{ + return cache->lookup(fdlibm::atanh, x, MathCache::Atanh); +} + +double +js::math_atanh_uncached(double x) +{ + return fdlibm::atanh(x); +} + +bool +js::math_atanh(JSContext* cx, unsigned argc, Value* vp) +{ + return math_function<math_atanh_impl>(cx, argc, vp); +} + +/* Consistency wrapper for platform deviations in hypot() */ +double +js::ecmaHypot(double x, double y) +{ + return fdlibm::hypot(x, y); +} + +static inline +void +hypot_step(double& scale, double& sumsq, double x) +{ + double xabs = mozilla::Abs(x); + if (scale < xabs) { + sumsq = 1 + sumsq * (scale / xabs) * (scale / xabs); + scale = xabs; + } else if (scale != 0) { + sumsq += (xabs / scale) * (xabs / scale); + } +} + +double +js::hypot4(double x, double y, double z, double w) +{ + /* Check for infinity or NaNs so that we can return immediatelly. + * Does not need to be WIN_XP specific as ecmaHypot + */ + if (mozilla::IsInfinite(x) || mozilla::IsInfinite(y) || + mozilla::IsInfinite(z) || mozilla::IsInfinite(w)) + return mozilla::PositiveInfinity<double>(); + + if (mozilla::IsNaN(x) || mozilla::IsNaN(y) || mozilla::IsNaN(z) || + mozilla::IsNaN(w)) + return GenericNaN(); + + double scale = 0; + double sumsq = 1; + + hypot_step(scale, sumsq, x); + hypot_step(scale, sumsq, y); + hypot_step(scale, sumsq, z); + hypot_step(scale, sumsq, w); + + return scale * sqrt(sumsq); +} + +double +js::hypot3(double x, double y, double z) +{ + return hypot4(x, y, z, 0.0); +} + +bool +js::math_hypot(JSContext* cx, unsigned argc, Value* vp) +{ + CallArgs args = CallArgsFromVp(argc, vp); + return math_hypot_handle(cx, args, args.rval()); +} + +bool +js::math_hypot_handle(JSContext* cx, HandleValueArray args, MutableHandleValue res) +{ + // IonMonkey calls the system hypot function directly if two arguments are + // given. Do that here as well to get the same results. + if (args.length() == 2) { + double x, y; + if (!ToNumber(cx, args[0], &x)) + return false; + if (!ToNumber(cx, args[1], &y)) + return false; + + double result = ecmaHypot(x, y); + res.setNumber(result); + return true; + } + + bool isInfinite = false; + bool isNaN = false; + + double scale = 0; + double sumsq = 1; + + for (unsigned i = 0; i < args.length(); i++) { + double x; + if (!ToNumber(cx, args[i], &x)) + return false; + + isInfinite |= mozilla::IsInfinite(x); + isNaN |= mozilla::IsNaN(x); + if (isInfinite || isNaN) + continue; + + hypot_step(scale, sumsq, x); + } + + double result = isInfinite ? PositiveInfinity<double>() : + isNaN ? GenericNaN() : + scale * sqrt(sumsq); + res.setNumber(result); + return true; +} + +double +js::math_trunc_impl(MathCache* cache, double x) +{ + return cache->lookup(fdlibm::trunc, x, MathCache::Trunc); +} + +double +js::math_trunc_uncached(double x) +{ + return fdlibm::trunc(x); +} + +bool +js::math_trunc(JSContext* cx, unsigned argc, Value* vp) +{ + return math_function<math_trunc_impl>(cx, argc, vp); +} + +static double sign(double x) +{ + if (mozilla::IsNaN(x)) + return GenericNaN(); + + return x == 0 ? x : x < 0 ? -1 : 1; +} + +double +js::math_sign_impl(MathCache* cache, double x) +{ + return cache->lookup(sign, x, MathCache::Sign); +} + +double +js::math_sign_uncached(double x) +{ + return sign(x); +} + +bool +js::math_sign(JSContext* cx, unsigned argc, Value* vp) +{ + return math_function<math_sign_impl>(cx, argc, vp); +} + +double +js::math_cbrt_impl(MathCache* cache, double x) +{ + return cache->lookup(fdlibm::cbrt, x, MathCache::Cbrt); +} + +double +js::math_cbrt_uncached(double x) +{ + return fdlibm::cbrt(x); +} + +bool +js::math_cbrt(JSContext* cx, unsigned argc, Value* vp) +{ + return math_function<math_cbrt_impl>(cx, argc, vp); +} + +#if JS_HAS_TOSOURCE +static bool +math_toSource(JSContext* cx, unsigned argc, Value* vp) +{ + CallArgs args = CallArgsFromVp(argc, vp); + args.rval().setString(cx->names().Math); + return true; +} +#endif + +static const JSFunctionSpec math_static_methods[] = { +#if JS_HAS_TOSOURCE + JS_FN(js_toSource_str, math_toSource, 0, 0), +#endif + JS_INLINABLE_FN("abs", math_abs, 1, 0, MathAbs), + JS_INLINABLE_FN("acos", math_acos, 1, 0, MathACos), + JS_INLINABLE_FN("asin", math_asin, 1, 0, MathASin), + JS_INLINABLE_FN("atan", math_atan, 1, 0, MathATan), + JS_INLINABLE_FN("atan2", math_atan2, 2, 0, MathATan2), + JS_INLINABLE_FN("ceil", math_ceil, 1, 0, MathCeil), + JS_INLINABLE_FN("clz32", math_clz32, 1, 0, MathClz32), + JS_INLINABLE_FN("cos", math_cos, 1, 0, MathCos), + JS_INLINABLE_FN("exp", math_exp, 1, 0, MathExp), + JS_INLINABLE_FN("floor", math_floor, 1, 0, MathFloor), + JS_INLINABLE_FN("imul", math_imul, 2, 0, MathImul), + JS_INLINABLE_FN("fround", math_fround, 1, 0, MathFRound), + JS_INLINABLE_FN("log", math_log, 1, 0, MathLog), + JS_INLINABLE_FN("max", math_max, 2, 0, MathMax), + JS_INLINABLE_FN("min", math_min, 2, 0, MathMin), + JS_INLINABLE_FN("pow", math_pow, 2, 0, MathPow), + JS_INLINABLE_FN("random", math_random, 0, 0, MathRandom), + JS_INLINABLE_FN("round", math_round, 1, 0, MathRound), + JS_INLINABLE_FN("sin", math_sin, 1, 0, MathSin), + JS_INLINABLE_FN("sqrt", math_sqrt, 1, 0, MathSqrt), + JS_INLINABLE_FN("tan", math_tan, 1, 0, MathTan), + JS_INLINABLE_FN("log10", math_log10, 1, 0, MathLog10), + JS_INLINABLE_FN("log2", math_log2, 1, 0, MathLog2), + JS_INLINABLE_FN("log1p", math_log1p, 1, 0, MathLog1P), + JS_INLINABLE_FN("expm1", math_expm1, 1, 0, MathExpM1), + JS_INLINABLE_FN("cosh", math_cosh, 1, 0, MathCosH), + JS_INLINABLE_FN("sinh", math_sinh, 1, 0, MathSinH), + JS_INLINABLE_FN("tanh", math_tanh, 1, 0, MathTanH), + JS_INLINABLE_FN("acosh", math_acosh, 1, 0, MathACosH), + JS_INLINABLE_FN("asinh", math_asinh, 1, 0, MathASinH), + JS_INLINABLE_FN("atanh", math_atanh, 1, 0, MathATanH), + JS_INLINABLE_FN("hypot", math_hypot, 2, 0, MathHypot), + JS_INLINABLE_FN("trunc", math_trunc, 1, 0, MathTrunc), + JS_INLINABLE_FN("sign", math_sign, 1, 0, MathSign), + JS_INLINABLE_FN("cbrt", math_cbrt, 1, 0, MathCbrt), + JS_FS_END +}; + +JSObject* +js::InitMathClass(JSContext* cx, HandleObject obj) +{ + RootedObject proto(cx, obj->as<GlobalObject>().getOrCreateObjectPrototype(cx)); + if (!proto) + return nullptr; + RootedObject Math(cx, NewObjectWithGivenProto(cx, &MathClass, proto, SingletonObject)); + if (!Math) + return nullptr; + + if (!JS_DefineProperty(cx, obj, js_Math_str, Math, JSPROP_RESOLVING, + JS_STUBGETTER, JS_STUBSETTER)) + { + return nullptr; + } + if (!JS_DefineFunctions(cx, Math, math_static_methods)) + return nullptr; + if (!JS_DefineConstDoubles(cx, Math, math_constants)) + return nullptr; + if (!DefineToStringTag(cx, Math, cx->names().Math)) + return nullptr; + + obj->as<GlobalObject>().setConstructor(JSProto_Math, ObjectValue(*Math)); + + return Math; +} |