diff options
author | Matt A. Tobin <mattatobin@localhost.localdomain> | 2018-02-02 04:16:08 -0500 |
---|---|---|
committer | Matt A. Tobin <mattatobin@localhost.localdomain> | 2018-02-02 04:16:08 -0500 |
commit | ad18d877ddd2a44d98fa12ccd3dbbcf4d0ac4299 (patch) | |
tree | 10027f336435511475e392454359edea8e25895d /js/src/jsarray.cpp | |
parent | 15477ed9af4859dacb069040b5d4de600803d3bc (diff) | |
download | uxp-ad18d877ddd2a44d98fa12ccd3dbbcf4d0ac4299.tar.gz |
Add m-esr52 at 52.6.0
Diffstat (limited to 'js/src/jsarray.cpp')
-rw-r--r-- | js/src/jsarray.cpp | 3798 |
1 files changed, 3798 insertions, 0 deletions
diff --git a/js/src/jsarray.cpp b/js/src/jsarray.cpp new file mode 100644 index 0000000000..9cbeff6a2e --- /dev/null +++ b/js/src/jsarray.cpp @@ -0,0 +1,3798 @@ +/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*- + * vim: set ts=8 sts=4 et sw=4 tw=99: + * This Source Code Form is subject to the terms of the Mozilla Public + * License, v. 2.0. If a copy of the MPL was not distributed with this + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ + +#include "jsarray.h" + +#include "mozilla/ArrayUtils.h" +#include "mozilla/CheckedInt.h" +#include "mozilla/DebugOnly.h" +#include "mozilla/FloatingPoint.h" +#include "mozilla/MathAlgorithms.h" + +#include <algorithm> + +#include "jsapi.h" +#include "jsatom.h" +#include "jscntxt.h" +#include "jsfriendapi.h" +#include "jsfun.h" +#include "jsiter.h" +#include "jsnum.h" +#include "jsobj.h" +#include "jstypes.h" +#include "jsutil.h" + +#include "ds/Sort.h" +#include "gc/Heap.h" +#include "jit/InlinableNatives.h" +#include "js/Class.h" +#include "js/Conversions.h" +#include "vm/ArgumentsObject.h" +#include "vm/Interpreter.h" +#include "vm/SelfHosting.h" +#include "vm/Shape.h" +#include "vm/StringBuffer.h" +#include "vm/TypedArrayCommon.h" +#include "vm/WrapperObject.h" + +#include "jsatominlines.h" + +#include "vm/ArgumentsObject-inl.h" +#include "vm/ArrayObject-inl.h" +#include "vm/Caches-inl.h" +#include "vm/Interpreter-inl.h" +#include "vm/NativeObject-inl.h" +#include "vm/UnboxedObject-inl.h" + +using namespace js; +using namespace js::gc; + +using mozilla::Abs; +using mozilla::ArrayLength; +using mozilla::CeilingLog2; +using mozilla::CheckedInt; +using mozilla::DebugOnly; +using mozilla::IsNaN; + +using JS::AutoCheckCannotGC; +using JS::IsArrayAnswer; +using JS::ToUint32; + +bool +JS::IsArray(JSContext* cx, HandleObject obj, IsArrayAnswer* answer) +{ + if (obj->is<ArrayObject>() || obj->is<UnboxedArrayObject>()) { + *answer = IsArrayAnswer::Array; + return true; + } + + if (obj->is<ProxyObject>()) + return Proxy::isArray(cx, obj, answer); + + *answer = IsArrayAnswer::NotArray; + return true; +} + +bool +JS::IsArray(JSContext* cx, HandleObject obj, bool* isArray) +{ + IsArrayAnswer answer; + if (!IsArray(cx, obj, &answer)) + return false; + + if (answer == IsArrayAnswer::RevokedProxy) { + JS_ReportErrorNumberASCII(cx, GetErrorMessage, nullptr, JSMSG_PROXY_REVOKED); + return false; + } + + *isArray = answer == IsArrayAnswer::Array; + return true; +} + +bool +js::GetLengthProperty(JSContext* cx, HandleObject obj, uint32_t* lengthp) +{ + if (obj->is<ArrayObject>()) { + *lengthp = obj->as<ArrayObject>().length(); + return true; + } + + if (obj->is<UnboxedArrayObject>()) { + *lengthp = obj->as<UnboxedArrayObject>().length(); + return true; + } + + if (obj->is<ArgumentsObject>()) { + ArgumentsObject& argsobj = obj->as<ArgumentsObject>(); + if (!argsobj.hasOverriddenLength()) { + *lengthp = argsobj.initialLength(); + return true; + } + } + + RootedValue value(cx); + if (!GetProperty(cx, obj, obj, cx->names().length, &value)) + return false; + + bool overflow; + if (!ToLengthClamped(cx, value, lengthp, &overflow)) { + if (!overflow) + return false; + *lengthp = UINT32_MAX; + } + return true; +} + +/* + * Determine if the id represents an array index. + * + * An id is an array index according to ECMA by (15.4): + * + * "Array objects give special treatment to a certain class of property names. + * A property name P (in the form of a string value) is an array index if and + * only if ToString(ToUint32(P)) is equal to P and ToUint32(P) is not equal + * to 2^32-1." + * + * This means the largest allowed index is actually 2^32-2 (4294967294). + * + * In our implementation, it would be sufficient to check for id.isInt32() + * except that by using signed 31-bit integers we miss the top half of the + * valid range. This function checks the string representation itself; note + * that calling a standard conversion routine might allow strings such as + * "08" or "4.0" as array indices, which they are not. + * + */ +template <typename CharT> +static bool +StringIsArrayIndex(const CharT* s, uint32_t length, uint32_t* indexp) +{ + const CharT* end = s + length; + + if (length == 0 || length > (sizeof("4294967294") - 1) || !JS7_ISDEC(*s)) + return false; + + uint32_t c = 0, previous = 0; + uint32_t index = JS7_UNDEC(*s++); + + /* Don't allow leading zeros. */ + if (index == 0 && s != end) + return false; + + for (; s < end; s++) { + if (!JS7_ISDEC(*s)) + return false; + + previous = index; + c = JS7_UNDEC(*s); + index = 10 * index + c; + } + + /* Make sure we didn't overflow. */ + if (previous < (MAX_ARRAY_INDEX / 10) || (previous == (MAX_ARRAY_INDEX / 10) && + c <= (MAX_ARRAY_INDEX % 10))) { + MOZ_ASSERT(index <= MAX_ARRAY_INDEX); + *indexp = index; + return true; + } + + return false; +} + +JS_FRIEND_API(bool) +js::StringIsArrayIndex(JSLinearString* str, uint32_t* indexp) +{ + AutoCheckCannotGC nogc; + return str->hasLatin1Chars() + ? ::StringIsArrayIndex(str->latin1Chars(nogc), str->length(), indexp) + : ::StringIsArrayIndex(str->twoByteChars(nogc), str->length(), indexp); +} + +static bool +ToId(JSContext* cx, double index, MutableHandleId id) +{ + if (index == uint32_t(index)) + return IndexToId(cx, uint32_t(index), id); + + Value tmp = DoubleValue(index); + return ValueToId<CanGC>(cx, HandleValue::fromMarkedLocation(&tmp), id); +} + +static bool +ToId(JSContext* cx, uint32_t index, MutableHandleId id) +{ + return IndexToId(cx, index, id); +} + +/* + * If the property at the given index exists, get its value into location + * pointed by vp and set *hole to false. Otherwise set *hole to true and *vp + * to JSVAL_VOID. This function assumes that the location pointed by vp is + * properly rooted and can be used as GC-protected storage for temporaries. + */ +template <typename IndexType> +static inline bool +DoGetElement(JSContext* cx, HandleObject obj, HandleObject receiver, + IndexType index, bool* hole, MutableHandleValue vp) +{ + RootedId id(cx); + if (!ToId(cx, index, &id)) + return false; + + bool found; + if (!HasProperty(cx, obj, id, &found)) + return false; + + if (found) { + if (!GetProperty(cx, obj, receiver, id, vp)) + return false; + } else { + vp.setUndefined(); + } + *hole = !found; + return true; +} + +template <typename IndexType> +static void +AssertGreaterThanZero(IndexType index) +{ + MOZ_ASSERT(index >= 0); + MOZ_ASSERT(index == floor(index)); +} + +template<> +void +AssertGreaterThanZero(uint32_t index) +{ +} + +static bool +GetElement(JSContext* cx, HandleObject obj, HandleObject receiver, + uint32_t index, bool* hole, MutableHandleValue vp) +{ + AssertGreaterThanZero(index); + if (index < GetAnyBoxedOrUnboxedInitializedLength(obj)) { + vp.set(GetAnyBoxedOrUnboxedDenseElement(obj, uint32_t(index))); + if (!vp.isMagic(JS_ELEMENTS_HOLE)) { + *hole = false; + return true; + } + } + if (obj->is<ArgumentsObject>()) { + if (obj->as<ArgumentsObject>().maybeGetElement(uint32_t(index), vp)) { + *hole = false; + return true; + } + } + + return DoGetElement(cx, obj, receiver, index, hole, vp); +} + +template <typename IndexType> +static inline bool +GetElement(JSContext* cx, HandleObject obj, IndexType index, bool* hole, MutableHandleValue vp) +{ + return GetElement(cx, obj, obj, index, hole, vp); +} + +bool +ElementAdder::append(JSContext* cx, HandleValue v) +{ + MOZ_ASSERT(index_ < length_); + if (resObj_) { + DenseElementResult result = + SetOrExtendAnyBoxedOrUnboxedDenseElements(cx, resObj_, index_, v.address(), 1); + if (result == DenseElementResult::Failure) + return false; + if (result == DenseElementResult::Incomplete) { + if (!DefineElement(cx, resObj_, index_, v)) + return false; + } + } else { + vp_[index_] = v; + } + index_++; + return true; +} + +void +ElementAdder::appendHole() +{ + MOZ_ASSERT(getBehavior_ == ElementAdder::CheckHasElemPreserveHoles); + MOZ_ASSERT(index_ < length_); + if (!resObj_) + vp_[index_].setMagic(JS_ELEMENTS_HOLE); + index_++; +} + +bool +js::GetElementsWithAdder(JSContext* cx, HandleObject obj, HandleObject receiver, + uint32_t begin, uint32_t end, ElementAdder* adder) +{ + MOZ_ASSERT(begin <= end); + + RootedValue val(cx); + for (uint32_t i = begin; i < end; i++) { + if (adder->getBehavior() == ElementAdder::CheckHasElemPreserveHoles) { + bool hole; + if (!GetElement(cx, obj, receiver, i, &hole, &val)) + return false; + if (hole) { + adder->appendHole(); + continue; + } + } else { + MOZ_ASSERT(adder->getBehavior() == ElementAdder::GetElement); + if (!GetElement(cx, obj, receiver, i, &val)) + return false; + } + if (!adder->append(cx, val)) + return false; + } + + return true; +} + +template <JSValueType Type> +DenseElementResult +GetBoxedOrUnboxedDenseElements(JSObject* aobj, uint32_t length, Value* vp) +{ + MOZ_ASSERT(!ObjectMayHaveExtraIndexedProperties(aobj)); + + if (length > GetBoxedOrUnboxedInitializedLength<Type>(aobj)) + return DenseElementResult::Incomplete; + + for (size_t i = 0; i < length; i++) { + vp[i] = GetBoxedOrUnboxedDenseElement<Type>(aobj, i); + + // No other indexed properties so hole => undefined. + if (vp[i].isMagic(JS_ELEMENTS_HOLE)) + vp[i] = UndefinedValue(); + } + + return DenseElementResult::Success; +} + +DefineBoxedOrUnboxedFunctor3(GetBoxedOrUnboxedDenseElements, + JSObject*, uint32_t, Value*); + +bool +js::GetElements(JSContext* cx, HandleObject aobj, uint32_t length, Value* vp) +{ + if (!ObjectMayHaveExtraIndexedProperties(aobj)) { + GetBoxedOrUnboxedDenseElementsFunctor functor(aobj, length, vp); + DenseElementResult result = CallBoxedOrUnboxedSpecialization(functor, aobj); + if (result != DenseElementResult::Incomplete) + return result == DenseElementResult::Success; + } + + if (aobj->is<ArgumentsObject>()) { + ArgumentsObject& argsobj = aobj->as<ArgumentsObject>(); + if (!argsobj.hasOverriddenLength()) { + if (argsobj.maybeGetElements(0, length, vp)) + return true; + } + } + + if (js::GetElementsOp op = aobj->getOpsGetElements()) { + ElementAdder adder(cx, vp, length, ElementAdder::GetElement); + return op(cx, aobj, 0, length, &adder); + } + + for (uint32_t i = 0; i < length; i++) { + if (!GetElement(cx, aobj, aobj, i, MutableHandleValue::fromMarkedLocation(&vp[i]))) + return false; + } + + return true; +} + +// Set the value of the property at the given index to v. The behavior of this +// function is currently incoherent and it sometimes defines the property +// instead. See bug 1163091. +static bool +SetArrayElement(JSContext* cx, HandleObject obj, double index, HandleValue v) +{ + MOZ_ASSERT(index >= 0); + + if ((obj->is<ArrayObject>() || obj->is<UnboxedArrayObject>()) && !obj->isIndexed() && index <= UINT32_MAX) { + DenseElementResult result = + SetOrExtendAnyBoxedOrUnboxedDenseElements(cx, obj, uint32_t(index), v.address(), 1); + if (result != DenseElementResult::Incomplete) + return result == DenseElementResult::Success; + } + + RootedId id(cx); + if (!ToId(cx, index, &id)) + return false; + + return SetProperty(cx, obj, id, v); +} + +/* + * Attempt to delete the element |index| from |obj| as if by + * |obj.[[Delete]](index)|. + * + * If an error occurs while attempting to delete the element (that is, the call + * to [[Delete]] threw), return false. + * + * Otherwise call result.succeed() or result.fail() to indicate whether the + * deletion attempt succeeded (that is, whether the call to [[Delete]] returned + * true or false). (Deletes generally fail only when the property is + * non-configurable, but proxies may implement different semantics.) + */ +static bool +DeleteArrayElement(JSContext* cx, HandleObject obj, double index, ObjectOpResult& result) +{ + MOZ_ASSERT(index >= 0); + MOZ_ASSERT(floor(index) == index); + + if (obj->is<ArrayObject>() && !obj->isIndexed() && + !obj->as<NativeObject>().denseElementsAreFrozen()) + { + ArrayObject* aobj = &obj->as<ArrayObject>(); + if (index <= UINT32_MAX) { + uint32_t idx = uint32_t(index); + if (idx < aobj->getDenseInitializedLength()) { + if (!aobj->maybeCopyElementsForWrite(cx)) + return false; + if (idx+1 == aobj->getDenseInitializedLength()) { + aobj->setDenseInitializedLength(idx); + } else { + aobj->markDenseElementsNotPacked(cx); + aobj->setDenseElement(idx, MagicValue(JS_ELEMENTS_HOLE)); + } + if (!SuppressDeletedElement(cx, obj, idx)) + return false; + } + } + + return result.succeed(); + } + + RootedId id(cx); + if (!ToId(cx, index, &id)) + return false; + return DeleteProperty(cx, obj, id, result); +} + +/* ES6 draft rev 32 (2 Febr 2015) 7.3.7 */ +static bool +DeletePropertyOrThrow(JSContext* cx, HandleObject obj, double index) +{ + ObjectOpResult success; + if (!DeleteArrayElement(cx, obj, index, success)) + return false; + if (!success) { + RootedId id(cx); + RootedValue indexv(cx, NumberValue(index)); + if (!ValueToId<CanGC>(cx, indexv, &id)) + return false; + return success.reportError(cx, obj, id); + } + return true; +} + +bool +js::SetLengthProperty(JSContext* cx, HandleObject obj, double length) +{ + RootedValue v(cx, NumberValue(length)); + return SetProperty(cx, obj, cx->names().length, v); +} + +static bool +array_length_getter(JSContext* cx, HandleObject obj, HandleId id, MutableHandleValue vp) +{ + vp.setNumber(obj->as<ArrayObject>().length()); + return true; +} + +static bool +array_length_setter(JSContext* cx, HandleObject obj, HandleId id, MutableHandleValue vp, + ObjectOpResult& result) +{ + if (!obj->is<ArrayObject>()) { + // This array .length property was found on the prototype + // chain. Ideally the setter should not have been called, but since + // we're here, do an impression of SetPropertyByDefining. + const Class* clasp = obj->getClass(); + return DefineProperty(cx, obj, cx->names().length, vp, + clasp->getGetProperty(), clasp->getSetProperty(), + JSPROP_ENUMERATE, result); + } + + Rooted<ArrayObject*> arr(cx, &obj->as<ArrayObject>()); + MOZ_ASSERT(arr->lengthIsWritable(), + "setter shouldn't be called if property is non-writable"); + + return ArraySetLength(cx, arr, id, JSPROP_PERMANENT, vp, result); +} + +struct ReverseIndexComparator +{ + bool operator()(const uint32_t& a, const uint32_t& b, bool* lessOrEqualp) { + MOZ_ASSERT(a != b, "how'd we get duplicate indexes?"); + *lessOrEqualp = b <= a; + return true; + } +}; + +bool +js::CanonicalizeArrayLengthValue(JSContext* cx, HandleValue v, uint32_t* newLen) +{ + double d; + + if (!ToUint32(cx, v, newLen)) + return false; + + if (!ToNumber(cx, v, &d)) + return false; + + if (d == *newLen) + return true; + + JS_ReportErrorNumberASCII(cx, GetErrorMessage, nullptr, JSMSG_BAD_ARRAY_LENGTH); + return false; +} + +/* ES6 draft rev 34 (2015 Feb 20) 9.4.2.4 ArraySetLength */ +bool +js::ArraySetLength(JSContext* cx, Handle<ArrayObject*> arr, HandleId id, + unsigned attrs, HandleValue value, ObjectOpResult& result) +{ + MOZ_ASSERT(id == NameToId(cx->names().length)); + + if (!arr->maybeCopyElementsForWrite(cx)) + return false; + + // Step 1. + uint32_t newLen; + if (attrs & JSPROP_IGNORE_VALUE) { + // The spec has us calling OrdinaryDefineOwnProperty if + // Desc.[[Value]] is absent, but our implementation is so different that + // this is impossible. Instead, set newLen to the current length and + // proceed to step 9. + newLen = arr->length(); + } else { + // Step 2 is irrelevant in our implementation. + + // Steps 3-7. + MOZ_ASSERT_IF(attrs & JSPROP_IGNORE_VALUE, value.isUndefined()); + if (!CanonicalizeArrayLengthValue(cx, value, &newLen)) + return false; + + // Step 8 is irrelevant in our implementation. + } + + // Steps 9-11. + bool lengthIsWritable = arr->lengthIsWritable(); +#ifdef DEBUG + { + RootedShape lengthShape(cx, arr->lookupPure(id)); + MOZ_ASSERT(lengthShape); + MOZ_ASSERT(lengthShape->writable() == lengthIsWritable); + } +#endif + uint32_t oldLen = arr->length(); + + // Part of steps 1.a, 12.a, and 16: Fail if we're being asked to change + // enumerability or configurability, or otherwise break the object + // invariants. (ES6 checks these by calling OrdinaryDefineOwnProperty, but + // in SM, the array length property is hardly ordinary.) + if ((attrs & (JSPROP_PERMANENT | JSPROP_IGNORE_PERMANENT)) == 0 || + (attrs & (JSPROP_ENUMERATE | JSPROP_IGNORE_ENUMERATE)) == JSPROP_ENUMERATE || + (attrs & (JSPROP_GETTER | JSPROP_SETTER)) != 0 || + (!lengthIsWritable && (attrs & (JSPROP_READONLY | JSPROP_IGNORE_READONLY)) == 0)) + { + return result.fail(JSMSG_CANT_REDEFINE_PROP); + } + + // Steps 12-13 for arrays with non-writable length. + if (!lengthIsWritable) { + if (newLen == oldLen) + return result.succeed(); + + return result.fail(JSMSG_CANT_REDEFINE_ARRAY_LENGTH); + } + + // Step 19. + bool succeeded = true; + do { + // The initialized length and capacity of an array only need updating + // when non-hole elements are added or removed, which doesn't happen + // when array length stays the same or increases. + if (newLen >= oldLen) + break; + + // Attempt to propagate dense-element optimization tricks, if possible, + // and avoid the generic (and accordingly slow) deletion code below. + // We can only do this if there are only densely-indexed elements. + // Once there's a sparse indexed element, there's no good way to know, + // save by enumerating all the properties to find it. But we *have* to + // know in case that sparse indexed element is non-configurable, as + // that element must prevent any deletions below it. Bug 586842 should + // fix this inefficiency by moving indexed storage to be entirely + // separate from non-indexed storage. + // A second reason for this optimization to be invalid is an active + // for..in iteration over the array. Keys deleted before being reached + // during the iteration must not be visited, and suppressing them here + // would be too costly. + ObjectGroup* arrGroup = arr->getGroup(cx); + if (MOZ_UNLIKELY(!arrGroup)) + return false; + if (!arr->isIndexed() && !MOZ_UNLIKELY(arrGroup->hasAllFlags(OBJECT_FLAG_ITERATED))) { + if (!arr->maybeCopyElementsForWrite(cx)) + return false; + + uint32_t oldCapacity = arr->getDenseCapacity(); + uint32_t oldInitializedLength = arr->getDenseInitializedLength(); + MOZ_ASSERT(oldCapacity >= oldInitializedLength); + if (oldInitializedLength > newLen) + arr->setDenseInitializedLength(newLen); + if (oldCapacity > newLen) + arr->shrinkElements(cx, newLen); + + // We've done the work of deleting any dense elements needing + // deletion, and there are no sparse elements. Thus we can skip + // straight to defining the length. + break; + } + + // Step 15. + // + // Attempt to delete all elements above the new length, from greatest + // to least. If any of these deletions fails, we're supposed to define + // the length to one greater than the index that couldn't be deleted, + // *with the property attributes specified*. This might convert the + // length to be not the value specified, yet non-writable. (You may be + // forgiven for thinking these are interesting semantics.) Example: + // + // var arr = + // Object.defineProperty([0, 1, 2, 3], 1, { writable: false }); + // Object.defineProperty(arr, "length", + // { value: 0, writable: false }); + // + // will convert |arr| to an array of non-writable length two, then + // throw a TypeError. + // + // We implement this behavior, in the relevant lops below, by setting + // |succeeded| to false. Then we exit the loop, define the length + // appropriately, and only then throw a TypeError, if necessary. + uint32_t gap = oldLen - newLen; + const uint32_t RemoveElementsFastLimit = 1 << 24; + if (gap < RemoveElementsFastLimit) { + // If we're removing a relatively small number of elements, just do + // it exactly by the spec. + while (newLen < oldLen) { + // Step 15a. + oldLen--; + + // Steps 15b-d. + ObjectOpResult deleteSucceeded; + if (!DeleteElement(cx, arr, oldLen, deleteSucceeded)) + return false; + if (!deleteSucceeded) { + newLen = oldLen + 1; + succeeded = false; + break; + } + } + } else { + // If we're removing a large number of elements from an array + // that's probably sparse, try a different tack. Get all the own + // property names, sift out the indexes in the deletion range into + // a vector, sort the vector greatest to least, then delete the + // indexes greatest to least using that vector. See bug 322135. + // + // This heuristic's kind of a huge guess -- "large number of + // elements" and "probably sparse" are completely unprincipled + // predictions. In the long run, bug 586842 will support the right + // fix: store sparse elements in a sorted data structure that + // permits fast in-reverse-order traversal and concurrent removals. + + Vector<uint32_t> indexes(cx); + { + AutoIdVector props(cx); + if (!GetPropertyKeys(cx, arr, JSITER_OWNONLY | JSITER_HIDDEN, &props)) + return false; + + for (size_t i = 0; i < props.length(); i++) { + if (!CheckForInterrupt(cx)) + return false; + + uint32_t index; + if (!IdIsIndex(props[i], &index)) + continue; + + if (index >= newLen && index < oldLen) { + if (!indexes.append(index)) + return false; + } + } + } + + uint32_t count = indexes.length(); + { + // We should use radix sort to be O(n), but this is uncommon + // enough that we'll punt til someone complains. + Vector<uint32_t> scratch(cx); + if (!scratch.resize(count)) + return false; + MOZ_ALWAYS_TRUE(MergeSort(indexes.begin(), count, scratch.begin(), + ReverseIndexComparator())); + } + + uint32_t index = UINT32_MAX; + for (uint32_t i = 0; i < count; i++) { + MOZ_ASSERT(indexes[i] < index, "indexes should never repeat"); + index = indexes[i]; + + // Steps 15b-d. + ObjectOpResult deleteSucceeded; + if (!DeleteElement(cx, arr, index, deleteSucceeded)) + return false; + if (!deleteSucceeded) { + newLen = index + 1; + succeeded = false; + break; + } + } + } + } while (false); + + // Update array length. Technically we should have been doing this + // throughout the loop, in step 19.d.iii. + arr->setLength(cx, newLen); + + // Step 20. + if (attrs & JSPROP_READONLY) { + // Yes, we totally drop a non-stub getter/setter from a defineProperty + // API call on the floor here. Given that getter/setter will go away in + // the long run, with accessors replacing them both internally and at the + // API level, just run with this. + RootedShape lengthShape(cx, arr->lookup(cx, id)); + if (!NativeObject::changeProperty(cx, arr, lengthShape, + lengthShape->attributes() | JSPROP_READONLY, + array_length_getter, array_length_setter)) + { + return false; + } + } + + // All operations past here until the |!succeeded| code must be infallible, + // so that all element fields remain properly synchronized. + + // Trim the initialized length, if needed, to preserve the <= length + // invariant. (Capacity was already reduced during element deletion, if + // necessary.) + ObjectElements* header = arr->getElementsHeader(); + header->initializedLength = Min(header->initializedLength, newLen); + + if (attrs & JSPROP_READONLY) { + header->setNonwritableArrayLength(); + + // When an array's length becomes non-writable, writes to indexes + // greater than or equal to the length don't change the array. We + // handle this with a check for non-writable length in most places. + // But in JIT code every check counts -- so we piggyback the check on + // the already-required range check for |index < capacity| by making + // capacity of arrays with non-writable length never exceed the length. + if (arr->getDenseCapacity() > newLen) { + arr->shrinkElements(cx, newLen); + arr->getElementsHeader()->capacity = newLen; + } + } + + if (!succeeded) + return result.fail(JSMSG_CANT_TRUNCATE_ARRAY); + + return result.succeed(); +} + +bool +js::WouldDefinePastNonwritableLength(HandleNativeObject obj, uint32_t index) +{ + if (!obj->is<ArrayObject>()) + return false; + + ArrayObject* arr = &obj->as<ArrayObject>(); + return !arr->lengthIsWritable() && index >= arr->length(); +} + +static bool +array_addProperty(JSContext* cx, HandleObject obj, HandleId id, HandleValue v) +{ + Rooted<ArrayObject*> arr(cx, &obj->as<ArrayObject>()); + + uint32_t index; + if (!IdIsIndex(id, &index)) + return true; + + uint32_t length = arr->length(); + if (index >= length) { + MOZ_ASSERT(arr->lengthIsWritable(), + "how'd this element get added if length is non-writable?"); + arr->setLength(cx, index + 1); + } + return true; +} + +static inline bool +ObjectMayHaveExtraIndexedOwnProperties(JSObject* obj) +{ + return (!obj->isNative() && !obj->is<UnboxedArrayObject>()) || + obj->isIndexed() || + obj->is<TypedArrayObject>() || + ClassMayResolveId(*obj->runtimeFromAnyThread()->commonNames, + obj->getClass(), INT_TO_JSID(0), obj); +} + +/* + * Whether obj may have indexed properties anywhere besides its dense + * elements. This includes other indexed properties in its shape hierarchy, and + * indexed properties or elements along its prototype chain. + */ +bool +js::ObjectMayHaveExtraIndexedProperties(JSObject* obj) +{ + MOZ_ASSERT_IF(obj->hasDynamicPrototype(), !obj->isNative()); + + if (ObjectMayHaveExtraIndexedOwnProperties(obj)) + return true; + + do { + MOZ_ASSERT(obj->hasStaticPrototype(), + "dynamic-prototype objects must be non-native, ergo must " + "have failed ObjectMayHaveExtraIndexedOwnProperties"); + + obj = obj->staticPrototype(); + if (!obj) + return false; // no extra indexed properties found + + if (ObjectMayHaveExtraIndexedOwnProperties(obj)) + return true; + if (GetAnyBoxedOrUnboxedInitializedLength(obj) != 0) + return true; + } while (true); +} + +static bool +AddLengthProperty(ExclusiveContext* cx, HandleArrayObject obj) +{ + /* + * Add the 'length' property for a newly created array, + * and update the elements to be an empty array owned by the object. + * The shared emptyObjectElements singleton cannot be used for slow arrays, + * as accesses to 'length' will use the elements header. + */ + + RootedId lengthId(cx, NameToId(cx->names().length)); + MOZ_ASSERT(!obj->lookup(cx, lengthId)); + + return NativeObject::addProperty(cx, obj, lengthId, array_length_getter, array_length_setter, + SHAPE_INVALID_SLOT, + JSPROP_PERMANENT | JSPROP_SHARED | JSPROP_SHADOWABLE, + 0, /* allowDictionary = */ false); +} + +static bool +IsArrayConstructor(const JSObject* obj) +{ + // This must only return true if v is *the* Array constructor for the + // current compartment; we rely on the fact that any other Array + // constructor would be represented as a wrapper. + return obj->is<JSFunction>() && + obj->as<JSFunction>().isNative() && + obj->as<JSFunction>().native() == ArrayConstructor; +} + +static bool +IsArrayConstructor(const Value& v) +{ + return v.isObject() && IsArrayConstructor(&v.toObject()); +} + +bool +js::IsWrappedArrayConstructor(JSContext* cx, const Value& v, bool* result) +{ + if (!v.isObject()) { + *result = false; + return true; + } + if (v.toObject().is<WrapperObject>()) { + JSObject* obj = CheckedUnwrap(&v.toObject()); + if (!obj) { + JS_ReportErrorASCII(cx, "Permission denied to access object"); + return false; + } + + *result = IsArrayConstructor(obj); + } else { + *result = false; + } + return true; +} + +static bool +IsArraySpecies(JSContext* cx, HandleObject origArray) +{ + RootedValue ctor(cx); + if (!GetPropertyPure(cx, origArray, NameToId(cx->names().constructor), ctor.address())) + return false; + + if (!IsArrayConstructor(ctor)) + return false; + + RootedObject ctorObj(cx, &ctor.toObject()); + RootedId speciesId(cx, SYMBOL_TO_JSID(cx->wellKnownSymbols().species)); + JSFunction* getter; + if (!GetGetterPure(cx, ctorObj, speciesId, &getter)) + return false; + + if (!getter) + return false; + + return IsSelfHostedFunctionWithName(getter, cx->names().ArraySpecies); +} + +static bool +ArraySpeciesCreate(JSContext* cx, HandleObject origArray, uint32_t length, MutableHandleObject arr) +{ + RootedId createId(cx, NameToId(cx->names().ArraySpeciesCreate)); + RootedFunction create(cx, JS::GetSelfHostedFunction(cx, "ArraySpeciesCreate", createId, 2)); + if (!create) + return false; + + FixedInvokeArgs<2> args(cx); + + args[0].setObject(*origArray); + args[1].set(NumberValue(length)); + + RootedValue callee(cx, ObjectValue(*create)); + RootedValue rval(cx); + if (!Call(cx, callee, UndefinedHandleValue, args, &rval)) + return false; + + MOZ_ASSERT(rval.isObject()); + arr.set(&rval.toObject()); + return true; +} + +#if JS_HAS_TOSOURCE + +static bool +array_toSource(JSContext* cx, unsigned argc, Value* vp) +{ + JS_CHECK_RECURSION(cx, return false); + CallArgs args = CallArgsFromVp(argc, vp); + + if (!args.thisv().isObject()) { + ReportIncompatible(cx, args); + return false; + } + + Rooted<JSObject*> obj(cx, &args.thisv().toObject()); + RootedValue elt(cx); + + AutoCycleDetector detector(cx, obj); + if (!detector.init()) + return false; + + StringBuffer sb(cx); + + if (detector.foundCycle()) { + if (!sb.append("[]")) + return false; + goto make_string; + } + + if (!sb.append('[')) + return false; + + uint32_t length; + if (!GetLengthProperty(cx, obj, &length)) + return false; + + for (uint32_t index = 0; index < length; index++) { + bool hole; + if (!CheckForInterrupt(cx) || + !GetElement(cx, obj, index, &hole, &elt)) { + return false; + } + + /* Get element's character string. */ + JSString* str; + if (hole) { + str = cx->runtime()->emptyString; + } else { + str = ValueToSource(cx, elt); + if (!str) + return false; + } + + /* Append element to buffer. */ + if (!sb.append(str)) + return false; + if (index + 1 != length) { + if (!sb.append(", ")) + return false; + } else if (hole) { + if (!sb.append(',')) + return false; + } + } + + /* Finalize the buffer. */ + if (!sb.append(']')) + return false; + + make_string: + JSString* str = sb.finishString(); + if (!str) + return false; + + args.rval().setString(str); + return true; +} + +#endif + +struct EmptySeparatorOp +{ + bool operator()(JSContext*, StringBuffer& sb) { return true; } +}; + +template <typename CharT> +struct CharSeparatorOp +{ + const CharT sep; + explicit CharSeparatorOp(CharT sep) : sep(sep) {} + bool operator()(JSContext*, StringBuffer& sb) { return sb.append(sep); } +}; + +struct StringSeparatorOp +{ + HandleLinearString sep; + + explicit StringSeparatorOp(HandleLinearString sep) : sep(sep) {} + + bool operator()(JSContext* cx, StringBuffer& sb) { + return sb.append(sep); + } +}; + +template <typename SeparatorOp, JSValueType Type> +static DenseElementResult +ArrayJoinDenseKernel(JSContext* cx, SeparatorOp sepOp, HandleObject obj, uint32_t length, + StringBuffer& sb, uint32_t* numProcessed) +{ + // This loop handles all elements up to initializedLength. If + // length > initLength we rely on the second loop to add the + // other elements. + MOZ_ASSERT(*numProcessed == 0); + uint32_t initLength = Min<uint32_t>(GetBoxedOrUnboxedInitializedLength<Type>(obj), length); + while (*numProcessed < initLength) { + if (!CheckForInterrupt(cx)) + return DenseElementResult::Failure; + + Value elem = GetBoxedOrUnboxedDenseElement<Type>(obj, *numProcessed); + + if (elem.isString()) { + if (!sb.append(elem.toString())) + return DenseElementResult::Failure; + } else if (elem.isNumber()) { + if (!NumberValueToStringBuffer(cx, elem, sb)) + return DenseElementResult::Failure; + } else if (elem.isBoolean()) { + if (!BooleanToStringBuffer(elem.toBoolean(), sb)) + return DenseElementResult::Failure; + } else if (elem.isObject() || elem.isSymbol()) { + /* + * Object stringifying could modify the initialized length or make + * the array sparse. Delegate it to a separate loop to keep this + * one tight. + * + * Symbol stringifying is a TypeError, so into the slow path + * with those as well. + */ + break; + } else { + MOZ_ASSERT(elem.isMagic(JS_ELEMENTS_HOLE) || elem.isNullOrUndefined()); + } + + if (++(*numProcessed) != length && !sepOp(cx, sb)) + return DenseElementResult::Failure; + } + + return DenseElementResult::Incomplete; +} + +template <typename SeparatorOp> +struct ArrayJoinDenseKernelFunctor { + JSContext* cx; + SeparatorOp sepOp; + HandleObject obj; + uint32_t length; + StringBuffer& sb; + uint32_t* numProcessed; + + ArrayJoinDenseKernelFunctor(JSContext* cx, SeparatorOp sepOp, HandleObject obj, + uint32_t length, StringBuffer& sb, uint32_t* numProcessed) + : cx(cx), sepOp(sepOp), obj(obj), length(length), sb(sb), numProcessed(numProcessed) + {} + + template <JSValueType Type> + DenseElementResult operator()() { + return ArrayJoinDenseKernel<SeparatorOp, Type>(cx, sepOp, obj, length, sb, numProcessed); + } +}; + +template <typename SeparatorOp> +static bool +ArrayJoinKernel(JSContext* cx, SeparatorOp sepOp, HandleObject obj, uint32_t length, + StringBuffer& sb) +{ + uint32_t i = 0; + + if (!ObjectMayHaveExtraIndexedProperties(obj)) { + ArrayJoinDenseKernelFunctor<SeparatorOp> functor(cx, sepOp, obj, length, sb, &i); + DenseElementResult result = CallBoxedOrUnboxedSpecialization(functor, obj); + if (result == DenseElementResult::Failure) + return false; + } + + if (i != length) { + RootedValue v(cx); + while (i < length) { + if (!CheckForInterrupt(cx)) + return false; + + bool hole; + if (!GetElement(cx, obj, i, &hole, &v)) + return false; + if (!hole && !v.isNullOrUndefined()) { + if (!ValueToStringBuffer(cx, v, sb)) + return false; + } + + if (++i != length && !sepOp(cx, sb)) + return false; + } + } + + return true; +} + +/* ES5 15.4.4.5 */ +bool +js::array_join(JSContext* cx, unsigned argc, Value* vp) +{ + JS_CHECK_RECURSION(cx, return false); + + AutoSPSEntry pseudoFrame(cx->runtime(), "Array.prototype.join"); + CallArgs args = CallArgsFromVp(argc, vp); + + // Step 1 + RootedObject obj(cx, ToObject(cx, args.thisv())); + if (!obj) + return false; + + AutoCycleDetector detector(cx, obj); + if (!detector.init()) + return false; + + if (detector.foundCycle()) { + args.rval().setString(cx->names().empty); + return true; + } + + // Steps 2 and 3 + uint32_t length; + if (!GetLengthProperty(cx, obj, &length)) + return false; + + // Steps 4 and 5 + RootedLinearString sepstr(cx); + if (args.hasDefined(0)) { + JSString *s = ToString<CanGC>(cx, args[0]); + if (!s) + return false; + sepstr = s->ensureLinear(cx); + if (!sepstr) + return false; + } else { + sepstr = cx->names().comma; + } + + // Step 6 is implicit in the loops below. + + // An optimized version of a special case of steps 7-11: when length==1 and + // the 0th element is a string, ToString() of that element is a no-op and + // so it can be immediately returned as the result. + if (length == 1 && GetAnyBoxedOrUnboxedInitializedLength(obj) == 1) { + Value elem0 = GetAnyBoxedOrUnboxedDenseElement(obj, 0); + if (elem0.isString()) { + args.rval().set(elem0); + return true; + } + } + + StringBuffer sb(cx); + if (sepstr->hasTwoByteChars() && !sb.ensureTwoByteChars()) + return false; + + // The separator will be added |length - 1| times, reserve space for that + // so that we don't have to unnecessarily grow the buffer. + size_t seplen = sepstr->length(); + CheckedInt<uint32_t> res = CheckedInt<uint32_t>(seplen) * (length - 1); + if (length > 0 && !res.isValid()) { + ReportAllocationOverflow(cx); + return false; + } + + if (length > 0 && !sb.reserve(res.value())) + return false; + + // Various optimized versions of steps 7-10. + if (seplen == 0) { + EmptySeparatorOp op; + if (!ArrayJoinKernel(cx, op, obj, length, sb)) + return false; + } else if (seplen == 1) { + char16_t c = sepstr->latin1OrTwoByteChar(0); + if (c <= JSString::MAX_LATIN1_CHAR) { + CharSeparatorOp<Latin1Char> op(c); + if (!ArrayJoinKernel(cx, op, obj, length, sb)) + return false; + } else { + CharSeparatorOp<char16_t> op(c); + if (!ArrayJoinKernel(cx, op, obj, length, sb)) + return false; + } + } else { + StringSeparatorOp op(sepstr); + if (!ArrayJoinKernel(cx, op, obj, length, sb)) + return false; + } + + // Step 11 + JSString *str = sb.finishString(); + if (!str) + return false; + + args.rval().setString(str); + return true; +} + +// ES2017 draft rev f8a9be8ea4bd97237d176907a1e3080dce20c68f +// 22.1.3.27 Array.prototype.toLocaleString ([ reserved1 [ , reserved2 ] ]) +// ES2017 Intl draft rev 78bbe7d1095f5ff3760ac4017ed366026e4cb276 +// 13.4.1 Array.prototype.toLocaleString ([ locales [ , options ]]) +static bool +array_toLocaleString(JSContext* cx, unsigned argc, Value* vp) +{ + JS_CHECK_RECURSION(cx, return false); + + CallArgs args = CallArgsFromVp(argc, vp); + + // Step 1 + RootedObject obj(cx, ToObject(cx, args.thisv())); + if (!obj) + return false; + + // Avoid calling into self-hosted code if the array is empty. + if (obj->is<ArrayObject>() && obj->as<ArrayObject>().length() == 0) { + args.rval().setString(cx->names().empty); + return true; + } + if (obj->is<UnboxedArrayObject>() && obj->as<UnboxedArrayObject>().length() == 0) { + args.rval().setString(cx->names().empty); + return true; + } + + AutoCycleDetector detector(cx, obj); + if (!detector.init()) + return false; + + if (detector.foundCycle()) { + args.rval().setString(cx->names().empty); + return true; + } + + FixedInvokeArgs<2> args2(cx); + + args2[0].set(args.get(0)); + args2[1].set(args.get(1)); + + // Steps 2-10. + RootedValue thisv(cx, ObjectValue(*obj)); + return CallSelfHostedFunction(cx, cx->names().ArrayToLocaleString, thisv, args2, args.rval()); +} + +/* vector must point to rooted memory. */ +static bool +InitArrayElements(JSContext* cx, HandleObject obj, uint32_t start, + uint32_t count, const Value* vector, + ShouldUpdateTypes updateTypes = ShouldUpdateTypes::Update) +{ + MOZ_ASSERT(count <= MAX_ARRAY_INDEX); + + if (count == 0) + return true; + + ObjectGroup* group = obj->getGroup(cx); + if (!group) + return false; + + if (!ObjectMayHaveExtraIndexedProperties(obj)) { + DenseElementResult result = + SetOrExtendAnyBoxedOrUnboxedDenseElements(cx, obj, start, vector, count, updateTypes); + if (result != DenseElementResult::Incomplete) + return result == DenseElementResult::Success; + } + + const Value* end = vector + count; + while (vector < end && start <= MAX_ARRAY_INDEX) { + if (!CheckForInterrupt(cx) || + !SetArrayElement(cx, obj, start++, HandleValue::fromMarkedLocation(vector++))) { + return false; + } + } + + if (vector == end) + return true; + + MOZ_ASSERT(start == MAX_ARRAY_INDEX + 1); + RootedValue value(cx); + RootedId id(cx); + RootedValue indexv(cx); + double index = MAX_ARRAY_INDEX + 1; + do { + value = *vector++; + indexv = DoubleValue(index); + if (!ValueToId<CanGC>(cx, indexv, &id)) + return false; + if (!SetProperty(cx, obj, id, value)) + return false; + index += 1; + } while (vector != end); + + return true; +} + +template <JSValueType Type> +DenseElementResult +ArrayReverseDenseKernel(JSContext* cx, HandleObject obj, uint32_t length) +{ + /* An empty array or an array with no elements is already reversed. */ + if (length == 0 || GetBoxedOrUnboxedInitializedLength<Type>(obj) == 0) + return DenseElementResult::Success; + + if (Type == JSVAL_TYPE_MAGIC) { + if (obj->as<NativeObject>().denseElementsAreFrozen()) + return DenseElementResult::Incomplete; + + /* + * It's actually surprisingly complicated to reverse an array due to the + * orthogonality of array length and array capacity while handling + * leading and trailing holes correctly. Reversing seems less likely to + * be a common operation than other array mass-mutation methods, so for + * now just take a probably-small memory hit (in the absence of too many + * holes in the array at its start) and ensure that the capacity is + * sufficient to hold all the elements in the array if it were full. + */ + DenseElementResult result = obj->as<NativeObject>().ensureDenseElements(cx, length, 0); + if (result != DenseElementResult::Success) + return result; + + /* Fill out the array's initialized length to its proper length. */ + obj->as<NativeObject>().ensureDenseInitializedLength(cx, length, 0); + } else { + // Unboxed arrays can only be reversed here if their initialized length + // matches their actual length. Otherwise the reversal will place holes + // at the beginning of the array, which we don't support. + if (length != obj->as<UnboxedArrayObject>().initializedLength()) + return DenseElementResult::Incomplete; + } + + RootedValue origlo(cx), orighi(cx); + + uint32_t lo = 0, hi = length - 1; + for (; lo < hi; lo++, hi--) { + origlo = GetBoxedOrUnboxedDenseElement<Type>(obj, lo); + orighi = GetBoxedOrUnboxedDenseElement<Type>(obj, hi); + SetBoxedOrUnboxedDenseElementNoTypeChange<Type>(obj, lo, orighi); + if (orighi.isMagic(JS_ELEMENTS_HOLE) && + !SuppressDeletedProperty(cx, obj, INT_TO_JSID(lo))) + { + return DenseElementResult::Failure; + } + SetBoxedOrUnboxedDenseElementNoTypeChange<Type>(obj, hi, origlo); + if (origlo.isMagic(JS_ELEMENTS_HOLE) && + !SuppressDeletedProperty(cx, obj, INT_TO_JSID(hi))) + { + return DenseElementResult::Failure; + } + } + + return DenseElementResult::Success; +} + +DefineBoxedOrUnboxedFunctor3(ArrayReverseDenseKernel, + JSContext*, HandleObject, uint32_t); + +bool +js::array_reverse(JSContext* cx, unsigned argc, Value* vp) +{ + AutoSPSEntry pseudoFrame(cx->runtime(), "Array.prototype.reverse"); + CallArgs args = CallArgsFromVp(argc, vp); + RootedObject obj(cx, ToObject(cx, args.thisv())); + if (!obj) + return false; + + uint32_t len; + if (!GetLengthProperty(cx, obj, &len)) + return false; + + if (!ObjectMayHaveExtraIndexedProperties(obj)) { + ArrayReverseDenseKernelFunctor functor(cx, obj, len); + DenseElementResult result = CallBoxedOrUnboxedSpecialization(functor, obj); + if (result != DenseElementResult::Incomplete) { + /* + * Per ECMA-262, don't update the length of the array, even if the new + * array has trailing holes (and thus the original array began with + * holes). + */ + args.rval().setObject(*obj); + return result == DenseElementResult::Success; + } + } + + RootedValue lowval(cx), hival(cx); + for (uint32_t i = 0, half = len / 2; i < half; i++) { + bool hole, hole2; + if (!CheckForInterrupt(cx) || + !GetElement(cx, obj, i, &hole, &lowval) || + !GetElement(cx, obj, len - i - 1, &hole2, &hival)) + { + return false; + } + + if (!hole && !hole2) { + if (!SetArrayElement(cx, obj, i, hival)) + return false; + if (!SetArrayElement(cx, obj, len - i - 1, lowval)) + return false; + } else if (hole && !hole2) { + if (!SetArrayElement(cx, obj, i, hival)) + return false; + if (!DeletePropertyOrThrow(cx, obj, len - i - 1)) + return false; + } else if (!hole && hole2) { + if (!DeletePropertyOrThrow(cx, obj, i)) + return false; + if (!SetArrayElement(cx, obj, len - i - 1, lowval)) + return false; + } else { + // No action required. + } + } + args.rval().setObject(*obj); + return true; +} + +static inline bool +CompareStringValues(JSContext* cx, const Value& a, const Value& b, bool* lessOrEqualp) +{ + if (!CheckForInterrupt(cx)) + return false; + + JSString* astr = a.toString(); + JSString* bstr = b.toString(); + int32_t result; + if (!CompareStrings(cx, astr, bstr, &result)) + return false; + + *lessOrEqualp = (result <= 0); + return true; +} + +static const uint64_t powersOf10[] = { + 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 100000000, 1000000000, 1000000000000ULL +}; + +static inline unsigned +NumDigitsBase10(uint32_t n) +{ + /* + * This is just floor_log10(n) + 1 + * Algorithm taken from + * http://graphics.stanford.edu/~seander/bithacks.html#IntegerLog10 + */ + uint32_t log2 = CeilingLog2(n); + uint32_t t = log2 * 1233 >> 12; + return t - (n < powersOf10[t]) + 1; +} + +static inline bool +CompareLexicographicInt32(const Value& a, const Value& b, bool* lessOrEqualp) +{ + int32_t aint = a.toInt32(); + int32_t bint = b.toInt32(); + + /* + * If both numbers are equal ... trivial + * If only one of both is negative --> arithmetic comparison as char code + * of '-' is always less than any other digit + * If both numbers are negative convert them to positive and continue + * handling ... + */ + if (aint == bint) { + *lessOrEqualp = true; + } else if ((aint < 0) && (bint >= 0)) { + *lessOrEqualp = true; + } else if ((aint >= 0) && (bint < 0)) { + *lessOrEqualp = false; + } else { + uint32_t auint = Abs(aint); + uint32_t buint = Abs(bint); + + /* + * ... get number of digits of both integers. + * If they have the same number of digits --> arithmetic comparison. + * If digits_a > digits_b: a < b*10e(digits_a - digits_b). + * If digits_b > digits_a: a*10e(digits_b - digits_a) <= b. + */ + unsigned digitsa = NumDigitsBase10(auint); + unsigned digitsb = NumDigitsBase10(buint); + if (digitsa == digitsb) { + *lessOrEqualp = (auint <= buint); + } else if (digitsa > digitsb) { + MOZ_ASSERT((digitsa - digitsb) < ArrayLength(powersOf10)); + *lessOrEqualp = (uint64_t(auint) < uint64_t(buint) * powersOf10[digitsa - digitsb]); + } else { /* if (digitsb > digitsa) */ + MOZ_ASSERT((digitsb - digitsa) < ArrayLength(powersOf10)); + *lessOrEqualp = (uint64_t(auint) * powersOf10[digitsb - digitsa] <= uint64_t(buint)); + } + } + + return true; +} + +template <typename Char1, typename Char2> +static inline bool +CompareSubStringValues(JSContext* cx, const Char1* s1, size_t len1, const Char2* s2, size_t len2, + bool* lessOrEqualp) +{ + if (!CheckForInterrupt(cx)) + return false; + + if (!s1 || !s2) + return false; + + int32_t result = CompareChars(s1, len1, s2, len2); + *lessOrEqualp = (result <= 0); + return true; +} + +namespace { + +struct SortComparatorStrings +{ + JSContext* const cx; + + explicit SortComparatorStrings(JSContext* cx) + : cx(cx) {} + + bool operator()(const Value& a, const Value& b, bool* lessOrEqualp) { + return CompareStringValues(cx, a, b, lessOrEqualp); + } +}; + +struct SortComparatorLexicographicInt32 +{ + bool operator()(const Value& a, const Value& b, bool* lessOrEqualp) { + return CompareLexicographicInt32(a, b, lessOrEqualp); + } +}; + +struct StringifiedElement +{ + size_t charsBegin; + size_t charsEnd; + size_t elementIndex; +}; + +struct SortComparatorStringifiedElements +{ + JSContext* const cx; + const StringBuffer& sb; + + SortComparatorStringifiedElements(JSContext* cx, const StringBuffer& sb) + : cx(cx), sb(sb) {} + + bool operator()(const StringifiedElement& a, const StringifiedElement& b, bool* lessOrEqualp) { + size_t lenA = a.charsEnd - a.charsBegin; + size_t lenB = b.charsEnd - b.charsBegin; + + if (sb.isUnderlyingBufferLatin1()) { + return CompareSubStringValues(cx, sb.rawLatin1Begin() + a.charsBegin, lenA, + sb.rawLatin1Begin() + b.charsBegin, lenB, + lessOrEqualp); + } + + return CompareSubStringValues(cx, sb.rawTwoByteBegin() + a.charsBegin, lenA, + sb.rawTwoByteBegin() + b.charsBegin, lenB, + lessOrEqualp); + } +}; + +struct NumericElement +{ + double dv; + size_t elementIndex; +}; + +static bool +ComparatorNumericLeftMinusRight(const NumericElement& a, const NumericElement& b, + bool* lessOrEqualp) +{ + *lessOrEqualp = (a.dv <= b.dv); + return true; +} + +static bool +ComparatorNumericRightMinusLeft(const NumericElement& a, const NumericElement& b, + bool* lessOrEqualp) +{ + *lessOrEqualp = (b.dv <= a.dv); + return true; +} + +typedef bool (*ComparatorNumeric)(const NumericElement& a, const NumericElement& b, + bool* lessOrEqualp); + +static const ComparatorNumeric SortComparatorNumerics[] = { + nullptr, + nullptr, + ComparatorNumericLeftMinusRight, + ComparatorNumericRightMinusLeft +}; + +static bool +ComparatorInt32LeftMinusRight(const Value& a, const Value& b, bool* lessOrEqualp) +{ + *lessOrEqualp = (a.toInt32() <= b.toInt32()); + return true; +} + +static bool +ComparatorInt32RightMinusLeft(const Value& a, const Value& b, bool* lessOrEqualp) +{ + *lessOrEqualp = (b.toInt32() <= a.toInt32()); + return true; +} + +typedef bool (*ComparatorInt32)(const Value& a, const Value& b, bool* lessOrEqualp); + +static const ComparatorInt32 SortComparatorInt32s[] = { + nullptr, + nullptr, + ComparatorInt32LeftMinusRight, + ComparatorInt32RightMinusLeft +}; + +// Note: Values for this enum must match up with SortComparatorNumerics +// and SortComparatorInt32s. +enum ComparatorMatchResult { + Match_Failure = 0, + Match_None, + Match_LeftMinusRight, + Match_RightMinusLeft +}; + +} // namespace + + +/* + * Specialize behavior for comparator functions with particular common bytecode + * patterns: namely, |return x - y| and |return y - x|. + */ +static ComparatorMatchResult +MatchNumericComparator(JSContext* cx, const Value& v) +{ + if (!v.isObject()) + return Match_None; + + JSObject& obj = v.toObject(); + if (!obj.is<JSFunction>()) + return Match_None; + + JSFunction* fun = &obj.as<JSFunction>(); + if (!fun->isInterpreted() || fun->isClassConstructor()) + return Match_None; + + JSScript* script = fun->getOrCreateScript(cx); + if (!script) + return Match_Failure; + + jsbytecode* pc = script->code(); + + uint16_t arg0, arg1; + if (JSOp(*pc) != JSOP_GETARG) + return Match_None; + arg0 = GET_ARGNO(pc); + pc += JSOP_GETARG_LENGTH; + + if (JSOp(*pc) != JSOP_GETARG) + return Match_None; + arg1 = GET_ARGNO(pc); + pc += JSOP_GETARG_LENGTH; + + if (JSOp(*pc) != JSOP_SUB) + return Match_None; + pc += JSOP_SUB_LENGTH; + + if (JSOp(*pc) != JSOP_RETURN) + return Match_None; + + if (arg0 == 0 && arg1 == 1) + return Match_LeftMinusRight; + + if (arg0 == 1 && arg1 == 0) + return Match_RightMinusLeft; + + return Match_None; +} + +template <typename K, typename C> +static inline bool +MergeSortByKey(K keys, size_t len, K scratch, C comparator, MutableHandle<GCVector<Value>> vec) +{ + MOZ_ASSERT(vec.length() >= len); + + /* Sort keys. */ + if (!MergeSort(keys, len, scratch, comparator)) + return false; + + /* + * Reorder vec by keys in-place, going element by element. When an out-of- + * place element is encountered, move that element to its proper position, + * displacing whatever element was at *that* point to its proper position, + * and so on until an element must be moved to the current position. + * + * At each outer iteration all elements up to |i| are sorted. If + * necessary each inner iteration moves some number of unsorted elements + * (including |i|) directly to sorted position. Thus on completion |*vec| + * is sorted, and out-of-position elements have moved once. Complexity is + * Θ(len) + O(len) == O(2*len), with each element visited at most twice. + */ + for (size_t i = 0; i < len; i++) { + size_t j = keys[i].elementIndex; + if (i == j) + continue; // fixed point + + MOZ_ASSERT(j > i, "Everything less than |i| should be in the right place!"); + Value tv = vec[j]; + do { + size_t k = keys[j].elementIndex; + keys[j].elementIndex = j; + vec[j].set(vec[k]); + j = k; + } while (j != i); + + // We could assert the loop invariant that |i == keys[i].elementIndex| + // here if we synced |keys[i].elementIndex|. But doing so would render + // the assertion vacuous, so don't bother, even in debug builds. + vec[i].set(tv); + } + + return true; +} + +/* + * Sort Values as strings. + * + * To minimize #conversions, SortLexicographically() first converts all Values + * to strings at once, then sorts the elements by these cached strings. + */ +static bool +SortLexicographically(JSContext* cx, MutableHandle<GCVector<Value>> vec, size_t len) +{ + MOZ_ASSERT(vec.length() >= len); + + StringBuffer sb(cx); + Vector<StringifiedElement, 0, TempAllocPolicy> strElements(cx); + + /* MergeSort uses the upper half as scratch space. */ + if (!strElements.resize(2 * len)) + return false; + + /* Convert Values to strings. */ + size_t cursor = 0; + for (size_t i = 0; i < len; i++) { + if (!CheckForInterrupt(cx)) + return false; + + if (!ValueToStringBuffer(cx, vec[i], sb)) + return false; + + strElements[i] = { cursor, sb.length(), i }; + cursor = sb.length(); + } + + /* Sort Values in vec alphabetically. */ + return MergeSortByKey(strElements.begin(), len, strElements.begin() + len, + SortComparatorStringifiedElements(cx, sb), vec); +} + +/* + * Sort Values as numbers. + * + * To minimize #conversions, SortNumerically first converts all Values to + * numerics at once, then sorts the elements by these cached numerics. + */ +static bool +SortNumerically(JSContext* cx, MutableHandle<GCVector<Value>> vec, size_t len, + ComparatorMatchResult comp) +{ + MOZ_ASSERT(vec.length() >= len); + + Vector<NumericElement, 0, TempAllocPolicy> numElements(cx); + + /* MergeSort uses the upper half as scratch space. */ + if (!numElements.resize(2 * len)) + return false; + + /* Convert Values to numerics. */ + for (size_t i = 0; i < len; i++) { + if (!CheckForInterrupt(cx)) + return false; + + double dv; + if (!ToNumber(cx, vec[i], &dv)) + return false; + + numElements[i] = { dv, i }; + } + + /* Sort Values in vec numerically. */ + return MergeSortByKey(numElements.begin(), len, numElements.begin() + len, + SortComparatorNumerics[comp], vec); +} + +bool +js::array_sort(JSContext* cx, unsigned argc, Value* vp) +{ + CallArgs args = CallArgsFromVp(argc, vp); + + RootedValue fval(cx); + + if (args.hasDefined(0)) { + if (args[0].isPrimitive()) { + JS_ReportErrorNumberASCII(cx, GetErrorMessage, nullptr, JSMSG_BAD_SORT_ARG); + return false; + } + fval = args[0]; /* non-default compare function */ + } else { + fval.setNull(); + } + + RootedObject obj(cx, ToObject(cx, args.thisv())); + if (!obj) + return false; + + ComparatorMatchResult comp = MatchNumericComparator(cx, fval); + if (comp == Match_Failure) + return false; + + if (!fval.isNull() && comp == Match_None) { + /* + * Non-optimized user supplied comparators perform much better when + * called from within a self-hosted sorting function. + */ + RootedAtom selfHostedSortAtom(cx, Atomize(cx, "ArraySort", 9)); + RootedPropertyName selfHostedSortName(cx, selfHostedSortAtom->asPropertyName()); + RootedValue selfHostedSortValue(cx); + + if (!GlobalObject::getIntrinsicValue(cx, cx->global(), selfHostedSortName, + &selfHostedSortValue)) { + return false; + } + + MOZ_ASSERT(selfHostedSortValue.isObject()); + MOZ_ASSERT(selfHostedSortValue.toObject().is<JSFunction>()); + + return Call(cx, selfHostedSortValue, args.thisv(), fval, args.rval()); + } + + uint32_t len; + if (!GetLengthProperty(cx, obj, &len)) + return false; + if (len < 2) { + /* [] and [a] remain unchanged when sorted. */ + args.rval().setObject(*obj); + return true; + } + + /* + * We need a temporary array of 2 * len Value to hold the array elements + * and the scratch space for merge sort. Check that its size does not + * overflow size_t, which would allow for indexing beyond the end of the + * malloc'd vector. + */ +#if JS_BITS_PER_WORD == 32 + if (size_t(len) > size_t(-1) / (2 * sizeof(Value))) { + ReportAllocationOverflow(cx); + return false; + } +#endif + + /* + * Initialize vec as a root. We will clear elements of vec one by + * one while increasing the rooted amount of vec when we know that the + * property at the corresponding index exists and its value must be rooted. + * + * In this way when sorting a huge mostly sparse array we will not + * access the tail of vec corresponding to properties that do not + * exist, allowing OS to avoiding committing RAM. See bug 330812. + */ + size_t n, undefs; + { + Rooted<GCVector<Value>> vec(cx, GCVector<Value>(cx)); + if (!vec.reserve(2 * size_t(len))) + return false; + + /* + * By ECMA 262, 15.4.4.11, a property that does not exist (which we + * call a "hole") is always greater than an existing property with + * value undefined and that is always greater than any other property. + * Thus to sort holes and undefs we simply count them, sort the rest + * of elements, append undefs after them and then make holes after + * undefs. + */ + undefs = 0; + bool allStrings = true; + bool allInts = true; + bool extraIndexed = ObjectMayHaveExtraIndexedProperties(obj); + RootedValue v(cx); + for (uint32_t i = 0; i < len; i++) { + if (!CheckForInterrupt(cx)) + return false; + + /* Clear vec[newlen] before including it in the rooted set. */ + bool hole; + if (!GetElement(cx, obj, i, &hole, &v)) + return false; + if (hole) + continue; + if (v.isUndefined()) { + ++undefs; + continue; + } + vec.infallibleAppend(v); + allStrings = allStrings && v.isString(); + allInts = allInts && v.isInt32(); + } + + + /* + * If the array only contains holes, we're done. But if it contains + * undefs, those must be sorted to the front of the array. + */ + n = vec.length(); + if (n == 0 && undefs == 0) { + args.rval().setObject(*obj); + return true; + } + + /* Here len == n + undefs + number_of_holes. */ + if (fval.isNull()) { + /* + * Sort using the default comparator converting all elements to + * strings. + */ + if (allStrings) { + JS_ALWAYS_TRUE(vec.resize(n * 2)); + if (!MergeSort(vec.begin(), n, vec.begin() + n, SortComparatorStrings(cx))) + return false; + } else if (allInts) { + JS_ALWAYS_TRUE(vec.resize(n * 2)); + if (!MergeSort(vec.begin(), n, vec.begin() + n, + SortComparatorLexicographicInt32())) { + return false; + } + } else { + if (!SortLexicographically(cx, &vec, n)) + return false; + } + } else { + if (allInts) { + JS_ALWAYS_TRUE(vec.resize(n * 2)); + if (!MergeSort(vec.begin(), n, vec.begin() + n, SortComparatorInt32s[comp])) + return false; + } else { + if (!SortNumerically(cx, &vec, n, comp)) + return false; + } + } + + ShouldUpdateTypes updateTypes = !extraIndexed && (allStrings || allInts) + ? ShouldUpdateTypes::DontUpdate + : ShouldUpdateTypes::Update; + if (!InitArrayElements(cx, obj, 0, uint32_t(n), vec.begin(), updateTypes)) + return false; + } + + /* Set undefs that sorted after the rest of elements. */ + while (undefs != 0) { + --undefs; + if (!CheckForInterrupt(cx) || !SetArrayElement(cx, obj, n++, UndefinedHandleValue)) + return false; + } + + /* Re-create any holes that sorted to the end of the array. */ + while (len > n) { + if (!CheckForInterrupt(cx) || !DeletePropertyOrThrow(cx, obj, --len)) + return false; + } + args.rval().setObject(*obj); + return true; +} + +bool +js::NewbornArrayPush(JSContext* cx, HandleObject obj, const Value& v) +{ + Rooted<ArrayObject*> arr(cx, &obj->as<ArrayObject>()); + + MOZ_ASSERT(!v.isMagic()); + MOZ_ASSERT(arr->lengthIsWritable()); + + uint32_t length = arr->length(); + MOZ_ASSERT(length <= arr->getDenseCapacity()); + + if (!arr->ensureElements(cx, length + 1)) + return false; + + arr->setDenseInitializedLength(length + 1); + arr->setLengthInt32(length + 1); + arr->initDenseElementWithType(cx, length, v); + return true; +} + +/* ES5 15.4.4.7 */ +bool +js::array_push(JSContext* cx, unsigned argc, Value* vp) +{ + AutoSPSEntry pseudoFrame(cx->runtime(), "Array.prototype.push"); + CallArgs args = CallArgsFromVp(argc, vp); + + /* Step 1. */ + RootedObject obj(cx, ToObject(cx, args.thisv())); + if (!obj) + return false; + + /* Steps 2-3. */ + uint32_t length; + if (!GetLengthProperty(cx, obj, &length)) + return false; + + if (!ObjectMayHaveExtraIndexedProperties(obj)) { + DenseElementResult result = + SetOrExtendAnyBoxedOrUnboxedDenseElements(cx, obj, length, + args.array(), args.length()); + if (result != DenseElementResult::Incomplete) { + if (result == DenseElementResult::Failure) + return false; + + uint32_t newlength = length + args.length(); + args.rval().setNumber(newlength); + + // SetOrExtendAnyBoxedOrUnboxedDenseElements takes care of updating the + // length for boxed and unboxed arrays. Handle updates to the length of + // non-arrays here. + bool isArray; + if (!IsArray(cx, obj, &isArray)) + return false; + + if (!isArray) + return SetLengthProperty(cx, obj, newlength); + + return true; + } + } + + /* Steps 4-5. */ + if (!InitArrayElements(cx, obj, length, args.length(), args.array())) + return false; + + /* Steps 6-7. */ + double newlength = length + double(args.length()); + args.rval().setNumber(newlength); + return SetLengthProperty(cx, obj, newlength); +} + +/* ES6 20130308 draft 15.4.4.6. */ +bool +js::array_pop(JSContext* cx, unsigned argc, Value* vp) +{ + AutoSPSEntry pseudoFrame(cx->runtime(), "Array.prototype.pop"); + CallArgs args = CallArgsFromVp(argc, vp); + + /* Step 1. */ + RootedObject obj(cx, ToObject(cx, args.thisv())); + if (!obj) + return false; + + /* Steps 2-3. */ + uint32_t index; + if (!GetLengthProperty(cx, obj, &index)) + return false; + + /* Steps 4-5. */ + if (index == 0) { + /* Step 4b. */ + args.rval().setUndefined(); + } else { + /* Step 5a. */ + index--; + + /* Step 5b, 5e. */ + bool hole; + if (!GetElement(cx, obj, index, &hole, args.rval())) + return false; + + /* Step 5c. */ + if (!hole && !DeletePropertyOrThrow(cx, obj, index)) + return false; + } + + /* Steps 4a, 5d. */ + return SetLengthProperty(cx, obj, index); +} + +template <JSValueType Type> +static inline DenseElementResult +ShiftMoveBoxedOrUnboxedDenseElements(JSObject* obj) +{ + MOZ_ASSERT(HasBoxedOrUnboxedDenseElements<Type>(obj)); + + /* + * At this point the length and initialized length have already been + * decremented and the result fetched, so just shift the array elements + * themselves. + */ + size_t initlen = GetBoxedOrUnboxedInitializedLength<Type>(obj); + if (Type == JSVAL_TYPE_MAGIC) { + obj->as<NativeObject>().moveDenseElementsNoPreBarrier(0, 1, initlen); + } else { + uint8_t* data = obj->as<UnboxedArrayObject>().elements(); + size_t elementSize = UnboxedTypeSize(Type); + memmove(data, data + elementSize, initlen * elementSize); + } + + return DenseElementResult::Success; +} + +DefineBoxedOrUnboxedFunctor1(ShiftMoveBoxedOrUnboxedDenseElements, JSObject*); + +void +js::ArrayShiftMoveElements(JSObject* obj) +{ + MOZ_ASSERT_IF(obj->is<ArrayObject>(), obj->as<ArrayObject>().lengthIsWritable()); + + ShiftMoveBoxedOrUnboxedDenseElementsFunctor functor(obj); + JS_ALWAYS_TRUE(CallBoxedOrUnboxedSpecialization(functor, obj) == DenseElementResult::Success); +} + +template <JSValueType Type> +DenseElementResult +ArrayShiftDenseKernel(JSContext* cx, HandleObject obj, MutableHandleValue rval) +{ + if (ObjectMayHaveExtraIndexedProperties(obj)) + return DenseElementResult::Incomplete; + + RootedObjectGroup group(cx, obj->getGroup(cx)); + if (MOZ_UNLIKELY(!group)) + return DenseElementResult::Failure; + + if (MOZ_UNLIKELY(group->hasAllFlags(OBJECT_FLAG_ITERATED))) + return DenseElementResult::Incomplete; + + size_t initlen = GetBoxedOrUnboxedInitializedLength<Type>(obj); + if (initlen == 0) + return DenseElementResult::Incomplete; + + rval.set(GetBoxedOrUnboxedDenseElement<Type>(obj, 0)); + if (rval.isMagic(JS_ELEMENTS_HOLE)) + rval.setUndefined(); + + DenseElementResult result = MoveBoxedOrUnboxedDenseElements<Type>(cx, obj, 0, 1, initlen - 1); + if (result != DenseElementResult::Success) + return result; + + SetBoxedOrUnboxedInitializedLength<Type>(cx, obj, initlen - 1); + return DenseElementResult::Success; +} + +DefineBoxedOrUnboxedFunctor3(ArrayShiftDenseKernel, + JSContext*, HandleObject, MutableHandleValue); + +/* ES5 15.4.4.9 */ +bool +js::array_shift(JSContext* cx, unsigned argc, Value* vp) +{ + AutoSPSEntry pseudoFrame(cx->runtime(), "Array.prototype.shift"); + CallArgs args = CallArgsFromVp(argc, vp); + + /* Step 1. */ + RootedObject obj(cx, ToObject(cx, args.thisv())); + if (!obj) + return false; + + /* Steps 2-3. */ + uint32_t len; + if (!GetLengthProperty(cx, obj, &len)) + return false; + + /* Step 4. */ + if (len == 0) { + /* Step 4a. */ + if (!SetLengthProperty(cx, obj, 0)) + return false; + + /* Step 4b. */ + args.rval().setUndefined(); + return true; + } + + uint32_t newlen = len - 1; + + /* Fast paths. */ + ArrayShiftDenseKernelFunctor functor(cx, obj, args.rval()); + DenseElementResult result = CallBoxedOrUnboxedSpecialization(functor, obj); + if (result != DenseElementResult::Incomplete) { + if (result == DenseElementResult::Failure) + return false; + + return SetLengthProperty(cx, obj, newlen); + } + + /* Steps 5, 10. */ + bool hole; + if (!GetElement(cx, obj, uint32_t(0), &hole, args.rval())) + return false; + + /* Steps 6-7. */ + RootedValue value(cx); + for (uint32_t i = 0; i < newlen; i++) { + if (!CheckForInterrupt(cx)) + return false; + if (!GetElement(cx, obj, i + 1, &hole, &value)) + return false; + if (hole) { + if (!DeletePropertyOrThrow(cx, obj, i)) + return false; + } else { + if (!SetArrayElement(cx, obj, i, value)) + return false; + } + } + + /* Step 8. */ + if (!DeletePropertyOrThrow(cx, obj, newlen)) + return false; + + /* Step 9. */ + return SetLengthProperty(cx, obj, newlen); +} + +bool +js::array_unshift(JSContext* cx, unsigned argc, Value* vp) +{ + AutoSPSEntry pseudoFrame(cx->runtime(), "Array.prototype.unshift"); + CallArgs args = CallArgsFromVp(argc, vp); + RootedObject obj(cx, ToObject(cx, args.thisv())); + if (!obj) + return false; + + uint32_t length; + if (!GetLengthProperty(cx, obj, &length)) + return false; + + double newlen = length; + if (args.length() > 0) { + /* Slide up the array to make room for all args at the bottom. */ + if (length > 0) { + // Only include a fast path for boxed arrays. Unboxed arrays can'nt + // be optimized here because unshifting temporarily places holes at + // the start of the array. + bool optimized = false; + do { + if (!obj->is<ArrayObject>()) + break; + if (ObjectMayHaveExtraIndexedProperties(obj)) + break; + ArrayObject* aobj = &obj->as<ArrayObject>(); + if (!aobj->lengthIsWritable()) + break; + DenseElementResult result = aobj->ensureDenseElements(cx, length, args.length()); + if (result != DenseElementResult::Success) { + if (result == DenseElementResult::Failure) + return false; + MOZ_ASSERT(result == DenseElementResult::Incomplete); + break; + } + aobj->moveDenseElements(args.length(), 0, length); + for (uint32_t i = 0; i < args.length(); i++) + aobj->setDenseElement(i, MagicValue(JS_ELEMENTS_HOLE)); + optimized = true; + } while (false); + + if (!optimized) { + double last = length; + double upperIndex = last + args.length(); + RootedValue value(cx); + do { + --last, --upperIndex; + bool hole; + if (!CheckForInterrupt(cx)) + return false; + if (!GetElement(cx, obj, last, &hole, &value)) + return false; + if (hole) { + if (!DeletePropertyOrThrow(cx, obj, upperIndex)) + return false; + } else { + if (!SetArrayElement(cx, obj, upperIndex, value)) + return false; + } + } while (last != 0); + } + } + + /* Copy from args to the bottom of the array. */ + if (!InitArrayElements(cx, obj, 0, args.length(), args.array())) + return false; + + newlen += args.length(); + } + if (!SetLengthProperty(cx, obj, newlen)) + return false; + + /* Follow Perl by returning the new array length. */ + args.rval().setNumber(newlen); + return true; +} + +/* + * Returns true if this is a dense or unboxed array whose |count| properties + * starting from |startingIndex| may be accessed (get, set, delete) directly + * through its contiguous vector of elements without fear of getters, setters, + * etc. along the prototype chain, or of enumerators requiring notification of + * modifications. + */ +static inline bool +CanOptimizeForDenseStorage(HandleObject arr, uint32_t startingIndex, uint32_t count, JSContext* cx) +{ + /* If the desired properties overflow dense storage, we can't optimize. */ + if (UINT32_MAX - startingIndex < count) + return false; + + /* There's no optimizing possible if it's not an array. */ + if (!arr->is<ArrayObject>() && !arr->is<UnboxedArrayObject>()) + return false; + + /* If it's a frozen array, always pick the slow path */ + if (arr->is<ArrayObject>() && arr->as<ArrayObject>().denseElementsAreFrozen()) + return false; + + /* + * Don't optimize if the array might be in the midst of iteration. We + * rely on this to be able to safely move dense array elements around with + * just a memmove (see NativeObject::moveDenseArrayElements), without worrying + * about updating any in-progress enumerators for properties implicitly + * deleted if a hole is moved from one location to another location not yet + * visited. See bug 690622. + */ + ObjectGroup* arrGroup = arr->getGroup(cx); + if (!arrGroup) { + cx->recoverFromOutOfMemory(); + return false; + } + if (MOZ_UNLIKELY(arrGroup->hasAllFlags(OBJECT_FLAG_ITERATED))) + return false; + + /* + * Another potential wrinkle: what if the enumeration is happening on an + * object which merely has |arr| on its prototype chain? + */ + if (arr->isDelegate()) + return false; + + /* + * Now watch out for getters and setters along the prototype chain or in + * other indexed properties on the object. (Note that non-writable length + * is subsumed by the initializedLength comparison.) + */ + return !ObjectMayHaveExtraIndexedProperties(arr) && + startingIndex + count <= GetAnyBoxedOrUnboxedInitializedLength(arr); +} + +/* ES 2016 draft Mar 25, 2016 22.1.3.26. */ +bool +js::array_splice(JSContext* cx, unsigned argc, Value* vp) +{ + return array_splice_impl(cx, argc, vp, true); +} + +static inline bool +ArraySpliceCopy(JSContext* cx, HandleObject arr, HandleObject obj, + uint32_t actualStart, uint32_t actualDeleteCount) +{ + /* Steps 14, 15, 15.e. */ + RootedValue fromValue(cx); + for (uint32_t k = 0; k < actualDeleteCount; k++) { + /* Step 15.a (implicit). */ + + if (!CheckForInterrupt(cx)) + return false; + + /* Steps 15.b-c, 15.d.i-ii. */ + bool hole; + if (!GetElement(cx, obj, actualStart + k, &hole, &fromValue)) + return false; + + /* Step 15.d. */ + if (!hole) { + /* Step 15.d.iii-iv. */ + if (!DefineElement(cx, arr, k, fromValue)) + return false; + } + } + + /* Steps 16-17. */ + return SetLengthProperty(cx, arr, actualDeleteCount); +} + +bool +js::array_splice_impl(JSContext* cx, unsigned argc, Value* vp, bool returnValueIsUsed) +{ + AutoSPSEntry pseudoFrame(cx->runtime(), "Array.prototype.splice"); + CallArgs args = CallArgsFromVp(argc, vp); + + /* Step 1. */ + RootedObject obj(cx, ToObject(cx, args.thisv())); + if (!obj) + return false; + + /* Step 2. */ + uint32_t len; + if (!GetLengthProperty(cx, obj, &len)) + return false; + + /* Step 3. */ + double relativeStart; + if (!ToInteger(cx, args.get(0), &relativeStart)) + return false; + + /* Step 4. */ + uint32_t actualStart; + if (relativeStart < 0) + actualStart = Max(len + relativeStart, 0.0); + else + actualStart = Min(relativeStart, double(len)); + + /* Step 5. */ + uint32_t actualDeleteCount; + if (args.length() == 0) { + /* Step 5.b. */ + actualDeleteCount = 0; + } else if (args.length() == 1) { + /* Step 6.b. */ + actualDeleteCount = len - actualStart; + } else { + /* Steps 7.b. */ + double deleteCountDouble; + RootedValue cnt(cx, args[1]); + if (!ToInteger(cx, cnt, &deleteCountDouble)) + return false; + + /* Step 7.c. */ + actualDeleteCount = Min(Max(deleteCountDouble, 0.0), double(len - actualStart)); + } + + /* Step 8 (implicit). */ + + MOZ_ASSERT(len - actualStart >= actualDeleteCount); + + RootedObject arr(cx); + if (IsArraySpecies(cx, obj)) { + if (CanOptimizeForDenseStorage(obj, actualStart, actualDeleteCount, cx)) { + if (returnValueIsUsed) { + /* Step 9. */ + arr = NewFullyAllocatedArrayTryReuseGroup(cx, obj, actualDeleteCount); + if (!arr) + return false; + + /* Steps 10-11. */ + DebugOnly<DenseElementResult> result = + CopyAnyBoxedOrUnboxedDenseElements(cx, arr, obj, 0, actualStart, actualDeleteCount); + MOZ_ASSERT(result.value == DenseElementResult::Success); + + /* Step 12 (implicit). */ + } + } else { + /* Step 9. */ + arr = NewFullyAllocatedArrayTryReuseGroup(cx, obj, actualDeleteCount); + if (!arr) + return false; + + /* Steps 10-12. */ + if (!ArraySpliceCopy(cx, arr, obj, actualStart, actualDeleteCount)) + return false; + } + } else { + /* Steps 9. */ + if (!ArraySpeciesCreate(cx, obj, actualDeleteCount, &arr)) + return false; + + /* Steps 10-12. */ + if (!ArraySpliceCopy(cx, arr, obj, actualStart, actualDeleteCount)) + return false; + } + + /* Step 14. */ + uint32_t itemCount = (args.length() >= 2) ? (args.length() - 2) : 0; + + if (itemCount < actualDeleteCount) { + /* Step 15: the array is being shrunk. */ + uint32_t sourceIndex = actualStart + actualDeleteCount; + uint32_t targetIndex = actualStart + itemCount; + uint32_t finalLength = len - actualDeleteCount + itemCount; + + if (CanOptimizeForDenseStorage(obj, 0, len, cx)) { + /* Steps 15.a-b. */ + DenseElementResult result = + MoveAnyBoxedOrUnboxedDenseElements(cx, obj, targetIndex, sourceIndex, + len - sourceIndex); + MOZ_ASSERT(result != DenseElementResult::Incomplete); + if (result == DenseElementResult::Failure) + return false; + + /* Steps 15.c-d. */ + SetAnyBoxedOrUnboxedInitializedLength(cx, obj, finalLength); + } else { + /* + * This is all very slow if the length is very large. We don't yet + * have the ability to iterate in sorted order, so we just do the + * pessimistic thing and let CheckForInterrupt handle the + * fallout. + */ + + /* Steps 15.a-b. */ + RootedValue fromValue(cx); + for (uint32_t from = sourceIndex, to = targetIndex; from < len; from++, to++) { + /* Steps 15.b.i-ii (implicit). */ + + if (!CheckForInterrupt(cx)) + return false; + + /* Steps 15.b.iii, 15.b.iv.1. */ + bool hole; + if (!GetElement(cx, obj, from, &hole, &fromValue)) + return false; + + /* Steps 15.b.iv. */ + if (hole) { + /* Steps 15.b.v.1. */ + if (!DeletePropertyOrThrow(cx, obj, to)) + return false; + } else { + /* Step 15.b.iv.2. */ + if (!SetArrayElement(cx, obj, to, fromValue)) + return false; + } + } + + /* Steps 15.c-d. */ + for (uint32_t k = len; k > finalLength; k--) { + /* Steps 15.d.i-ii. */ + if (!DeletePropertyOrThrow(cx, obj, k - 1)) + return false; + } + } + } else if (itemCount > actualDeleteCount) { + /* Step 16. */ + + /* + * Optimize only if the array is already dense and we can extend it to + * its new length. It would be wrong to extend the elements here for a + * number of reasons. + * + * First, this could cause us to fall into the fast-path below. This + * would cause elements to be moved into places past the non-writable + * length. And when the dense initialized length is updated, that'll + * cause the |in| operator to think that those elements actually exist, + * even though, properly, setting them must fail. + * + * Second, extending the elements here will trigger assertions inside + * ensureDenseElements that the elements aren't being extended past the + * length of a non-writable array. This is because extending elements + * will extend capacity -- which might extend them past a non-writable + * length, violating the |capacity <= length| invariant for such + * arrays. And that would make the various JITted fast-path method + * implementations of [].push, [].unshift, and so on wrong. + * + * If the array length is non-writable, this method *will* throw. For + * simplicity, have the slow-path code do it. (Also note that the slow + * path may validly *not* throw -- if all the elements being moved are + * holes.) + */ + if (obj->is<ArrayObject>()) { + Rooted<ArrayObject*> arr(cx, &obj->as<ArrayObject>()); + if (arr->lengthIsWritable()) { + DenseElementResult result = + arr->ensureDenseElements(cx, len, itemCount - actualDeleteCount); + if (result == DenseElementResult::Failure) + return false; + } + } + + if (CanOptimizeForDenseStorage(obj, len, itemCount - actualDeleteCount, cx)) { + DenseElementResult result = + MoveAnyBoxedOrUnboxedDenseElements(cx, obj, actualStart + itemCount, + actualStart + actualDeleteCount, + len - (actualStart + actualDeleteCount)); + MOZ_ASSERT(result != DenseElementResult::Incomplete); + if (result == DenseElementResult::Failure) + return false; + + /* Steps 16.a-b. */ + SetAnyBoxedOrUnboxedInitializedLength(cx, obj, len + itemCount - actualDeleteCount); + } else { + RootedValue fromValue(cx); + for (double k = len - actualDeleteCount; k > actualStart; k--) { + if (!CheckForInterrupt(cx)) + return false; + + /* Step 16.b.i. */ + double from = k + actualDeleteCount - 1; + + /* Step 16.b.ii. */ + double to = k + itemCount - 1; + + /* Steps 16.b.iii, 16.b.iv.1. */ + bool hole; + if (!GetElement(cx, obj, from, &hole, &fromValue)) + return false; + + /* Steps 16.b.iv. */ + if (hole) { + /* Step 16.b.v.1. */ + if (!DeletePropertyOrThrow(cx, obj, to)) + return false; + } else { + /* Step 16.b.iv.2. */ + if (!SetArrayElement(cx, obj, to, fromValue)) + return false; + } + } + } + } + + /* Step 13 (reordered). */ + Value* items = args.array() + 2; + + /* Steps 17-18. */ + for (uint32_t k = actualStart, i = 0; i < itemCount; i++, k++) { + /* Step 18.a (implicit). */ + + /* Step 18.b. */ + if (!SetArrayElement(cx, obj, k, HandleValue::fromMarkedLocation(&items[i]))) + return false; + } + + /* Step 19. */ + double finalLength = double(len) - actualDeleteCount + itemCount; + if (!SetLengthProperty(cx, obj, finalLength)) + return false; + + /* Step 20. */ + if (returnValueIsUsed) + args.rval().setObject(*arr); + + return true; +} + +struct SortComparatorIndexes +{ + bool operator()(uint32_t a, uint32_t b, bool* lessOrEqualp) { + *lessOrEqualp = (a <= b); + return true; + } +}; + +// Returns all indexed properties in the range [begin, end) found on |obj| or +// its proto chain. This function does not handle proxies, objects with +// resolve/lookupProperty hooks or indexed getters, as those can introduce +// new properties. In those cases, *success is set to |false|. +static bool +GetIndexedPropertiesInRange(JSContext* cx, HandleObject obj, uint32_t begin, uint32_t end, + Vector<uint32_t>& indexes, bool* success) +{ + *success = false; + + // First, look for proxies or class hooks that can introduce extra + // properties. + JSObject* pobj = obj; + do { + if (!pobj->isNative() || pobj->getClass()->getResolve() || pobj->getOpsLookupProperty()) + return true; + } while ((pobj = pobj->staticPrototype())); + + // Collect indexed property names. + pobj = obj; + do { + // Append dense elements. + NativeObject* nativeObj = &pobj->as<NativeObject>(); + uint32_t initLen = nativeObj->getDenseInitializedLength(); + for (uint32_t i = begin; i < initLen && i < end; i++) { + if (nativeObj->getDenseElement(i).isMagic(JS_ELEMENTS_HOLE)) + continue; + if (!indexes.append(i)) + return false; + } + + // Append typed array elements. + if (pobj->is<TypedArrayObject>()) { + uint32_t len = pobj->as<TypedArrayObject>().length(); + for (uint32_t i = begin; i < len && i < end; i++) { + if (!indexes.append(i)) + return false; + } + } + + // Append sparse elements. + if (pobj->isIndexed()) { + Shape::Range<NoGC> r(pobj->as<NativeObject>().lastProperty()); + for (; !r.empty(); r.popFront()) { + Shape& shape = r.front(); + jsid id = shape.propid(); + if (!JSID_IS_INT(id)) + continue; + + uint32_t i = uint32_t(JSID_TO_INT(id)); + if (!(begin <= i && i < end)) + continue; + + // Watch out for getters, they can add new properties. + if (!shape.hasDefaultGetter()) + return true; + + if (!indexes.append(i)) + return false; + } + } + } while ((pobj = pobj->staticPrototype())); + + // Sort the indexes. + Vector<uint32_t> tmp(cx); + size_t n = indexes.length(); + if (!tmp.resize(n)) + return false; + if (!MergeSort(indexes.begin(), n, tmp.begin(), SortComparatorIndexes())) + return false; + + // Remove duplicates. + if (!indexes.empty()) { + uint32_t last = 0; + for (size_t i = 1, len = indexes.length(); i < len; i++) { + uint32_t elem = indexes[i]; + if (indexes[last] != elem) { + last++; + indexes[last] = elem; + } + } + if (!indexes.resize(last + 1)) + return false; + } + + *success = true; + return true; +} + +static bool +SliceSlowly(JSContext* cx, HandleObject obj, HandleObject receiver, + uint32_t begin, uint32_t end, HandleObject result) +{ + RootedValue value(cx); + for (uint32_t slot = begin; slot < end; slot++) { + bool hole; + if (!CheckForInterrupt(cx) || + !GetElement(cx, obj, receiver, slot, &hole, &value)) + { + return false; + } + if (!hole && !DefineElement(cx, result, slot - begin, value)) + return false; + } + return true; +} + +static bool +SliceSparse(JSContext* cx, HandleObject obj, uint32_t begin, uint32_t end, HandleObject result) +{ + MOZ_ASSERT(begin <= end); + + Vector<uint32_t> indexes(cx); + bool success; + if (!GetIndexedPropertiesInRange(cx, obj, begin, end, indexes, &success)) + return false; + + if (!success) + return SliceSlowly(cx, obj, obj, begin, end, result); + + RootedValue value(cx); + for (size_t i = 0, len = indexes.length(); i < len; i++) { + uint32_t index = indexes[i]; + MOZ_ASSERT(begin <= index && index < end); + + bool hole; + if (!GetElement(cx, obj, obj, index, &hole, &value)) + return false; + + if (!hole && !DefineElement(cx, result, index - begin, value)) + return false; + } + + return true; +} + +template <typename T> +static inline uint32_t +NormalizeSliceTerm(T value, uint32_t length) +{ + if (value < 0) { + value += length; + if (value < 0) + return 0; + } else if (double(value) > double(length)) { + return length; + } + return uint32_t(value); +} + +static bool +ArraySliceOrdinary(JSContext* cx, HandleObject obj, uint32_t length, uint32_t begin, uint32_t end, + MutableHandleObject arr) +{ + if (begin > end) + begin = end; + + if (!ObjectMayHaveExtraIndexedProperties(obj)) { + size_t initlen = GetAnyBoxedOrUnboxedInitializedLength(obj); + size_t count = 0; + if (initlen > begin) + count = Min<size_t>(initlen - begin, end - begin); + + RootedObject narr(cx, NewFullyAllocatedArrayTryReuseGroup(cx, obj, count)); + if (!narr) + return false; + SetAnyBoxedOrUnboxedArrayLength(cx, narr, end - begin); + + if (count) { + DebugOnly<DenseElementResult> result = + CopyAnyBoxedOrUnboxedDenseElements(cx, narr, obj, 0, begin, count); + MOZ_ASSERT(result.value == DenseElementResult::Success); + } + arr.set(narr); + return true; + } + + RootedObject narr(cx, NewPartlyAllocatedArrayTryReuseGroup(cx, obj, end - begin)); + if (!narr) + return false; + + if (js::GetElementsOp op = obj->getOpsGetElements()) { + ElementAdder adder(cx, narr, end - begin, ElementAdder::CheckHasElemPreserveHoles); + if (!op(cx, obj, begin, end, &adder)) + return false; + + arr.set(narr); + return true; + } + + if (obj->isNative() && obj->isIndexed() && end - begin > 1000) { + if (!SliceSparse(cx, obj, begin, end, narr)) + return false; + } else { + if (!SliceSlowly(cx, obj, obj, begin, end, narr)) + return false; + } + + arr.set(narr); + return true; +} + +/* ES 2016 draft Mar 25, 2016 22.1.3.23. */ +bool +js::array_slice(JSContext* cx, unsigned argc, Value* vp) +{ + AutoSPSEntry pseudoFrame(cx->runtime(), "Array.prototype.slice"); + CallArgs args = CallArgsFromVp(argc, vp); + + /* Step 1. */ + RootedObject obj(cx, ToObject(cx, args.thisv())); + if (!obj) + return false; + + /* Step 2. */ + uint32_t length; + if (!GetLengthProperty(cx, obj, &length)) + return false; + + uint32_t k = 0; + uint32_t final = length; + if (args.length() > 0) { + double d; + /* Step 3. */ + if (!ToInteger(cx, args[0], &d)) + return false; + + /* Step 4. */ + k = NormalizeSliceTerm(d, length); + + if (args.hasDefined(1)) { + /* Step 5. */ + if (!ToInteger(cx, args[1], &d)) + return false; + + /* Step 6. */ + final = NormalizeSliceTerm(d, length); + } + } + + /* Step 7. */ + uint32_t count = final > k ? final - k : 0; + + RootedObject arr(cx); + if (IsArraySpecies(cx, obj)) { + /* Steps 8-11: Optimized for ordinary array. */ + if (!ArraySliceOrdinary(cx, obj, length, k, final, &arr)) + return false; + + /* Step 12. */ + args.rval().setObject(*arr); + return true; + } + + /* Step 8. */ + if (!ArraySpeciesCreate(cx, obj, count, &arr)) + return false; + + /* Step 9. */ + uint32_t n = 0; + + /* Step 10. */ + RootedValue kValue(cx); + while (k < final) { + if (!CheckForInterrupt(cx)) + return false; + + /* Steps 10.a-b, and 10.c.i. */ + bool kNotPresent; + if (!GetElement(cx, obj, k, &kNotPresent, &kValue)) + return false; + + /* Step 10.c. */ + if (!kNotPresent) { + /* Steps 10.c.ii. */ + if (!DefineElement(cx, arr, n, kValue)) + return false; + } + /* Step 10.d. */ + k++; + + /* Step 10.e. */ + n++; + } + + /* Step 11. */ + if (!SetLengthProperty(cx, arr, n)) + return false; + + /* Step 12. */ + args.rval().setObject(*arr); + return true; +} + +template <JSValueType Type> +DenseElementResult +ArraySliceDenseKernel(JSContext* cx, JSObject* obj, int32_t beginArg, int32_t endArg, JSObject* result) +{ + int32_t length = GetAnyBoxedOrUnboxedArrayLength(obj); + + uint32_t begin = NormalizeSliceTerm(beginArg, length); + uint32_t end = NormalizeSliceTerm(endArg, length); + + if (begin > end) + begin = end; + + size_t initlen = GetBoxedOrUnboxedInitializedLength<Type>(obj); + if (initlen > begin) { + size_t count = Min<size_t>(initlen - begin, end - begin); + if (count) { + DenseElementResult rv = EnsureBoxedOrUnboxedDenseElements<Type>(cx, result, count); + if (rv != DenseElementResult::Success) + return rv; + CopyBoxedOrUnboxedDenseElements<Type, Type>(cx, result, obj, 0, begin, count); + } + } + + SetAnyBoxedOrUnboxedArrayLength(cx, result, end - begin); + return DenseElementResult::Success; +} + +DefineBoxedOrUnboxedFunctor5(ArraySliceDenseKernel, + JSContext*, JSObject*, int32_t, int32_t, JSObject*); + +JSObject* +js::array_slice_dense(JSContext* cx, HandleObject obj, int32_t begin, int32_t end, + HandleObject result) +{ + if (result && IsArraySpecies(cx, obj)) { + ArraySliceDenseKernelFunctor functor(cx, obj, begin, end, result); + DenseElementResult rv = CallBoxedOrUnboxedSpecialization(functor, result); + MOZ_ASSERT(rv != DenseElementResult::Incomplete); + return rv == DenseElementResult::Success ? result : nullptr; + } + + // Slower path if the JIT wasn't able to allocate an object inline. + JS::AutoValueArray<4> argv(cx); + argv[0].setUndefined(); + argv[1].setObject(*obj); + argv[2].setInt32(begin); + argv[3].setInt32(end); + if (!array_slice(cx, 2, argv.begin())) + return nullptr; + return &argv[0].toObject(); +} + +static bool +array_isArray(JSContext* cx, unsigned argc, Value* vp) +{ + CallArgs args = CallArgsFromVp(argc, vp); + bool isArray = false; + if (args.get(0).isObject()) { + RootedObject obj(cx, &args[0].toObject()); + if (!IsArray(cx, obj, &isArray)) + return false; + } + args.rval().setBoolean(isArray); + return true; +} + +static bool +ArrayFromCallArgs(JSContext* cx, CallArgs& args, HandleObject proto = nullptr) +{ + JSObject* obj = NewCopiedArrayForCallingAllocationSite(cx, args.array(), args.length(), proto); + if (!obj) + return false; + + args.rval().setObject(*obj); + return true; +} + +static bool +array_of(JSContext* cx, unsigned argc, Value* vp) +{ + CallArgs args = CallArgsFromVp(argc, vp); + + if (IsArrayConstructor(args.thisv()) || !IsConstructor(args.thisv())) { + // IsArrayConstructor(this) will usually be true in practice. This is + // the most common path. + return ArrayFromCallArgs(cx, args); + } + + // Step 4. + RootedObject obj(cx); + { + FixedConstructArgs<1> cargs(cx); + + cargs[0].setNumber(args.length()); + + if (!Construct(cx, args.thisv(), cargs, args.thisv(), &obj)) + return false; + } + + // Step 8. + for (unsigned k = 0; k < args.length(); k++) { + if (!DefineElement(cx, obj, k, args[k])) + return false; + } + + // Steps 9-10. + if (!SetLengthProperty(cx, obj, args.length())) + return false; + + // Step 11. + args.rval().setObject(*obj); + return true; +} + +static const JSFunctionSpec array_methods[] = { +#if JS_HAS_TOSOURCE + JS_FN(js_toSource_str, array_toSource, 0,0), +#endif + JS_SELF_HOSTED_FN(js_toString_str, "ArrayToString", 0,0), + JS_FN(js_toLocaleString_str, array_toLocaleString, 0,0), + + /* Perl-ish methods. */ + JS_INLINABLE_FN("join", array_join, 1,0, ArrayJoin), + JS_FN("reverse", array_reverse, 0,0), + JS_FN("sort", array_sort, 1,0), + JS_INLINABLE_FN("push", array_push, 1,0, ArrayPush), + JS_INLINABLE_FN("pop", array_pop, 0,0, ArrayPop), + JS_INLINABLE_FN("shift", array_shift, 0,0, ArrayShift), + JS_FN("unshift", array_unshift, 1,0), + JS_INLINABLE_FN("splice", array_splice, 2,0, ArraySplice), + + /* Pythonic sequence methods. */ + JS_SELF_HOSTED_FN("concat", "ArrayConcat", 1,0), + JS_INLINABLE_FN("slice", array_slice, 2,0, ArraySlice), + + JS_SELF_HOSTED_FN("lastIndexOf", "ArrayLastIndexOf", 1,0), + JS_SELF_HOSTED_FN("indexOf", "ArrayIndexOf", 1,0), + JS_SELF_HOSTED_FN("forEach", "ArrayForEach", 1,0), + JS_SELF_HOSTED_FN("map", "ArrayMap", 1,0), + JS_SELF_HOSTED_FN("filter", "ArrayFilter", 1,0), + JS_SELF_HOSTED_FN("reduce", "ArrayReduce", 1,0), + JS_SELF_HOSTED_FN("reduceRight", "ArrayReduceRight", 1,0), + JS_SELF_HOSTED_FN("some", "ArraySome", 1,0), + JS_SELF_HOSTED_FN("every", "ArrayEvery", 1,0), + + /* ES6 additions */ + JS_SELF_HOSTED_FN("find", "ArrayFind", 1,0), + JS_SELF_HOSTED_FN("findIndex", "ArrayFindIndex", 1,0), + JS_SELF_HOSTED_FN("copyWithin", "ArrayCopyWithin", 3,0), + + JS_SELF_HOSTED_FN("fill", "ArrayFill", 3,0), + + JS_SELF_HOSTED_SYM_FN(iterator, "ArrayValues", 0,0), + JS_SELF_HOSTED_FN("entries", "ArrayEntries", 0,0), + JS_SELF_HOSTED_FN("keys", "ArrayKeys", 0,0), +#ifdef NIGHTLY_BUILD + JS_SELF_HOSTED_FN("values", "ArrayValues", 0,0), +#endif + + /* ES7 additions */ + JS_SELF_HOSTED_FN("includes", "ArrayIncludes", 2,0), + JS_FS_END +}; + +static const JSFunctionSpec array_static_methods[] = { + JS_INLINABLE_FN("isArray", array_isArray, 1,0, ArrayIsArray), + JS_SELF_HOSTED_FN("concat", "ArrayStaticConcat", 2,0), + JS_SELF_HOSTED_FN("lastIndexOf", "ArrayStaticLastIndexOf", 2,0), + JS_SELF_HOSTED_FN("indexOf", "ArrayStaticIndexOf", 2,0), + JS_SELF_HOSTED_FN("forEach", "ArrayStaticForEach", 2,0), + JS_SELF_HOSTED_FN("map", "ArrayStaticMap", 2,0), + JS_SELF_HOSTED_FN("filter", "ArrayStaticFilter", 2,0), + JS_SELF_HOSTED_FN("every", "ArrayStaticEvery", 2,0), + JS_SELF_HOSTED_FN("some", "ArrayStaticSome", 2,0), + JS_SELF_HOSTED_FN("reduce", "ArrayStaticReduce", 2,0), + JS_SELF_HOSTED_FN("reduceRight", "ArrayStaticReduceRight", 2,0), + JS_SELF_HOSTED_FN("join", "ArrayStaticJoin", 2,0), + JS_SELF_HOSTED_FN("reverse", "ArrayStaticReverse", 1,0), + JS_SELF_HOSTED_FN("sort", "ArrayStaticSort", 2,0), + JS_SELF_HOSTED_FN("push", "ArrayStaticPush", 2,0), + JS_SELF_HOSTED_FN("pop", "ArrayStaticPop", 1,0), + JS_SELF_HOSTED_FN("shift", "ArrayStaticShift", 1,0), + JS_SELF_HOSTED_FN("unshift", "ArrayStaticUnshift", 2,0), + JS_SELF_HOSTED_FN("splice", "ArrayStaticSplice", 3,0), + JS_SELF_HOSTED_FN("slice", "ArrayStaticSlice", 3,0), + JS_SELF_HOSTED_FN("from", "ArrayFrom", 3,0), + JS_FN("of", array_of, 0,0), + + JS_FS_END +}; + +const JSPropertySpec array_static_props[] = { + JS_SELF_HOSTED_SYM_GET(species, "ArraySpecies", 0), + JS_PS_END +}; + +static inline bool +ArrayConstructorImpl(JSContext* cx, CallArgs& args, bool isConstructor) +{ + RootedObject proto(cx); + if (isConstructor) { + if (!GetPrototypeFromCallableConstructor(cx, args, &proto)) + return false; + } else { + // We're emulating |new Array(n)| with |std_Array(n)| in self-hosted JS, + // and the proto should be %ArrayPrototype% regardless of the callee. + proto = GlobalObject::getOrCreateArrayPrototype(cx, cx->global()); + if (!proto) + return false; + } + + if (args.length() != 1 || !args[0].isNumber()) + return ArrayFromCallArgs(cx, args, proto); + + uint32_t length; + if (args[0].isInt32()) { + int32_t i = args[0].toInt32(); + if (i < 0) { + JS_ReportErrorNumberASCII(cx, GetErrorMessage, nullptr, JSMSG_BAD_ARRAY_LENGTH); + return false; + } + length = uint32_t(i); + } else { + double d = args[0].toDouble(); + length = ToUint32(d); + if (d != double(length)) { + JS_ReportErrorNumberASCII(cx, GetErrorMessage, nullptr, JSMSG_BAD_ARRAY_LENGTH); + return false; + } + } + + JSObject* obj = NewPartlyAllocatedArrayForCallingAllocationSite(cx, length, proto); + if (!obj) + return false; + + args.rval().setObject(*obj); + return true; +} + +/* ES5 15.4.2 */ +bool +js::ArrayConstructor(JSContext* cx, unsigned argc, Value* vp) +{ + CallArgs args = CallArgsFromVp(argc, vp); + return ArrayConstructorImpl(cx, args, /* isConstructor = */ true); +} + +bool +js::array_construct(JSContext* cx, unsigned argc, Value* vp) +{ + CallArgs args = CallArgsFromVp(argc, vp); + MOZ_ASSERT(!args.isConstructing()); + MOZ_ASSERT(args.length() == 1); + MOZ_ASSERT(args[0].isNumber()); + return ArrayConstructorImpl(cx, args, /* isConstructor = */ false); +} + +JSObject* +js::ArrayConstructorOneArg(JSContext* cx, HandleObjectGroup group, int32_t lengthInt) +{ + if (lengthInt < 0) { + JS_ReportErrorNumberASCII(cx, GetErrorMessage, nullptr, JSMSG_BAD_ARRAY_LENGTH); + return nullptr; + } + + uint32_t length = uint32_t(lengthInt); + return NewPartlyAllocatedArrayTryUseGroup(cx, group, length); +} + +static JSObject* +CreateArrayPrototype(JSContext* cx, JSProtoKey key) +{ + MOZ_ASSERT(key == JSProto_Array); + RootedObject proto(cx, cx->global()->getOrCreateObjectPrototype(cx)); + if (!proto) + return nullptr; + + RootedObjectGroup group(cx, ObjectGroup::defaultNewGroup(cx, &ArrayObject::class_, + TaggedProto(proto))); + if (!group) + return nullptr; + + RootedShape shape(cx, EmptyShape::getInitialShape(cx, &ArrayObject::class_, TaggedProto(proto), + gc::AllocKind::OBJECT0)); + if (!shape) + return nullptr; + + AutoSetNewObjectMetadata metadata(cx); + RootedArrayObject arrayProto(cx, ArrayObject::createArray(cx, gc::AllocKind::OBJECT4, + gc::TenuredHeap, shape, group, 0, + metadata)); + if (!arrayProto || + !JSObject::setSingleton(cx, arrayProto) || + !arrayProto->setDelegate(cx) || + !AddLengthProperty(cx, arrayProto)) + { + return nullptr; + } + + /* + * The default 'new' group of Array.prototype is required by type inference + * to have unknown properties, to simplify handling of e.g. heterogenous + * arrays in JSON and script literals and allows setDenseArrayElement to + * be used without updating the indexed type set for such default arrays. + */ + if (!JSObject::setNewGroupUnknown(cx, &ArrayObject::class_, arrayProto)) + return nullptr; + + return arrayProto; +} + +static bool +array_proto_finish(JSContext* cx, JS::HandleObject ctor, JS::HandleObject proto) +{ + // Add Array.prototype[@@unscopables]. ECMA-262 draft (2016 Mar 19) 22.1.3.32. + RootedObject unscopables(cx, NewObjectWithGivenProto<PlainObject>(cx, nullptr, TenuredObject)); + if (!unscopables) + return false; + + RootedValue value(cx, BooleanValue(true)); + if (!DefineProperty(cx, unscopables, cx->names().copyWithin, value) || + !DefineProperty(cx, unscopables, cx->names().entries, value) || + !DefineProperty(cx, unscopables, cx->names().fill, value) || + !DefineProperty(cx, unscopables, cx->names().find, value) || + !DefineProperty(cx, unscopables, cx->names().findIndex, value) || + !DefineProperty(cx, unscopables, cx->names().includes, value) || + !DefineProperty(cx, unscopables, cx->names().keys, value) || + !DefineProperty(cx, unscopables, cx->names().values, value)) + { + return false; + } + + RootedId id(cx, SYMBOL_TO_JSID(cx->wellKnownSymbols().get(JS::SymbolCode::unscopables))); + value.setObject(*unscopables); + return DefineProperty(cx, proto, id, value, nullptr, nullptr, JSPROP_READONLY); +} + +static const ClassOps ArrayObjectClassOps = { + array_addProperty, + nullptr, /* delProperty */ + nullptr, /* getProperty */ + nullptr, /* setProperty */ + nullptr, /* enumerate */ + nullptr, /* resolve */ + nullptr, /* mayResolve */ + nullptr, /* finalize */ + nullptr, /* call */ + nullptr, /* hasInstance */ + nullptr, /* construct */ + nullptr, /* trace */ +}; + +static const ClassSpec ArrayObjectClassSpec = { + GenericCreateConstructor<ArrayConstructor, 1, AllocKind::FUNCTION, &jit::JitInfo_Array>, + CreateArrayPrototype, + array_static_methods, + array_static_props, + array_methods, + nullptr, + array_proto_finish +}; + +const Class ArrayObject::class_ = { + "Array", + JSCLASS_HAS_CACHED_PROTO(JSProto_Array) | JSCLASS_DELAY_METADATA_BUILDER, + &ArrayObjectClassOps, + &ArrayObjectClassSpec +}; + +/* + * Array allocation functions. + */ + +static inline bool +EnsureNewArrayElements(ExclusiveContext* cx, ArrayObject* obj, uint32_t length) +{ + /* + * If ensureElements creates dynamically allocated slots, then having + * fixedSlots is a waste. + */ + DebugOnly<uint32_t> cap = obj->getDenseCapacity(); + + if (!obj->ensureElements(cx, length)) + return false; + + MOZ_ASSERT_IF(cap, !obj->hasDynamicElements()); + + return true; +} + +template <uint32_t maxLength> +static MOZ_ALWAYS_INLINE ArrayObject* +NewArray(ExclusiveContext* cxArg, uint32_t length, + HandleObject protoArg, NewObjectKind newKind = GenericObject) +{ + gc::AllocKind allocKind = GuessArrayGCKind(length); + MOZ_ASSERT(CanBeFinalizedInBackground(allocKind, &ArrayObject::class_)); + allocKind = GetBackgroundAllocKind(allocKind); + + RootedObject proto(cxArg, protoArg); + if (!proto && !GetBuiltinPrototype(cxArg, JSProto_Array, &proto)) + return nullptr; + + Rooted<TaggedProto> taggedProto(cxArg, TaggedProto(proto)); + bool isCachable = NewObjectWithTaggedProtoIsCachable(cxArg, taggedProto, newKind, &ArrayObject::class_); + if (isCachable) { + JSContext* cx = cxArg->asJSContext(); + NewObjectCache& cache = cx->caches.newObjectCache; + NewObjectCache::EntryIndex entry = -1; + if (cache.lookupProto(&ArrayObject::class_, proto, allocKind, &entry)) { + gc::InitialHeap heap = GetInitialHeap(newKind, &ArrayObject::class_); + AutoSetNewObjectMetadata metadata(cx); + JSObject* obj = cache.newObjectFromHit(cx, entry, heap); + if (obj) { + /* Fixup the elements pointer and length, which may be incorrect. */ + ArrayObject* arr = &obj->as<ArrayObject>(); + arr->setFixedElements(); + arr->setLength(cx, length); + if (maxLength > 0 && + !EnsureNewArrayElements(cx, arr, std::min(maxLength, length))) + { + return nullptr; + } + return arr; + } + } + } + + RootedObjectGroup group(cxArg, ObjectGroup::defaultNewGroup(cxArg, &ArrayObject::class_, + TaggedProto(proto))); + if (!group) + return nullptr; + + /* + * Get a shape with zero fixed slots, regardless of the size class. + * See JSObject::createArray. + */ + RootedShape shape(cxArg, EmptyShape::getInitialShape(cxArg, &ArrayObject::class_, + TaggedProto(proto), + gc::AllocKind::OBJECT0)); + if (!shape) + return nullptr; + + AutoSetNewObjectMetadata metadata(cxArg); + RootedArrayObject arr(cxArg, ArrayObject::createArray(cxArg, allocKind, + GetInitialHeap(newKind, &ArrayObject::class_), + shape, group, length, metadata)); + if (!arr) + return nullptr; + + if (shape->isEmptyShape()) { + if (!AddLengthProperty(cxArg, arr)) + return nullptr; + shape = arr->lastProperty(); + EmptyShape::insertInitialShape(cxArg, shape, proto); + } + + if (newKind == SingletonObject && !JSObject::setSingleton(cxArg, arr)) + return nullptr; + + if (isCachable) { + NewObjectCache& cache = cxArg->asJSContext()->caches.newObjectCache; + NewObjectCache::EntryIndex entry = -1; + cache.lookupProto(&ArrayObject::class_, proto, allocKind, &entry); + cache.fillProto(entry, &ArrayObject::class_, taggedProto, allocKind, arr); + } + + if (maxLength > 0 && !EnsureNewArrayElements(cxArg, arr, std::min(maxLength, length))) + return nullptr; + + probes::CreateObject(cxArg, arr); + return arr; +} + +ArrayObject * JS_FASTCALL +js::NewDenseEmptyArray(JSContext* cx, HandleObject proto /* = nullptr */, + NewObjectKind newKind /* = GenericObject */) +{ + return NewArray<0>(cx, 0, proto, newKind); +} + +ArrayObject * JS_FASTCALL +js::NewDenseFullyAllocatedArray(ExclusiveContext* cx, uint32_t length, + HandleObject proto /* = nullptr */, + NewObjectKind newKind /* = GenericObject */) +{ + return NewArray<UINT32_MAX>(cx, length, proto, newKind); +} + +ArrayObject * JS_FASTCALL +js::NewDensePartlyAllocatedArray(ExclusiveContext* cx, uint32_t length, + HandleObject proto /* = nullptr */, + NewObjectKind newKind /* = GenericObject */) +{ + return NewArray<ArrayObject::EagerAllocationMaxLength>(cx, length, proto, newKind); +} + +ArrayObject * JS_FASTCALL +js::NewDenseUnallocatedArray(ExclusiveContext* cx, uint32_t length, + HandleObject proto /* = nullptr */, + NewObjectKind newKind /* = GenericObject */) +{ + return NewArray<0>(cx, length, proto, newKind); +} + +// values must point at already-rooted Value objects +ArrayObject* +js::NewDenseCopiedArray(ExclusiveContext* cx, uint32_t length, const Value* values, + HandleObject proto /* = nullptr */, + NewObjectKind newKind /* = GenericObject */) +{ + ArrayObject* arr = NewArray<UINT32_MAX>(cx, length, proto, newKind); + if (!arr) + return nullptr; + + MOZ_ASSERT(arr->getDenseCapacity() >= length); + + arr->setDenseInitializedLength(values ? length : 0); + + if (values) + arr->initDenseElements(0, values, length); + + return arr; +} + +ArrayObject* +js::NewDenseFullyAllocatedArrayWithTemplate(JSContext* cx, uint32_t length, JSObject* templateObject) +{ + AutoSetNewObjectMetadata metadata(cx); + gc::AllocKind allocKind = GuessArrayGCKind(length); + MOZ_ASSERT(CanBeFinalizedInBackground(allocKind, &ArrayObject::class_)); + allocKind = GetBackgroundAllocKind(allocKind); + + RootedObjectGroup group(cx, templateObject->group()); + RootedShape shape(cx, templateObject->as<ArrayObject>().lastProperty()); + + gc::InitialHeap heap = GetInitialHeap(GenericObject, &ArrayObject::class_); + Rooted<ArrayObject*> arr(cx, ArrayObject::createArray(cx, allocKind, + heap, shape, group, length, metadata)); + if (!arr) + return nullptr; + + if (!EnsureNewArrayElements(cx, arr, length)) + return nullptr; + + probes::CreateObject(cx, arr); + + return arr; +} + +JSObject* +js::NewDenseCopyOnWriteArray(JSContext* cx, HandleArrayObject templateObject, gc::InitialHeap heap) +{ + MOZ_ASSERT(!gc::IsInsideNursery(templateObject)); + + ArrayObject* arr = ArrayObject::createCopyOnWriteArray(cx, heap, templateObject); + if (!arr) + return nullptr; + + probes::CreateObject(cx, arr); + return arr; +} + +// Return a new boxed or unboxed array with the specified length and allocated +// capacity (up to maxLength), using the specified group if possible. If the +// specified group cannot be used, ensure that the created array at least has +// the given [[Prototype]]. +template <uint32_t maxLength> +static inline JSObject* +NewArrayTryUseGroup(ExclusiveContext* cx, HandleObjectGroup group, size_t length, + NewObjectKind newKind = GenericObject) +{ + MOZ_ASSERT(newKind != SingletonObject); + + if (group->maybePreliminaryObjects()) + group->maybePreliminaryObjects()->maybeAnalyze(cx, group); + + if (group->shouldPreTenure() || group->maybePreliminaryObjects()) + newKind = TenuredObject; + + RootedObject proto(cx, group->proto().toObject()); + if (group->maybeUnboxedLayout()) { + if (length > UnboxedArrayObject::MaximumCapacity) + return NewArray<maxLength>(cx, length, proto, newKind); + return UnboxedArrayObject::create(cx, group, length, newKind, maxLength); + } + + ArrayObject* res = NewArray<maxLength>(cx, length, proto, newKind); + if (!res) + return nullptr; + + res->setGroup(group); + + // If the length calculation overflowed, make sure that is marked for the + // new group. + if (res->length() > INT32_MAX) + res->setLength(cx, res->length()); + + if (PreliminaryObjectArray* preliminaryObjects = group->maybePreliminaryObjects()) + preliminaryObjects->registerNewObject(res); + + return res; +} + +JSObject* +js::NewFullyAllocatedArrayTryUseGroup(ExclusiveContext* cx, HandleObjectGroup group, size_t length, + NewObjectKind newKind) +{ + return NewArrayTryUseGroup<UINT32_MAX>(cx, group, length, newKind); +} + +JSObject* +js::NewPartlyAllocatedArrayTryUseGroup(ExclusiveContext* cx, HandleObjectGroup group, size_t length) +{ + return NewArrayTryUseGroup<ArrayObject::EagerAllocationMaxLength>(cx, group, length); +} + +// Return a new array with the default prototype and specified allocated +// capacity and length. If possible, try to reuse the group of the input +// object. The resulting array will either reuse the input object's group or +// will have unknown property types. Additionally, the result will have the +// same boxed/unboxed elements representation as the input object, unless +// |length| is larger than the input object's initialized length (in which case +// UnboxedArrayObject::MaximumCapacity might be exceeded). +template <uint32_t maxLength> +static inline JSObject* +NewArrayTryReuseGroup(JSContext* cx, JSObject* obj, size_t length, + NewObjectKind newKind = GenericObject) +{ + if (!obj->is<ArrayObject>() && !obj->is<UnboxedArrayObject>()) + return NewArray<maxLength>(cx, length, nullptr, newKind); + + if (obj->staticPrototype() != cx->global()->maybeGetArrayPrototype()) + return NewArray<maxLength>(cx, length, nullptr, newKind); + + RootedObjectGroup group(cx, obj->getGroup(cx)); + if (!group) + return nullptr; + + return NewArrayTryUseGroup<maxLength>(cx, group, length, newKind); +} + +JSObject* +js::NewFullyAllocatedArrayTryReuseGroup(JSContext* cx, JSObject* obj, size_t length, + NewObjectKind newKind) +{ + return NewArrayTryReuseGroup<UINT32_MAX>(cx, obj, length, newKind); +} + +JSObject* +js::NewPartlyAllocatedArrayTryReuseGroup(JSContext* cx, JSObject* obj, size_t length) +{ + return NewArrayTryReuseGroup<ArrayObject::EagerAllocationMaxLength>(cx, obj, length); +} + +JSObject* +js::NewFullyAllocatedArrayForCallingAllocationSite(JSContext* cx, size_t length, + NewObjectKind newKind) +{ + RootedObjectGroup group(cx, ObjectGroup::callingAllocationSiteGroup(cx, JSProto_Array)); + if (!group) + return nullptr; + return NewArrayTryUseGroup<UINT32_MAX>(cx, group, length, newKind); +} + +JSObject* +js::NewPartlyAllocatedArrayForCallingAllocationSite(JSContext* cx, size_t length, HandleObject proto) +{ + RootedObjectGroup group(cx, ObjectGroup::callingAllocationSiteGroup(cx, JSProto_Array, proto)); + if (!group) + return nullptr; + return NewArrayTryUseGroup<ArrayObject::EagerAllocationMaxLength>(cx, group, length); +} + +bool +js::MaybeAnalyzeBeforeCreatingLargeArray(ExclusiveContext* cx, HandleObjectGroup group, + const Value* vp, size_t length) +{ + static const size_t EagerPreliminaryObjectAnalysisThreshold = 800; + + // Force analysis to see if an unboxed array can be used when making a + // sufficiently large array, to avoid excessive analysis and copying later + // on. If this is the first array of its group that is being created, first + // make a dummy array with the initial elements of the array we are about + // to make, so there is some basis for the unboxed array analysis. + if (length > EagerPreliminaryObjectAnalysisThreshold) { + if (PreliminaryObjectArrayWithTemplate* objects = group->maybePreliminaryObjects()) { + if (objects->empty()) { + size_t nlength = Min<size_t>(length, 100); + JSObject* obj = NewFullyAllocatedArrayTryUseGroup(cx, group, nlength); + if (!obj) + return false; + DebugOnly<DenseElementResult> result = + SetOrExtendAnyBoxedOrUnboxedDenseElements(cx, obj, 0, vp, nlength, + ShouldUpdateTypes::Update); + MOZ_ASSERT(result.value == DenseElementResult::Success); + } + objects->maybeAnalyze(cx, group, /* forceAnalyze = */ true); + } + } + return true; +} + +JSObject* +js::NewCopiedArrayTryUseGroup(ExclusiveContext* cx, HandleObjectGroup group, + const Value* vp, size_t length, NewObjectKind newKind, + ShouldUpdateTypes updateTypes) +{ + if (!MaybeAnalyzeBeforeCreatingLargeArray(cx, group, vp, length)) + return nullptr; + + JSObject* obj = NewFullyAllocatedArrayTryUseGroup(cx, group, length, newKind); + if (!obj) + return nullptr; + + DenseElementResult result = + SetOrExtendAnyBoxedOrUnboxedDenseElements(cx, obj, 0, vp, length, updateTypes); + if (result == DenseElementResult::Failure) + return nullptr; + if (result == DenseElementResult::Success) + return obj; + + MOZ_ASSERT(obj->is<UnboxedArrayObject>()); + if (!UnboxedArrayObject::convertToNative(cx->asJSContext(), obj)) + return nullptr; + + result = SetOrExtendBoxedOrUnboxedDenseElements<JSVAL_TYPE_MAGIC>(cx, obj, 0, vp, length, + updateTypes); + MOZ_ASSERT(result != DenseElementResult::Incomplete); + if (result == DenseElementResult::Failure) + return nullptr; + + return obj; +} + +JSObject* +js::NewCopiedArrayForCallingAllocationSite(JSContext* cx, const Value* vp, size_t length, + HandleObject proto /* = nullptr */) +{ + RootedObjectGroup group(cx, ObjectGroup::callingAllocationSiteGroup(cx, JSProto_Array, proto)); + if (!group) + return nullptr; + return NewCopiedArrayTryUseGroup(cx, group, vp, length); +} + +bool +js::NewValuePair(JSContext* cx, const Value& val1, const Value& val2, MutableHandleValue rval) +{ + JS::AutoValueArray<2> vec(cx); + vec[0].set(val1); + vec[1].set(val2); + + JSObject* aobj = js::NewDenseCopiedArray(cx, 2, vec.begin()); + if (!aobj) + return false; + rval.setObject(*aobj); + return true; +} + +#ifdef DEBUG +bool +js::ArrayInfo(JSContext* cx, unsigned argc, Value* vp) +{ + CallArgs args = CallArgsFromVp(argc, vp); + RootedObject obj(cx); + + for (unsigned i = 0; i < args.length(); i++) { + HandleValue arg = args[i]; + + UniqueChars bytes = DecompileValueGenerator(cx, JSDVG_SEARCH_STACK, arg, nullptr); + if (!bytes) + return false; + if (arg.isPrimitive() || + !(obj = arg.toObjectOrNull())->is<ArrayObject>()) { + fprintf(stderr, "%s: not array\n", bytes.get()); + continue; + } + fprintf(stderr, "%s: (len %u", bytes.get(), obj->as<ArrayObject>().length()); + fprintf(stderr, ", capacity %u", obj->as<ArrayObject>().getDenseCapacity()); + fputs(")\n", stderr); + } + + args.rval().setUndefined(); + return true; +} +#endif |