/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ /* vim: set ts=8 sts=2 et sw=2 tw=80: */ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #include "nsTimerImpl.h" #include "TimerThread.h" #include "nsThreadUtils.h" #include "pratom.h" #include "nsIObserverService.h" #include "nsIServiceManager.h" #include "mozilla/Services.h" #include "mozilla/ChaosMode.h" #include "mozilla/ArrayUtils.h" #include "mozilla/BinarySearch.h" #include using namespace mozilla; NS_IMPL_ISUPPORTS(TimerThread, nsIRunnable, nsIObserver) TimerThread::TimerThread() : mInitInProgress(false), mInitialized(false), mMonitor("TimerThread.mMonitor"), mShutdown(false), mWaiting(false), mNotified(false), mSleeping(false), mLastTimerEventLoopRun(TimeStamp::Now()) { } TimerThread::~TimerThread() { mThread = nullptr; NS_ASSERTION(mTimers.IsEmpty(), "Timers remain in TimerThread::~TimerThread"); } nsresult TimerThread::InitLocks() { return NS_OK; } namespace { class TimerObserverRunnable : public nsRunnable { public: explicit TimerObserverRunnable(nsIObserver* aObserver) : mObserver(aObserver) { } NS_DECL_NSIRUNNABLE private: nsCOMPtr mObserver; }; NS_IMETHODIMP TimerObserverRunnable::Run() { nsCOMPtr observerService = mozilla::services::GetObserverService(); if (observerService) { observerService->AddObserver(mObserver, "sleep_notification", false); observerService->AddObserver(mObserver, "wake_notification", false); observerService->AddObserver(mObserver, "suspend_process_notification", false); observerService->AddObserver(mObserver, "resume_process_notification", false); } return NS_OK; } } // anonymous namespace nsresult TimerThread::Init() { PR_LOG(GetTimerLog(), PR_LOG_DEBUG, ("TimerThread::Init [%d]\n", mInitialized)); if (mInitialized) { if (!mThread) { return NS_ERROR_FAILURE; } return NS_OK; } if (mInitInProgress.exchange(true) == false) { // We hold on to mThread to keep the thread alive. nsresult rv = NS_NewThread(getter_AddRefs(mThread), this); if (NS_FAILED(rv)) { mThread = nullptr; } else { nsRefPtr r = new TimerObserverRunnable(this); if (NS_IsMainThread()) { r->Run(); } else { NS_DispatchToMainThread(r); } } { MonitorAutoLock lock(mMonitor); mInitialized = true; mMonitor.NotifyAll(); } } else { MonitorAutoLock lock(mMonitor); while (!mInitialized) { mMonitor.Wait(); } } if (!mThread) { return NS_ERROR_FAILURE; } return NS_OK; } nsresult TimerThread::Shutdown() { PR_LOG(GetTimerLog(), PR_LOG_DEBUG, ("TimerThread::Shutdown begin\n")); if (!mThread) { return NS_ERROR_NOT_INITIALIZED; } nsTArray timers; { // lock scope MonitorAutoLock lock(mMonitor); mShutdown = true; // notify the cond var so that Run() can return if (mWaiting) { mNotified = true; mMonitor.Notify(); } // Need to copy content of mTimers array to a local array // because call to timers' ReleaseCallback() (and release its self) // must not be done under the lock. Destructor of a callback // might potentially call some code reentering the same lock // that leads to unexpected behavior or deadlock. // See bug 422472. timers.AppendElements(mTimers); mTimers.Clear(); } uint32_t timersCount = timers.Length(); for (uint32_t i = 0; i < timersCount; i++) { nsTimerImpl* timer = timers[i]; timer->ReleaseCallback(); ReleaseTimerInternal(timer); } mThread->Shutdown(); // wait for the thread to die PR_LOG(GetTimerLog(), PR_LOG_DEBUG, ("TimerThread::Shutdown end\n")); return NS_OK; } #ifdef MOZ_NUWA_PROCESS #include "ipc/Nuwa.h" #endif namespace { struct MicrosecondsToInterval { PRIntervalTime operator[](size_t aMs) const { return PR_MicrosecondsToInterval(aMs); } }; struct IntervalComparator { int operator()(PRIntervalTime aInterval) const { return (0 < aInterval) ? -1 : 1; } }; } // namespace /* void Run(); */ NS_IMETHODIMP TimerThread::Run() { PR_SetCurrentThreadName("Timer"); #ifdef MOZ_NUWA_PROCESS if (IsNuwaProcess()) { NuwaMarkCurrentThread(nullptr, nullptr); } #endif NS_SetIgnoreStatusOfCurrentThread(); MonitorAutoLock lock(mMonitor); // We need to know how many microseconds give a positive PRIntervalTime. This // is platform-dependent and we calculate it at runtime, finding a value |v| // such that |PR_MicrosecondsToInterval(v) > 0| and then binary-searching in // the range [0, v) to find the ms-to-interval scale. uint32_t usForPosInterval = 1; while (PR_MicrosecondsToInterval(usForPosInterval) == 0) { usForPosInterval <<= 1; } size_t usIntervalResolution; BinarySearchIf(MicrosecondsToInterval(), 0, usForPosInterval, IntervalComparator(), &usIntervalResolution); MOZ_ASSERT(PR_MicrosecondsToInterval(usIntervalResolution - 1) == 0); MOZ_ASSERT(PR_MicrosecondsToInterval(usIntervalResolution) == 1); // Half of the amount of microseconds needed to get positive PRIntervalTime. // We use this to decide how to round our wait times later int32_t halfMicrosecondsIntervalResolution = usIntervalResolution / 2; bool forceRunNextTimer = false; while (!mShutdown) { // Have to use PRIntervalTime here, since PR_WaitCondVar takes it PRIntervalTime waitFor; bool forceRunThisTimer = forceRunNextTimer; forceRunNextTimer = false; if (mSleeping) { // Sleep for 0.1 seconds while not firing timers. uint32_t milliseconds = 100; if (ChaosMode::isActive(ChaosMode::TimerScheduling)) { milliseconds = ChaosMode::randomUint32LessThan(200); } waitFor = PR_MillisecondsToInterval(milliseconds); } else { waitFor = PR_INTERVAL_NO_TIMEOUT; TimeStamp now = TimeStamp::Now(); mLastTimerEventLoopRun = now; nsTimerImpl* timer = nullptr; if (!mTimers.IsEmpty()) { timer = mTimers[0]; if (now >= timer->mTimeout || forceRunThisTimer) { next: // NB: AddRef before the Release under RemoveTimerInternal to avoid // mRefCnt passing through zero, in case all other refs than the one // from mTimers have gone away (the last non-mTimers[i]-ref's Release // must be racing with us, blocked in gThread->RemoveTimer waiting // for TimerThread::mMonitor, under nsTimerImpl::Release. nsRefPtr timerRef(timer); RemoveTimerInternal(timer); timer = nullptr; #ifdef DEBUG_TIMERS if (PR_LOG_TEST(GetTimerLog(), PR_LOG_DEBUG)) { PR_LOG(GetTimerLog(), PR_LOG_DEBUG, ("Timer thread woke up %fms from when it was supposed to\n", fabs((now - timerRef->mTimeout).ToMilliseconds()))); } #endif { // We release mMonitor around the Fire call to avoid deadlock. MonitorAutoUnlock unlock(mMonitor); // We are going to let the call to PostTimerEvent here handle the // release of the timer so that we don't end up releasing the timer // on the TimerThread instead of on the thread it targets. timerRef = nsTimerImpl::PostTimerEvent(timerRef.forget()); } if (timerRef) { // We got our reference back due to an error. // Unhook the nsRefPtr, and release manually so we can get the // refcount. nsrefcnt rc = timerRef.forget().take()->Release(); (void)rc; // The nsITimer interface requires that its users keep a reference // to the timers they use while those timers are initialized but // have not yet fired. If this ever happens, it is a bug in the // code that created and used the timer. // // Further, note that this should never happen even with a // misbehaving user, because nsTimerImpl::Release checks for a // refcount of 1 with an armed timer (a timer whose only reference // is from the timer thread) and when it hits this will remove the // timer from the timer thread and thus destroy the last reference, // preventing this situation from occurring. MOZ_ASSERT(rc != 0, "destroyed timer off its target thread!"); } if (mShutdown) { break; } // Update now, as PostTimerEvent plus the locking may have taken a // tick or two, and we may goto next below. now = TimeStamp::Now(); } } if (!mTimers.IsEmpty()) { timer = mTimers[0]; TimeStamp timeout = timer->mTimeout; // Don't wait at all (even for PR_INTERVAL_NO_WAIT) if the next timer // is due now or overdue. // // Note that we can only sleep for integer values of a certain // resolution. We use halfMicrosecondsIntervalResolution, calculated // before, to do the optimal rounding (i.e., of how to decide what // interval is so small we should not wait at all). double microseconds = (timeout - now).ToMilliseconds() * 1000; if (ChaosMode::isActive(ChaosMode::TimerScheduling)) { // The mean value of sFractions must be 1 to ensure that // the average of a long sequence of timeouts converges to the // actual sum of their times. static const float sFractions[] = { 0.0f, 0.25f, 0.5f, 0.75f, 1.0f, 1.75f, 2.75f }; microseconds *= sFractions[ChaosMode::randomUint32LessThan(ArrayLength(sFractions))]; forceRunNextTimer = true; } if (microseconds < halfMicrosecondsIntervalResolution) { forceRunNextTimer = false; goto next; // round down; execute event now } waitFor = PR_MicrosecondsToInterval( static_cast(microseconds)); // Floor is accurate enough. if (waitFor == 0) { waitFor = 1; // round up, wait the minimum time we can wait } } #ifdef DEBUG_TIMERS if (PR_LOG_TEST(GetTimerLog(), PR_LOG_DEBUG)) { if (waitFor == PR_INTERVAL_NO_TIMEOUT) PR_LOG(GetTimerLog(), PR_LOG_DEBUG, ("waiting for PR_INTERVAL_NO_TIMEOUT\n")); else PR_LOG(GetTimerLog(), PR_LOG_DEBUG, ("waiting for %u\n", PR_IntervalToMilliseconds(waitFor))); } #endif } mWaiting = true; mNotified = false; mMonitor.Wait(waitFor); if (mNotified) { forceRunNextTimer = false; } mWaiting = false; } return NS_OK; } nsresult TimerThread::AddTimer(nsTimerImpl* aTimer) { MonitorAutoLock lock(mMonitor); // Add the timer to our list. int32_t i = AddTimerInternal(aTimer); if (i < 0) { return NS_ERROR_OUT_OF_MEMORY; } // Awaken the timer thread. if (mWaiting && i == 0) { mNotified = true; mMonitor.Notify(); } return NS_OK; } nsresult TimerThread::TimerDelayChanged(nsTimerImpl* aTimer) { MonitorAutoLock lock(mMonitor); // Our caller has a strong ref to aTimer, so it can't go away here under // ReleaseTimerInternal. RemoveTimerInternal(aTimer); int32_t i = AddTimerInternal(aTimer); if (i < 0) { return NS_ERROR_OUT_OF_MEMORY; } // Awaken the timer thread. if (mWaiting && i == 0) { mNotified = true; mMonitor.Notify(); } return NS_OK; } nsresult TimerThread::RemoveTimer(nsTimerImpl* aTimer) { MonitorAutoLock lock(mMonitor); // Remove the timer from our array. Tell callers that aTimer was not found // by returning NS_ERROR_NOT_AVAILABLE. Unlike the TimerDelayChanged case // immediately above, our caller may be passing a (now-)weak ref in via the // aTimer param, specifically when nsTimerImpl::Release loses a race with // TimerThread::Run, must wait for the mMonitor auto-lock here, and during the // wait Run drops the only remaining ref to aTimer via RemoveTimerInternal. if (!RemoveTimerInternal(aTimer)) { return NS_ERROR_NOT_AVAILABLE; } // Awaken the timer thread. if (mWaiting) { mNotified = true; mMonitor.Notify(); } return NS_OK; } // This function must be called from within a lock int32_t TimerThread::AddTimerInternal(nsTimerImpl* aTimer) { mMonitor.AssertCurrentThreadOwns(); if (mShutdown) { return -1; } TimeStamp now = TimeStamp::Now(); TimerAdditionComparator c(now, aTimer); nsTimerImpl** insertSlot = mTimers.InsertElementSorted(aTimer, c); if (!insertSlot) { return -1; } aTimer->mArmed = true; NS_ADDREF(aTimer); #ifdef MOZ_TASK_TRACER // Create a FakeTracedTask, and dispatch it here. This is the start point of // the latency. aTimer->DispatchTracedTask(); #endif return insertSlot - mTimers.Elements(); } bool TimerThread::RemoveTimerInternal(nsTimerImpl* aTimer) { mMonitor.AssertCurrentThreadOwns(); if (!mTimers.RemoveElement(aTimer)) { return false; } ReleaseTimerInternal(aTimer); return true; } void TimerThread::ReleaseTimerInternal(nsTimerImpl* aTimer) { if (!mShutdown) { // copied to a local array before releasing in shutdown mMonitor.AssertCurrentThreadOwns(); } // Order is crucial here -- see nsTimerImpl::Release. aTimer->mArmed = false; NS_RELEASE(aTimer); } void TimerThread::DoBeforeSleep() { // Mainthread MonitorAutoLock lock(mMonitor); mLastTimerEventLoopRun = TimeStamp::Now(); mSleeping = true; } // Note: wake may be notified without preceding sleep notification void TimerThread::DoAfterSleep() { // Mainthread TimeStamp now = TimeStamp::Now(); MonitorAutoLock lock(mMonitor); // an over-estimate of time slept, usually small TimeDuration slept = now - mLastTimerEventLoopRun; // Adjust all old timers to expire roughly similar times in the future // compared to when we went to sleep, by adding the time we slept to the // target time. It's slightly possible a few will end up slightly in the // past and fire immediately, but ordering should be preserved. All // timers retain the exact same order (and relative times) as before // going to sleep. for (uint32_t i = 0; i < mTimers.Length(); i ++) { nsTimerImpl* timer = mTimers[i]; timer->mTimeout += slept; } mSleeping = false; mLastTimerEventLoopRun = now; // Wake up the timer thread to process the updated array mNotified = true; mMonitor.Notify(); } /* void observe (in nsISupports aSubject, in string aTopic, in wstring aData); */ NS_IMETHODIMP TimerThread::Observe(nsISupports* /* aSubject */, const char* aTopic, const char16_t* /* aData */) { if (strcmp(aTopic, "sleep_notification") == 0 || strcmp(aTopic, "suspend_process_notification") == 0) { DoBeforeSleep(); } else if (strcmp(aTopic, "wake_notification") == 0 || strcmp(aTopic, "resume_process_notification") == 0) { DoAfterSleep(); } return NS_OK; }