/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*-*/ /* vim: set ts=2 sw=2 et tw=79: */ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this file, * You can obtain one at http://mozilla.org/MPL/2.0/. */ /** * A header for declaring various things that binding implementation headers * might need. The idea is to make binding implementation headers safe to * include anywhere without running into include hell like we do with * BindingUtils.h */ #ifndef mozilla_dom_BindingDeclarations_h__ #define mozilla_dom_BindingDeclarations_h__ #include "nsStringGlue.h" #include "js/Value.h" #include "js/RootingAPI.h" #include "mozilla/Maybe.h" #include "nsCOMPtr.h" #include "nsTArray.h" #include "nsAutoPtr.h" // for nsRefPtr member variables #include "mozilla/dom/DOMString.h" #include "mozilla/dom/OwningNonNull.h" class nsWrapperCache; namespace mozilla { namespace dom { // Struct that serves as a base class for all dictionaries. Particularly useful // so we can use IsBaseOf to detect dictionary template arguments. struct DictionaryBase { protected: bool ParseJSON(JSContext* aCx, const nsAString& aJSON, JS::MutableHandle aVal); bool StringifyToJSON(JSContext* aCx, JS::MutableHandle aValue, nsAString& aJSON) const; // Struct used as a way to force a dictionary constructor to not init the // dictionary (via constructing from a pointer to this class). We're putting // it here so that all the dictionaries will have access to it, but outside // code will not. struct FastDictionaryInitializer { }; private: // aString is expected to actually be an nsAString*. Should only be // called from StringifyToJSON. static bool AppendJSONToString(const char16_t* aJSONData, uint32_t aDataLength, void* aString); }; // Struct that serves as a base class for all typed arrays and array buffers and // array buffer views. Particularly useful so we can use IsBaseOf to detect // typed array/buffer/view template arguments. struct AllTypedArraysBase { }; // Struct that serves as a base class for all owning unions. // Particularly useful so we can use IsBaseOf to detect owning union // template arguments. struct AllOwningUnionBase { }; struct EnumEntry { const char* value; size_t length; }; class MOZ_STACK_CLASS GlobalObject { public: GlobalObject(JSContext* aCx, JSObject* aObject); JSObject* Get() const { return mGlobalJSObject; } nsISupports* GetAsSupports() const; // The context that this returns is not guaranteed to be in the compartment of // the object returned from Get(), in fact it's generally in the caller's // compartment. JSContext* Context() const { return mCx; } bool Failed() const { return !Get(); } protected: JS::Rooted mGlobalJSObject; JSContext* mCx; mutable nsISupports* MOZ_UNSAFE_REF("Valid because GlobalObject is a stack " "class, and mGlobalObject points to the " "global, so it won't be destroyed as long " "as GlobalObject lives on the stack") mGlobalObject; }; // Class for representing optional arguments. template class Optional_base { public: Optional_base() {} explicit Optional_base(const T& aValue) { mImpl.emplace(aValue); } template explicit Optional_base(const T1& aValue1, const T2& aValue2) { mImpl.emplace(aValue1, aValue2); } bool WasPassed() const { return mImpl.isSome(); } // Return InternalType here so we can work with it usefully. InternalType& Construct() { mImpl.emplace(); return *mImpl; } template InternalType& Construct(const T1 &t1) { mImpl.emplace(t1); return *mImpl; } template InternalType& Construct(const T1 &t1, const T2 &t2) { mImpl.emplace(t1, t2); return *mImpl; } void Reset() { mImpl.reset(); } const T& Value() const { return *mImpl; } // Return InternalType here so we can work with it usefully. InternalType& Value() { return *mImpl; } // And an explicit way to get the InternalType even if we're const. const InternalType& InternalValue() const { return *mImpl; } // If we ever decide to add conversion operators for optional arrays // like the ones Nullable has, we'll need to ensure that Maybe<> has // the boolean before the actual data. private: // Forbid copy-construction and assignment Optional_base(const Optional_base& other) = delete; const Optional_base &operator=(const Optional_base &other) = delete; protected: Maybe mImpl; }; template class Optional : public Optional_base { public: Optional() : Optional_base() {} explicit Optional(const T& aValue) : Optional_base(aValue) {} }; template class Optional > : public Optional_base, JS::Rooted > { public: Optional() : Optional_base, JS::Rooted >() {} explicit Optional(JSContext* cx) : Optional_base, JS::Rooted >() { this->Construct(cx); } Optional(JSContext* cx, const T& aValue) : Optional_base, JS::Rooted >(cx, aValue) {} // Override the const Value() to return the right thing so we're not // returning references to temporaries. JS::Handle Value() const { return *this->mImpl; } // And we have to override the non-const one too, since we're // shadowing the one on the superclass. JS::Rooted& Value() { return *this->mImpl; } }; // A specialization of Optional for JSObject* to make sure that when someone // calls Construct() on it we will pre-initialized the JSObject* to nullptr so // it can be traced safely. template<> class Optional : public Optional_base { public: Optional() : Optional_base() {} explicit Optional(JSObject* aValue) : Optional_base(aValue) {} // Don't allow us to have an uninitialized JSObject* JSObject*& Construct() { // The Android compiler sucks and thinks we're trying to construct // a JSObject* from an int if we don't cast here. :( return Optional_base::Construct( static_cast(nullptr)); } template JSObject*& Construct(const T1& t1) { return Optional_base::Construct(t1); } }; // A specialization of Optional for JS::Value to make sure no one ever uses it. template<> class Optional { private: Optional() = delete; explicit Optional(JS::Value aValue) = delete; }; // A specialization of Optional for NonNull that lets us get a T& from Value() template class NonNull; template class Optional > : public Optional_base > { public: // We want our Value to actually return a non-const reference, even // if we're const. At least for things that are normally pointer // types... T& Value() const { return *this->mImpl->get(); } // And we have to override the non-const one too, since we're // shadowing the one on the superclass. NonNull& Value() { return *this->mImpl; } }; // A specialization of Optional for OwningNonNull that lets us get a // T& from Value() template class Optional > : public Optional_base > { public: // We want our Value to actually return a non-const reference, even // if we're const. At least for things that are normally pointer // types... T& Value() const { return *this->mImpl->get(); } // And we have to override the non-const one too, since we're // shadowing the one on the superclass. OwningNonNull& Value() { return *this->mImpl; } }; // Specialization for strings. // XXXbz we can't pull in FakeString here, because it depends on internal // strings. So we just have to forward-declare it and reimplement its // ToAStringPtr. namespace binding_detail { struct FakeString; } // namespace binding_detail template<> class Optional { public: Optional() : mPassed(false) {} bool WasPassed() const { return mPassed; } void operator=(const nsAString* str) { MOZ_ASSERT(str); mStr = str; mPassed = true; } // If this code ever goes away, remove the comment pointing to it in the // FakeString class in BindingUtils.h. void operator=(const binding_detail::FakeString* str) { MOZ_ASSERT(str); mStr = reinterpret_cast(str); mPassed = true; } const nsAString& Value() const { MOZ_ASSERT(WasPassed()); return *mStr; } private: // Forbid copy-construction and assignment Optional(const Optional& other) = delete; const Optional &operator=(const Optional &other) = delete; bool mPassed; const nsAString* mStr; }; template class NonNull { public: NonNull() #ifdef DEBUG : inited(false) #endif {} // This is no worse than get() in terms of const handling. operator T&() const { MOZ_ASSERT(inited); MOZ_ASSERT(ptr, "NonNull was set to null"); return *ptr; } operator T*() const { MOZ_ASSERT(inited); MOZ_ASSERT(ptr, "NonNull was set to null"); return ptr; } void operator=(T* t) { ptr = t; MOZ_ASSERT(ptr); #ifdef DEBUG inited = true; #endif } template void operator=(U* t) { ptr = t->ToAStringPtr(); MOZ_ASSERT(ptr); #ifdef DEBUG inited = true; #endif } T** Slot() { #ifdef DEBUG inited = true; #endif return &ptr; } T* Ptr() { MOZ_ASSERT(inited); MOZ_ASSERT(ptr, "NonNull was set to null"); return ptr; } // Make us work with smart-ptr helpers that expect a get() T* get() const { MOZ_ASSERT(inited); MOZ_ASSERT(ptr); return ptr; } protected: T* ptr; #ifdef DEBUG bool inited; #endif }; // Class for representing sequences in arguments. We use a non-auto array // because that allows us to use sequences of sequences and the like. This // needs to be fallible because web content controls the length of the array, // and can easily try to create very large lengths. template class Sequence : public FallibleTArray { public: Sequence() : FallibleTArray() {} }; inline nsWrapperCache* GetWrapperCache(nsWrapperCache* cache) { return cache; } inline nsWrapperCache* GetWrapperCache(void* p) { return nullptr; } // Helper template for smart pointers to resolve ambiguity between // GetWrappeCache(void*) and GetWrapperCache(const ParentObject&). template