1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
|
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "ThrottledEventQueue.h"
#include "mozilla/Atomics.h"
#include "mozilla/ClearOnShutdown.h"
#include "mozilla/Mutex.h"
#include "mozilla/Unused.h"
#include "nsEventQueue.h"
namespace mozilla {
using mozilla::services::GetObserverService;
namespace {
static const char kShutdownTopic[] = "xpcom-shutdown";
} // anonymous namespace
// The ThrottledEventQueue is designed with inner and outer objects:
//
// XPCOM code nsObserverService
// | |
// | |
// v |
// +-------+ |
// | Outer | |
// +-------+ |
// | |
// | +-------+ |
// +-->| Inner |<--+
// +-------+
//
// Client code references the outer nsIEventTarget which in turn references
// an inner object. The inner object is also held alive by the observer
// service.
//
// If the outer object is dereferenced and destroyed, it will trigger a
// shutdown operation on the inner object. Similarly if the observer
// service notifies that the browser is shutting down, then the inner
// object also starts shutting down.
//
// Once the queue has drained we unregister from the observer service. If
// the outer object is already gone, then the inner object is free'd at this
// point. If the outer object still exists then calls fall back to the
// ThrottledEventQueue's base target. We just don't queue things
// any more. The inner is then released once the outer object is released.
//
// Note, we must keep the inner object alive and attached to the observer
// service until the TaskQueue is fully shutdown and idle. We must delay
// xpcom shutdown if the TaskQueue is in the middle of draining.
class ThrottledEventQueue::Inner final : public nsIObserver
{
// The runnable which is dispatched to the underlying base target. Since
// we only execute one event at a time we just re-use a single instance
// of this class while there are events left in the queue.
class Executor final : public Runnable
{
RefPtr<Inner> mInner;
public:
explicit Executor(Inner* aInner)
: mInner(aInner)
{ }
NS_IMETHODIMP
Run()
{
mInner->ExecuteRunnable();
return NS_OK;
}
};
mutable Mutex mMutex;
mutable CondVar mIdleCondVar;
mozilla::CondVar mEventsAvailable;
// any thread, protected by mutex
nsEventQueue mEventQueue;
// written on main thread, read on any thread
nsCOMPtr<nsIEventTarget> mBaseTarget;
// any thread, protected by mutex
nsCOMPtr<nsIRunnable> mExecutor;
// any thread, atomic
Atomic<uint32_t> mExecutionDepth;
// any thread, protected by mutex
bool mShutdownStarted;
explicit Inner(nsIEventTarget* aBaseTarget)
: mMutex("ThrottledEventQueue")
, mIdleCondVar(mMutex, "ThrottledEventQueue:Idle")
, mEventsAvailable(mMutex, "[ThrottledEventQueue::Inner.mEventsAvailable]")
, mEventQueue(mEventsAvailable, nsEventQueue::eNormalQueue)
, mBaseTarget(aBaseTarget)
, mExecutionDepth(0)
, mShutdownStarted(false)
{
}
~Inner()
{
MOZ_ASSERT(!mExecutor);
MOZ_ASSERT(mShutdownStarted);
}
void
ExecuteRunnable()
{
// Any thread
nsCOMPtr<nsIRunnable> event;
bool shouldShutdown = false;
#ifdef DEBUG
bool currentThread = false;
mBaseTarget->IsOnCurrentThread(¤tThread);
MOZ_ASSERT(currentThread);
#endif
{
MutexAutoLock lock(mMutex);
// We only dispatch an executor runnable when we know there is something
// in the queue, so this should never fail.
MOZ_ALWAYS_TRUE(mEventQueue.GetPendingEvent(getter_AddRefs(event), lock));
// If there are more events in the queue, then dispatch the next
// executor. We do this now, before running the event, because
// the event might spin the event loop and we don't want to stall
// the queue.
if (mEventQueue.HasPendingEvent(lock)) {
// Dispatch the next base target runnable to attempt to execute
// the next throttled event. We must do this before executing
// the event in case the event spins the event loop.
MOZ_ALWAYS_SUCCEEDS(
mBaseTarget->Dispatch(mExecutor, NS_DISPATCH_NORMAL));
}
// Otherwise the queue is empty and we can stop dispatching the
// executor. We might also need to shutdown after running the
// last event.
else {
shouldShutdown = mShutdownStarted;
// Note, this breaks a ref cycle.
mExecutor = nullptr;
mIdleCondVar.NotifyAll();
}
}
// Execute the event now that we have unlocked.
++mExecutionDepth;
Unused << event->Run();
--mExecutionDepth;
// If shutdown was started and the queue is now empty we can now
// finalize the shutdown. This is performed separately at the end
// of the method in order to wait for the event to finish running.
if (shouldShutdown) {
MOZ_ASSERT(IsEmpty());
NS_DispatchToMainThread(NewRunnableMethod(this, &Inner::ShutdownComplete));
}
}
void
ShutdownComplete()
{
MOZ_ASSERT(NS_IsMainThread());
MOZ_ASSERT(IsEmpty());
nsCOMPtr<nsIObserverService> obs = GetObserverService();
obs->RemoveObserver(this, kShutdownTopic);
}
public:
static already_AddRefed<Inner>
Create(nsIEventTarget* aBaseTarget)
{
MOZ_ASSERT(NS_IsMainThread());
if (ClearOnShutdown_Internal::sCurrentShutdownPhase != ShutdownPhase::NotInShutdown) {
return nullptr;
}
nsCOMPtr<nsIObserverService> obs = GetObserverService();
if (NS_WARN_IF(!obs)) {
return nullptr;
}
RefPtr<Inner> ref = new Inner(aBaseTarget);
nsresult rv = obs->AddObserver(ref, kShutdownTopic,
false /* means OS will hold a strong ref */);
if (NS_WARN_IF(NS_FAILED(rv))) {
ref->MaybeStartShutdown();
MOZ_ASSERT(ref->IsEmpty());
return nullptr;
}
return ref.forget();
}
NS_IMETHOD
Observe(nsISupports*, const char* aTopic, const char16_t*) override
{
MOZ_ASSERT(NS_IsMainThread());
MOZ_ASSERT(!strcmp(aTopic, kShutdownTopic));
MaybeStartShutdown();
// Once shutdown begins we set the Atomic<bool> mShutdownStarted flag.
// This prevents any new runnables from being dispatched into the
// TaskQueue. Therefore this loop should be finite.
while (!IsEmpty()) {
MOZ_ALWAYS_TRUE(NS_ProcessNextEvent());
}
return NS_OK;
}
void
MaybeStartShutdown()
{
// Any thread
MutexAutoLock lock(mMutex);
if (mShutdownStarted) {
return;
}
mShutdownStarted = true;
// We are marked for shutdown now, but we are still processing runnables.
// Return for now. The shutdown will be completed once the queue is
// drained.
if (mExecutor) {
return;
}
// The queue is empty, so we can complete immediately.
NS_DispatchToMainThread(NewRunnableMethod(this, &Inner::ShutdownComplete));
}
bool
IsEmpty() const
{
// Any thread
return Length() == 0;
}
uint32_t
Length() const
{
// Any thread
MutexAutoLock lock(mMutex);
return mEventQueue.Count(lock);
}
void
AwaitIdle() const
{
// Any thread, except the main thread or our base target. Blocking the
// main thread is forbidden. Blocking the base target is guaranteed to
// produce a deadlock.
MOZ_ASSERT(!NS_IsMainThread());
#ifdef DEBUG
bool onBaseTarget = false;
Unused << mBaseTarget->IsOnCurrentThread(&onBaseTarget);
MOZ_ASSERT(!onBaseTarget);
#endif
MutexAutoLock lock(mMutex);
while (mExecutor) {
mIdleCondVar.Wait();
}
}
nsresult
DispatchFromScript(nsIRunnable* aEvent, uint32_t aFlags)
{
// Any thread
nsCOMPtr<nsIRunnable> r = aEvent;
return Dispatch(r.forget(), aFlags);
}
nsresult
Dispatch(already_AddRefed<nsIRunnable> aEvent, uint32_t aFlags)
{
MOZ_ASSERT(aFlags == NS_DISPATCH_NORMAL ||
aFlags == NS_DISPATCH_AT_END);
// Any thread
MutexAutoLock lock(mMutex);
// If we are shutting down, just fall back to our base target
// directly.
if (mShutdownStarted) {
return mBaseTarget->Dispatch(Move(aEvent), aFlags);
}
// We are not currently processing events, so we must start
// operating on our base target. This is fallible, so do
// it first. Our lock will prevent the executor from accessing
// the event queue before we add the event below.
if (!mExecutor) {
// Note, this creates a ref cycle keeping the inner alive
// until the queue is drained.
mExecutor = new Executor(this);
nsresult rv = mBaseTarget->Dispatch(mExecutor, NS_DISPATCH_NORMAL);
if (NS_WARN_IF(NS_FAILED(rv))) {
mExecutor = nullptr;
return rv;
}
}
// Only add the event to the underlying queue if are able to
// dispatch to our base target.
mEventQueue.PutEvent(Move(aEvent), lock);
return NS_OK;
}
nsresult
DelayedDispatch(already_AddRefed<nsIRunnable> aEvent, uint32_t aDelay)
{
// The base target may implement this, but we don't. Always fail
// to provide consistent behavior.
return NS_ERROR_NOT_IMPLEMENTED;
}
nsresult
IsOnCurrentThread(bool* aResult)
{
// Any thread
bool shutdownAndIdle = false;
{
MutexAutoLock lock(mMutex);
shutdownAndIdle = mShutdownStarted && mEventQueue.Count(lock) == 0;
}
bool onBaseTarget = false;
nsresult rv = mBaseTarget->IsOnCurrentThread(&onBaseTarget);
if (NS_FAILED(rv)) {
return rv;
}
// We consider the current stack on this event target if are on
// the base target and one of the following is true
// 1) We are currently running an event OR
// 2) We are both shutting down and the queue is idle
*aResult = onBaseTarget && (mExecutionDepth || shutdownAndIdle);
return NS_OK;
}
NS_DECL_THREADSAFE_ISUPPORTS
};
NS_IMPL_ISUPPORTS(ThrottledEventQueue::Inner, nsIObserver);
NS_IMPL_ISUPPORTS(ThrottledEventQueue, nsIEventTarget);
ThrottledEventQueue::ThrottledEventQueue(already_AddRefed<Inner> aInner)
: mInner(aInner)
{
MOZ_ASSERT(mInner);
}
ThrottledEventQueue::~ThrottledEventQueue()
{
mInner->MaybeStartShutdown();
}
void
ThrottledEventQueue::MaybeStartShutdown()
{
return mInner->MaybeStartShutdown();
}
already_AddRefed<ThrottledEventQueue>
ThrottledEventQueue::Create(nsIEventTarget* aBaseTarget)
{
MOZ_ASSERT(NS_IsMainThread());
MOZ_ASSERT(aBaseTarget);
RefPtr<Inner> inner = Inner::Create(aBaseTarget);
if (NS_WARN_IF(!inner)) {
return nullptr;
}
RefPtr<ThrottledEventQueue> ref =
new ThrottledEventQueue(inner.forget());
return ref.forget();
}
bool
ThrottledEventQueue::IsEmpty() const
{
return mInner->IsEmpty();
}
uint32_t
ThrottledEventQueue::Length() const
{
return mInner->Length();
}
void
ThrottledEventQueue::AwaitIdle() const
{
return mInner->AwaitIdle();
}
NS_IMETHODIMP
ThrottledEventQueue::DispatchFromScript(nsIRunnable* aEvent, uint32_t aFlags)
{
return mInner->DispatchFromScript(aEvent, aFlags);
}
NS_IMETHODIMP
ThrottledEventQueue::Dispatch(already_AddRefed<nsIRunnable> aEvent,
uint32_t aFlags)
{
return mInner->Dispatch(Move(aEvent), aFlags);
}
NS_IMETHODIMP
ThrottledEventQueue::DelayedDispatch(already_AddRefed<nsIRunnable> aEvent,
uint32_t aFlags)
{
return mInner->DelayedDispatch(Move(aEvent), aFlags);
}
NS_IMETHODIMP
ThrottledEventQueue::IsOnCurrentThread(bool* aResult)
{
return mInner->IsOnCurrentThread(aResult);
}
} // namespace mozilla
|