1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
|
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
//
// Implement TimeStamp::Now() with mach_absolute_time
//
// The "tick" unit for mach_absolute_time is defined using mach_timebase_info() which
// gives a conversion ratio to nanoseconds. For more information see Apple's QA1398.
//
// This code is inspired by Chromium's time_mac.cc. The biggest
// differences are that we explicitly initialize using
// TimeStamp::Initialize() instead of lazily in Now() and that
// we store the time value in ticks and convert when needed instead
// of storing the time value in nanoseconds.
#include <mach/mach_time.h>
#include <sys/time.h>
#include <sys/sysctl.h>
#include <time.h>
#include <unistd.h>
#include "mozilla/TimeStamp.h"
// Estimate of the smallest duration of time we can measure.
static uint64_t sResolution;
static uint64_t sResolutionSigDigs;
static const uint64_t kNsPerMs = 1000000;
static const uint64_t kUsPerSec = 1000000;
static const double kNsPerMsd = 1000000.0;
static const double kNsPerSecd = 1000000000.0;
static bool gInitialized = false;
static double sNsPerTick;
static uint64_t
ClockTime()
{
// mach_absolute_time is it when it comes to ticks on the Mac. Other calls
// with less precision (such as TickCount) just call through to
// mach_absolute_time.
//
// At the time of writing mach_absolute_time returns the number of nanoseconds
// since boot. This won't overflow 64bits for 500+ years so we aren't going
// to worry about that possiblity
return mach_absolute_time();
}
static uint64_t
ClockResolutionNs()
{
uint64_t start = ClockTime();
uint64_t end = ClockTime();
uint64_t minres = (end - start);
// 10 total trials is arbitrary: what we're trying to avoid by
// looping is getting unlucky and being interrupted by a context
// switch or signal, or being bitten by paging/cache effects
for (int i = 0; i < 9; ++i) {
start = ClockTime();
end = ClockTime();
uint64_t candidate = (start - end);
if (candidate < minres) {
minres = candidate;
}
}
if (0 == minres) {
// measurable resolution is either incredibly low, ~1ns, or very
// high. fall back on NSPR's resolution assumption
minres = 1 * kNsPerMs;
}
return minres;
}
namespace mozilla {
double
BaseTimeDurationPlatformUtils::ToSeconds(int64_t aTicks)
{
MOZ_ASSERT(gInitialized, "calling TimeDuration too early");
return (aTicks * sNsPerTick) / kNsPerSecd;
}
double
BaseTimeDurationPlatformUtils::ToSecondsSigDigits(int64_t aTicks)
{
MOZ_ASSERT(gInitialized, "calling TimeDuration too early");
// don't report a value < mResolution ...
int64_t valueSigDigs = sResolution * (aTicks / sResolution);
// and chop off insignificant digits
valueSigDigs = sResolutionSigDigs * (valueSigDigs / sResolutionSigDigs);
return (valueSigDigs * sNsPerTick) / kNsPerSecd;
}
int64_t
BaseTimeDurationPlatformUtils::TicksFromMilliseconds(double aMilliseconds)
{
MOZ_ASSERT(gInitialized, "calling TimeDuration too early");
double result = (aMilliseconds * kNsPerMsd) / sNsPerTick;
if (result > INT64_MAX) {
return INT64_MAX;
} else if (result < INT64_MIN) {
return INT64_MIN;
}
return result;
}
int64_t
BaseTimeDurationPlatformUtils::ResolutionInTicks()
{
MOZ_ASSERT(gInitialized, "calling TimeDuration too early");
return static_cast<int64_t>(sResolution);
}
void
TimeStamp::Startup()
{
if (gInitialized) {
return;
}
mach_timebase_info_data_t timebaseInfo;
// Apple's QA1398 suggests that the output from mach_timebase_info
// will not change while a program is running, so it should be safe
// to cache the result.
kern_return_t kr = mach_timebase_info(&timebaseInfo);
if (kr != KERN_SUCCESS) {
MOZ_RELEASE_ASSERT(false, "mach_timebase_info failed");
}
sNsPerTick = double(timebaseInfo.numer) / timebaseInfo.denom;
sResolution = ClockResolutionNs();
// find the number of significant digits in sResolution, for the
// sake of ToSecondsSigDigits()
for (sResolutionSigDigs = 1;
!(sResolutionSigDigs == sResolution ||
10 * sResolutionSigDigs > sResolution);
sResolutionSigDigs *= 10);
gInitialized = true;
return;
}
void
TimeStamp::Shutdown()
{
}
TimeStamp
TimeStamp::Now(bool aHighResolution)
{
return TimeStamp(ClockTime());
}
// Computes and returns the process uptime in microseconds.
// Returns 0 if an error was encountered.
uint64_t
TimeStamp::ComputeProcessUptime()
{
struct timeval tv;
int rv = gettimeofday(&tv, nullptr);
if (rv == -1) {
return 0;
}
int mib[] = {
CTL_KERN,
KERN_PROC,
KERN_PROC_PID,
getpid(),
};
u_int mibLen = sizeof(mib) / sizeof(mib[0]);
struct kinfo_proc proc;
size_t bufferSize = sizeof(proc);
rv = sysctl(mib, mibLen, &proc, &bufferSize, nullptr, 0);
if (rv == -1) {
return 0;
}
uint64_t startTime =
((uint64_t)proc.kp_proc.p_un.__p_starttime.tv_sec * kUsPerSec) +
proc.kp_proc.p_un.__p_starttime.tv_usec;
uint64_t now = (tv.tv_sec * kUsPerSec) + tv.tv_usec;
if (startTime > now) {
return 0;
}
return now - startTime;
}
} // namespace mozilla
|