summaryrefslogtreecommitdiff
path: root/media/libaom/src/examples/svc_encoder_rtc.c
blob: 1316c6c1eb34debc92c8931f3cf87b3c58149536 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
/*
 *  Copyright (c) 2019, Alliance for Open Media. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

//  This is an example demonstrating how to implement a multi-layer AOM
//  encoding scheme for RTC video applications.

#include <assert.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include "aom/aom_encoder.h"
#include "aom/aomcx.h"
#include "av1/common/enums.h"
#include "common/tools_common.h"
#include "common/video_writer.h"
#include "aom_ports/aom_timer.h"

#define zero(Dest) memset(&(Dest), 0, sizeof(Dest));

static const char *exec_name;

void usage_exit(void) { exit(EXIT_FAILURE); }

static int mode_to_num_temporal_layers[10] = { 1, 2, 3, 3, 2, 1, 1, 3, 3, 3 };
static int mode_to_num_spatial_layers[10] = { 1, 1, 1, 1, 1, 2, 3, 3, 3, 3 };
static int mode_to_num_layers[10] = { 1, 2, 3, 3, 2, 2, 3, 9, 9, 9 };

// For rate control encoding stats.
struct RateControlMetrics {
  // Number of input frames per layer.
  int layer_input_frames[AOM_MAX_TS_LAYERS];
  // Number of encoded non-key frames per layer.
  int layer_enc_frames[AOM_MAX_TS_LAYERS];
  // Framerate per layer layer (cumulative).
  double layer_framerate[AOM_MAX_TS_LAYERS];
  // Target average frame size per layer (per-frame-bandwidth per layer).
  double layer_pfb[AOM_MAX_LAYERS];
  // Actual average frame size per layer.
  double layer_avg_frame_size[AOM_MAX_LAYERS];
  // Average rate mismatch per layer (|target - actual| / target).
  double layer_avg_rate_mismatch[AOM_MAX_LAYERS];
  // Actual encoding bitrate per layer (cumulative across temporal layers).
  double layer_encoding_bitrate[AOM_MAX_LAYERS];
  // Average of the short-time encoder actual bitrate.
  // TODO(marpan): Should we add these short-time stats for each layer?
  double avg_st_encoding_bitrate;
  // Variance of the short-time encoder actual bitrate.
  double variance_st_encoding_bitrate;
  // Window (number of frames) for computing short-timee encoding bitrate.
  int window_size;
  // Number of window measurements.
  int window_count;
  int layer_target_bitrate[AOM_MAX_LAYERS];
};

static int read_frame(struct AvxInputContext *input_ctx, aom_image_t *img) {
  FILE *f = input_ctx->file;
  y4m_input *y4m = &input_ctx->y4m;
  int shortread = 0;

  if (input_ctx->file_type == FILE_TYPE_Y4M) {
    if (y4m_input_fetch_frame(y4m, f, img) < 1) return 0;
  } else {
    shortread = read_yuv_frame(input_ctx, img);
  }

  return !shortread;
}

static int file_is_y4m(const char detect[4]) {
  if (memcmp(detect, "YUV4", 4) == 0) {
    return 1;
  }
  return 0;
}

static int fourcc_is_ivf(const char detect[4]) {
  if (memcmp(detect, "DKIF", 4) == 0) {
    return 1;
  }
  return 0;
}

static void close_input_file(struct AvxInputContext *input) {
  fclose(input->file);
  if (input->file_type == FILE_TYPE_Y4M) y4m_input_close(&input->y4m);
}

static void open_input_file(struct AvxInputContext *input,
                            aom_chroma_sample_position_t csp) {
  /* Parse certain options from the input file, if possible */
  input->file = strcmp(input->filename, "-") ? fopen(input->filename, "rb")
                                             : set_binary_mode(stdin);

  if (!input->file) fatal("Failed to open input file");

  if (!fseeko(input->file, 0, SEEK_END)) {
    /* Input file is seekable. Figure out how long it is, so we can get
     * progress info.
     */
    input->length = ftello(input->file);
    rewind(input->file);
  }

  /* Default to 1:1 pixel aspect ratio. */
  input->pixel_aspect_ratio.numerator = 1;
  input->pixel_aspect_ratio.denominator = 1;

  /* For RAW input sources, these bytes will applied on the first frame
   *  in read_frame().
   */
  input->detect.buf_read = fread(input->detect.buf, 1, 4, input->file);
  input->detect.position = 0;

  if (input->detect.buf_read == 4 && file_is_y4m(input->detect.buf)) {
    if (y4m_input_open(&input->y4m, input->file, input->detect.buf, 4, csp,
                       input->only_i420) >= 0) {
      input->file_type = FILE_TYPE_Y4M;
      input->width = input->y4m.pic_w;
      input->height = input->y4m.pic_h;
      input->pixel_aspect_ratio.numerator = input->y4m.par_n;
      input->pixel_aspect_ratio.denominator = input->y4m.par_d;
      input->framerate.numerator = input->y4m.fps_n;
      input->framerate.denominator = input->y4m.fps_d;
      input->fmt = input->y4m.aom_fmt;
      input->bit_depth = input->y4m.bit_depth;
    } else {
      fatal("Unsupported Y4M stream.");
    }
  } else if (input->detect.buf_read == 4 && fourcc_is_ivf(input->detect.buf)) {
    fatal("IVF is not supported as input.");
  } else {
    input->file_type = FILE_TYPE_RAW;
  }
}

// Note: these rate control metrics assume only 1 key frame in the
// sequence (i.e., first frame only). So for temporal pattern# 7
// (which has key frame for every frame on base layer), the metrics
// computation will be off/wrong.
// TODO(marpan): Update these metrics to account for multiple key frames
// in the stream.
static void set_rate_control_metrics(struct RateControlMetrics *rc,
                                     double framerate,
                                     unsigned int ss_number_layers,
                                     unsigned int ts_number_layers) {
  int ts_rate_decimator[AOM_MAX_TS_LAYERS] = { 1 };
  ts_rate_decimator[0] = 1;
  if (ts_number_layers == 2) {
    ts_rate_decimator[0] = 2;
    ts_rate_decimator[1] = 1;
  }
  if (ts_number_layers == 3) {
    ts_rate_decimator[0] = 4;
    ts_rate_decimator[1] = 2;
    ts_rate_decimator[2] = 1;
  }
  // Set the layer (cumulative) framerate and the target layer (non-cumulative)
  // per-frame-bandwidth, for the rate control encoding stats below.
  for (unsigned int sl = 0; sl < ss_number_layers; ++sl) {
    unsigned int i = sl * ts_number_layers;
    rc->layer_framerate[0] = framerate / ts_rate_decimator[0];
    rc->layer_pfb[i] =
        1000.0 * rc->layer_target_bitrate[i] / rc->layer_framerate[0];
    for (unsigned int tl = 0; tl < ts_number_layers; ++tl) {
      i = sl * ts_number_layers + tl;
      if (tl > 0) {
        rc->layer_framerate[tl] = framerate / ts_rate_decimator[tl];
        rc->layer_pfb[i] =
            1000.0 *
            (rc->layer_target_bitrate[i] - rc->layer_target_bitrate[i - 1]) /
            (rc->layer_framerate[tl] - rc->layer_framerate[tl - 1]);
      }
      rc->layer_input_frames[tl] = 0;
      rc->layer_enc_frames[tl] = 0;
      rc->layer_encoding_bitrate[i] = 0.0;
      rc->layer_avg_frame_size[i] = 0.0;
      rc->layer_avg_rate_mismatch[i] = 0.0;
    }
  }
  rc->window_count = 0;
  rc->window_size = 15;
  rc->avg_st_encoding_bitrate = 0.0;
  rc->variance_st_encoding_bitrate = 0.0;
}

static void printout_rate_control_summary(struct RateControlMetrics *rc,
                                          int frame_cnt,
                                          unsigned int ss_number_layers,
                                          unsigned int ts_number_layers) {
  int tot_num_frames = 0;
  double perc_fluctuation = 0.0;
  printf("Total number of processed frames: %d\n\n", frame_cnt - 1);
  printf("Rate control layer stats for %d layer(s):\n\n", ts_number_layers);
  for (unsigned int sl = 0; sl < ss_number_layers; ++sl) {
    tot_num_frames = 0;
    for (unsigned int tl = 0; tl < ts_number_layers; ++tl) {
      unsigned int i = sl * ts_number_layers + tl;
      const int num_dropped =
          tl > 0 ? rc->layer_input_frames[tl] - rc->layer_enc_frames[tl]
                 : rc->layer_input_frames[tl] - rc->layer_enc_frames[tl] - 1;
      tot_num_frames += rc->layer_input_frames[tl];
      rc->layer_encoding_bitrate[i] = 0.001 * rc->layer_framerate[tl] *
                                      rc->layer_encoding_bitrate[i] /
                                      tot_num_frames;
      rc->layer_avg_frame_size[i] =
          rc->layer_avg_frame_size[i] / rc->layer_enc_frames[tl];
      rc->layer_avg_rate_mismatch[i] =
          100.0 * rc->layer_avg_rate_mismatch[i] / rc->layer_enc_frames[tl];
      printf("For layer#: %d %d \n", sl, tl);
      printf("Bitrate (target vs actual): %d %f\n", rc->layer_target_bitrate[i],
             rc->layer_encoding_bitrate[i]);
      printf("Average frame size (target vs actual): %f %f\n", rc->layer_pfb[i],
             rc->layer_avg_frame_size[i]);
      printf("Average rate_mismatch: %f\n", rc->layer_avg_rate_mismatch[i]);
      printf(
          "Number of input frames, encoded (non-key) frames, "
          "and perc dropped frames: %d %d %f\n",
          rc->layer_input_frames[tl], rc->layer_enc_frames[tl],
          100.0 * num_dropped / rc->layer_input_frames[tl]);
      printf("\n");
    }
  }
  rc->avg_st_encoding_bitrate = rc->avg_st_encoding_bitrate / rc->window_count;
  rc->variance_st_encoding_bitrate =
      rc->variance_st_encoding_bitrate / rc->window_count -
      (rc->avg_st_encoding_bitrate * rc->avg_st_encoding_bitrate);
  perc_fluctuation = 100.0 * sqrt(rc->variance_st_encoding_bitrate) /
                     rc->avg_st_encoding_bitrate;
  printf("Short-time stats, for window of %d frames:\n", rc->window_size);
  printf("Average, rms-variance, and percent-fluct: %f %f %f\n",
         rc->avg_st_encoding_bitrate, sqrt(rc->variance_st_encoding_bitrate),
         perc_fluctuation);
  if (frame_cnt - 1 != tot_num_frames)
    die("Error: Number of input frames not equal to output!\n");
}

// Layer pattern configuration.
static int set_layer_pattern(int layering_mode, int superframe_cnt,
                             aom_svc_layer_id_t *layer_id,
                             aom_svc_ref_frame_config_t *ref_frame_config,
                             int *use_svc_control, int spatial_layer_id,
                             int is_key_frame, int ksvc_mode) {
  int i;
  int shift = (layering_mode == 7) ? 2 : 0;
  *use_svc_control = 1;
  layer_id->spatial_layer_id = spatial_layer_id;
  // Set the referende map buffer idx for the 7 references:
  // LAST_FRAME (0), LAST2_FRAME(1), LAST3_FRAME(2), GOLDEN_FRAME(3),
  // BWDREF_FRAME(4), ALTREF2_FRAME(5), ALTREF_FRAME(6).
  for (i = 0; i < INTER_REFS_PER_FRAME; i++) ref_frame_config->ref_idx[i] = i;
  for (i = 0; i < INTER_REFS_PER_FRAME; i++) ref_frame_config->reference[i] = 0;
  for (i = 0; i < REF_FRAMES; i++) ref_frame_config->refresh[i] = 0;
  // Note for this layered patterns only use LAST and GF for prediction in
  // non-rd mode (speed >= 7).
  int layer_flags = AOM_EFLAG_NO_REF_LAST2 | AOM_EFLAG_NO_REF_LAST3 |
                    AOM_EFLAG_NO_REF_ARF | AOM_EFLAG_NO_REF_BWD |
                    AOM_EFLAG_NO_REF_ARF2;
  if (ksvc_mode) {
    // Same pattern as case 8.
    layering_mode = 8;
    if (!is_key_frame)
      // No inter-layer prediction on inter-frames.
      layer_flags |= AOM_EFLAG_NO_REF_GF;
  }
  switch (layering_mode) {
    case 0:
      // 1-layer: update LAST on every frame, reference LAST and GF.
      layer_id->temporal_layer_id = 0;
      ref_frame_config->refresh[0] = 1;
      break;
    case 1:
      // 2-temporal layer.
      //    1    3    5
      //  0    2    4
      if (superframe_cnt % 2 == 0) {
        layer_id->temporal_layer_id = 0;
        // Update LAST on layer 0, reference LAST and GF.
        ref_frame_config->refresh[0] = 1;
      } else {
        layer_id->temporal_layer_id = 1;
        // No updates on layer 1, only reference LAST (TL0).
        layer_flags |= AOM_EFLAG_NO_REF_GF;
      }
      break;
    case 2:
      // 3-temporal layer:
      //   1    3   5    7
      //     2        6
      // 0        4        8
      if (superframe_cnt % 4 == 0) {
        // Base layer.
        layer_id->temporal_layer_id = 0;
        // Update LAST on layer 0, reference LAST and GF.
        ref_frame_config->refresh[0] = 1;
      } else if ((superframe_cnt - 1) % 4 == 0) {
        layer_id->temporal_layer_id = 2;
        // First top layer: no updates, only reference LAST (TL0).
        layer_flags |= AOM_EFLAG_NO_REF_GF;
      } else if ((superframe_cnt - 2) % 4 == 0) {
        layer_id->temporal_layer_id = 1;
        // Middle layer (TL1): update LAST2, only reference LAST (TL0).
        ref_frame_config->refresh[1] = 1;
        layer_flags |= AOM_EFLAG_NO_REF_GF;
      } else if ((superframe_cnt - 3) % 4 == 0) {
        layer_id->temporal_layer_id = 2;
        // Second top layer: no updates, only reference LAST.
        // Set buffer idx for LAST to slot 1, since that was the slot
        // updated in previous frame. So LAST is TL1 frame.
        ref_frame_config->ref_idx[0] = 1;
        ref_frame_config->ref_idx[1] = 0;
        layer_flags |= AOM_EFLAG_NO_REF_GF;
      }
      break;
    case 3:
      // 3-temporal layer: but middle layer updates GF, so 2nd TL2 will
      // only reference GF (not LAST). Other frames only reference LAST.
      //   1    3   5    7
      //     2        6
      // 0        4        8
      if (superframe_cnt % 4 == 0) {
        // Base layer.
        layer_id->temporal_layer_id = 0;
        // Update LAST on layer 0, only reference LAST.
        ref_frame_config->refresh[0] = 1;
        layer_flags |= AOM_EFLAG_NO_REF_GF;
      } else if ((superframe_cnt - 1) % 4 == 0) {
        layer_id->temporal_layer_id = 2;
        // First top layer: no updates, only reference LAST (TL0).
        layer_flags |= AOM_EFLAG_NO_REF_GF;
      } else if ((superframe_cnt - 2) % 4 == 0) {
        layer_id->temporal_layer_id = 1;
        // Middle layer (TL1): update GF, only reference LAST (TL0).
        ref_frame_config->refresh[3] = 1;
        layer_flags |= AOM_EFLAG_NO_REF_GF;
      } else if ((superframe_cnt - 3) % 4 == 0) {
        layer_id->temporal_layer_id = 2;
        // Second top layer: no updates, only reference GF.
        layer_flags |= AOM_EFLAG_NO_REF_LAST;
      }
      break;
    case 4:
      // 2-temporal layer with the old update flags, not with the new
      // SVC control.
      *use_svc_control = 0;
      //    1    3    5
      //  0    2    4
      if (superframe_cnt % 2 == 0) {
        layer_id->temporal_layer_id = 0;
        // Update LAST on layer 0, reference LAST and GF.
        layer_flags |= AOM_EFLAG_NO_UPD_GF | AOM_EFLAG_NO_UPD_ARF;
      } else {
        layer_id->temporal_layer_id = 1;
        // No updates on layer 1, only reference LAST (TL0).
        layer_flags |= AOM_EFLAG_NO_UPD_LAST | AOM_EFLAG_NO_UPD_GF |
                       AOM_EFLAG_NO_UPD_ARF | AOM_EFLAG_NO_REF_GF;
      }
      break;
    case 5:
      // 2 spatial layers, 1 temporal.
      layer_id->temporal_layer_id = 0;
      if (layer_id->spatial_layer_id == 0) {
        // Reference LAST, update LAST.
        ref_frame_config->refresh[0] = 1;
        layer_flags |= AOM_EFLAG_NO_REF_GF;
      } else if (layer_id->spatial_layer_id == 1) {
        // Reference LAST and GOLDEN. Set buffer_idx for LAST to slot 1
        // and GOLDEN to slot 0. Update slot 1 (LAST).
        ref_frame_config->ref_idx[0] = 1;
        ref_frame_config->ref_idx[3] = 0;
        ref_frame_config->refresh[1] = 1;
      }
      break;
    case 6:
      // 3 spatial layers, 1 temporal.
      // Note for this case, we set the buffer idx for all references to be
      // either LAST or GOLDEN, which are always valid references, since decoder
      // will check if any of the 7 references is valid scale in
      // valid_ref_frame_size().
      layer_id->temporal_layer_id = 0;
      if (layer_id->spatial_layer_id == 0) {
        // Reference LAST, update LAST. Set all buffer_idx to 0.
        for (i = 0; i < INTER_REFS_PER_FRAME; i++)
          ref_frame_config->ref_idx[i] = 0;
        ref_frame_config->refresh[0] = 1;
        layer_flags |= AOM_EFLAG_NO_REF_GF;
      } else if (layer_id->spatial_layer_id == 1) {
        // Reference LAST and GOLDEN. Set buffer_idx for LAST to slot 1
        // and GOLDEN (and all other refs) to slot 0.
        // Update slot 1 (LAST).
        for (i = 0; i < INTER_REFS_PER_FRAME; i++)
          ref_frame_config->ref_idx[i] = 0;
        ref_frame_config->ref_idx[0] = 1;
        ref_frame_config->refresh[1] = 1;
      } else if (layer_id->spatial_layer_id == 2) {
        // Reference LAST and GOLDEN. Set buffer_idx for LAST to slot 2
        // and GOLDEN (and all other refs) to slot 1.
        // Update slot 2 (LAST).
        for (i = 0; i < INTER_REFS_PER_FRAME; i++)
          ref_frame_config->ref_idx[i] = 1;
        ref_frame_config->ref_idx[0] = 2;
        ref_frame_config->refresh[2] = 1;
      }
      break;
    case 7:
      // 3 spatial and 3 temporal layer.
      // Same as case 8 but overalap in the buffer slot updates.
      // (shift = 2). The slots 3 and 4 updated by first TL2 are
      // reused for update in TL1 superframe.
      // Note for this case, frame order hint must be disabled for
      // lower resolutios (operating points > 0) to be decoedable.
    case 8:
      // 3 spatial and 3 temporal layer.
      // No overlap in buffer updates between TL2 and TL1.
      // TL2 updates slot 3 and 4, TL1 updates 5, 6, 7.
      // Set the references via the svc_ref_frame_config control.
      layer_flags = 0;
      // Always reference LAST.
      ref_frame_config->reference[0] = 1;
      if (superframe_cnt % 4 == 0) {
        // Base temporal layer.
        layer_id->temporal_layer_id = 0;
        if (layer_id->spatial_layer_id == 0) {
          // Reference LAST, update LAST.
          // Set all buffer_idx to 0.
          for (i = 0; i < INTER_REFS_PER_FRAME; i++)
            ref_frame_config->ref_idx[i] = 0;
          ref_frame_config->refresh[0] = 1;
        } else if (layer_id->spatial_layer_id == 1) {
          // Reference LAST and GOLDEN. Set buffer_idx for LAST to slot 1,
          // GOLDEN (and all other refs) to slot 0.
          // Update slot 1 (LAST).
          for (i = 0; i < INTER_REFS_PER_FRAME; i++)
            ref_frame_config->ref_idx[i] = 0;
          ref_frame_config->ref_idx[0] = 1;
          ref_frame_config->refresh[1] = 1;
        } else if (layer_id->spatial_layer_id == 2) {
          // Reference LAST and GOLDEN. Set buffer_idx for LAST to slot 2,
          // GOLDEN (and all other refs) to slot 1.
          // Update slot 2 (LAST).
          for (i = 0; i < INTER_REFS_PER_FRAME; i++)
            ref_frame_config->ref_idx[i] = 1;
          ref_frame_config->ref_idx[0] = 2;
          ref_frame_config->refresh[2] = 1;
        }
      } else if ((superframe_cnt - 1) % 4 == 0) {
        // First top temporal enhancement layer.
        layer_id->temporal_layer_id = 2;
        if (layer_id->spatial_layer_id == 0) {
          // Reference LAST (slot 0).
          // Set GOLDEN to slot 3 and update slot 3.
          // Set all other buffer_idx to slot 0.
          for (i = 0; i < INTER_REFS_PER_FRAME; i++)
            ref_frame_config->ref_idx[i] = 0;
          ref_frame_config->ref_idx[3] = 3;
          ref_frame_config->refresh[3] = 1;
        } else if (layer_id->spatial_layer_id == 1) {
          // Reference LAST and GOLDEN. Set buffer_idx for LAST to slot 1,
          // GOLDEN (and all other refs) to slot 3.
          // Set LAST2 to slot 4 and Update slot 4.
          for (i = 0; i < INTER_REFS_PER_FRAME; i++)
            ref_frame_config->ref_idx[i] = 3;
          ref_frame_config->ref_idx[0] = 1;
          ref_frame_config->ref_idx[1] = 4;
          ref_frame_config->refresh[4] = 1;
        } else if (layer_id->spatial_layer_id == 2) {
          // Reference LAST and GOLDEN. Set buffer_idx for LAST to slot 2,
          // GOLDEN (and all other refs) to slot 4.
          // No update.
          for (i = 0; i < INTER_REFS_PER_FRAME; i++)
            ref_frame_config->ref_idx[i] = 4;
          ref_frame_config->ref_idx[0] = 2;
        }
      } else if ((superframe_cnt - 2) % 4 == 0) {
        // Middle temporal enhancement layer.
        layer_id->temporal_layer_id = 1;
        if (layer_id->spatial_layer_id == 0) {
          // Reference LAST.
          // Set all buffer_idx to 0.
          // Set GOLDEN to slot 5 and update slot 5.
          for (i = 0; i < INTER_REFS_PER_FRAME; i++)
            ref_frame_config->ref_idx[i] = 0;
          ref_frame_config->ref_idx[3] = 5 - shift;
          ref_frame_config->refresh[5 - shift] = 1;
        } else if (layer_id->spatial_layer_id == 1) {
          // Reference LAST and GOLDEN. Set buffer_idx for LAST to slot 1,
          // GOLDEN (and all other refs) to slot 5.
          // Set LAST2 to slot 6 and update slot 6.
          for (i = 0; i < INTER_REFS_PER_FRAME; i++)
            ref_frame_config->ref_idx[i] = 5 - shift;
          ref_frame_config->ref_idx[0] = 1;
          ref_frame_config->ref_idx[2] = 6 - shift;
          ref_frame_config->refresh[6 - shift] = 1;
        } else if (layer_id->spatial_layer_id == 2) {
          // Reference LAST and GOLDEN. Set buffer_idx for LAST to slot 2,
          // GOLDEN (and all other refs) to slot 6.
          // Set LAST2 to slot 6 and update slot 7.
          for (i = 0; i < INTER_REFS_PER_FRAME; i++)
            ref_frame_config->ref_idx[i] = 6 - shift;
          ref_frame_config->ref_idx[0] = 2;
          ref_frame_config->ref_idx[2] = 7 - shift;
          ref_frame_config->refresh[7 - shift] = 1;
        }
      } else if ((superframe_cnt - 3) % 4 == 0) {
        // Second top temporal enhancement layer.
        layer_id->temporal_layer_id = 2;
        if (layer_id->spatial_layer_id == 0) {
          // Set LAST to slot 5 and reference LAST.
          // Set GOLDEN to slot 3 and update slot 3.
          // Set all other buffer_idx to 0.
          for (i = 0; i < INTER_REFS_PER_FRAME; i++)
            ref_frame_config->ref_idx[i] = 0;
          ref_frame_config->ref_idx[0] = 5 - shift;
          ref_frame_config->ref_idx[3] = 3;
          ref_frame_config->refresh[3] = 1;
        } else if (layer_id->spatial_layer_id == 1) {
          // Reference LAST and GOLDEN. Set buffer_idx for LAST to slot 6,
          // GOLDEN to slot 3. Set LAST2 to slot 4 and update slot 4.
          for (i = 0; i < INTER_REFS_PER_FRAME; i++)
            ref_frame_config->ref_idx[i] = 0;
          ref_frame_config->ref_idx[0] = 6 - shift;
          ref_frame_config->ref_idx[3] = 3;
          ref_frame_config->ref_idx[1] = 4;
          ref_frame_config->refresh[4] = 1;
        } else if (layer_id->spatial_layer_id == 2) {
          // Reference LAST and GOLDEN. Set buffer_idx for LAST to slot 7,
          // GOLDEN to slot 4. No update.
          for (i = 0; i < INTER_REFS_PER_FRAME; i++)
            ref_frame_config->ref_idx[i] = 0;
          ref_frame_config->ref_idx[0] = 7 - shift;
          ref_frame_config->ref_idx[3] = 4;
        }
      }
      if (layer_id->spatial_layer_id > 0)
        ref_frame_config->reference[3] = 1;  // Reference GOLDEN.
      break;
    default: assert(0); die("Error: Unsupported temporal layering mode!\n");
  }
  return layer_flags;
}

int main(int argc, char **argv) {
  AvxVideoWriter *outfile[AOM_MAX_LAYERS] = { NULL };
  aom_codec_ctx_t codec;
  aom_codec_enc_cfg_t cfg;
  int frame_cnt = 0;
  aom_image_t raw;
  aom_codec_err_t res;
  unsigned int width;
  unsigned int height;
  uint32_t error_resilient = 0;
  int speed;
  int frame_avail;
  int got_data = 0;
  int flags = 0;
  unsigned i;
  int pts = 0;             // PTS starts at 0.
  int frame_duration = 1;  // 1 timebase tick per frame.
  int layering_mode = 0;
  aom_svc_layer_id_t layer_id;
  aom_svc_params_t svc_params;
  aom_svc_ref_frame_config_t ref_frame_config;
  const AvxInterface *encoder = NULL;
  struct AvxInputContext input_ctx;
  struct RateControlMetrics rc;
  int64_t cx_time = 0;
  const int min_args_base = 13;
  const int min_args = min_args_base;
  double sum_bitrate = 0.0;
  double sum_bitrate2 = 0.0;
  double framerate = 30.0;
  int use_svc_control = 1;
  zero(rc.layer_target_bitrate);
  memset(&layer_id, 0, sizeof(aom_svc_layer_id_t));
  memset(&input_ctx, 0, sizeof(input_ctx));
  memset(&svc_params, 0, sizeof(svc_params));

  // Flag to test dynamic scaling of source frames for single
  // spatial stream, using the scaling_mode control.
  const int test_dynamic_scaling_single_layer = 0;

  /* Setup default input stream settings */
  input_ctx.framerate.numerator = 30;
  input_ctx.framerate.denominator = 1;
  input_ctx.only_i420 = 1;
  input_ctx.bit_depth = 0;
  unsigned int ts_number_layers = 1;
  unsigned int ss_number_layers = 1;
  exec_name = argv[0];
  // Check usage and arguments.
  if (argc < min_args) {
    die("Usage: %s <infile> <outfile> <codec_type(av1)> <width> <height> "
        "<rate_num> <rate_den> <speed> <frame_drop_threshold> "
        "<error_resilient> <threads> <mode> "
        "<Rate_0> ... <Rate_nlayers-1>\n",
        argv[0]);
  }

  encoder = get_aom_encoder_by_name(argv[3]);

  width = (unsigned int)strtoul(argv[4], NULL, 0);
  height = (unsigned int)strtoul(argv[5], NULL, 0);
  if (width < 16 || width % 2 || height < 16 || height % 2) {
    die("Invalid resolution: %d x %d", width, height);
  }

  layering_mode = (int)strtol(argv[12], NULL, 0);
  if (layering_mode < 0 || layering_mode > 13) {
    die("Invalid layering mode (0..12) %s", argv[12]);
  }

  if (argc != min_args + mode_to_num_layers[layering_mode]) {
    die("Invalid number of arguments");
  }

  ts_number_layers = mode_to_num_temporal_layers[layering_mode];
  ss_number_layers = mode_to_num_spatial_layers[layering_mode];

  input_ctx.filename = argv[1];
  open_input_file(&input_ctx, 0);

  // Y4M reader has its own allocation.
  if (input_ctx.file_type != FILE_TYPE_Y4M) {
    if (!aom_img_alloc(&raw, AOM_IMG_FMT_I420, width, height, 32)) {
      die("Failed to allocate image", width, height);
    }
  }

  // Populate encoder configuration.
  res = aom_codec_enc_config_default(encoder->codec_interface(), &cfg, 0);
  if (res) {
    printf("Failed to get config: %s\n", aom_codec_err_to_string(res));
    return EXIT_FAILURE;
  }

  // Update the default configuration with our settings.
  cfg.g_w = width;
  cfg.g_h = height;

  // Timebase format e.g. 30fps: numerator=1, demoninator = 30.
  cfg.g_timebase.num = (int)strtol(argv[6], NULL, 0);
  cfg.g_timebase.den = (int)strtol(argv[7], NULL, 0);

  speed = (int)strtol(argv[8], NULL, 0);
  if (speed < 0 || speed > 8) {
    die("Invalid speed setting: must be positive");
  }

  for (i = min_args_base;
       (int)i < min_args_base + mode_to_num_layers[layering_mode]; ++i) {
    rc.layer_target_bitrate[i - 13] = (int)strtol(argv[i], NULL, 0);
    svc_params.layer_target_bitrate[i - 13] = rc.layer_target_bitrate[i - 13];
  }

  cfg.rc_target_bitrate =
      svc_params.layer_target_bitrate[ss_number_layers * ts_number_layers - 1];

  svc_params.framerate_factor[0] = 1;
  if (ts_number_layers == 2) {
    svc_params.framerate_factor[0] = 2;
    svc_params.framerate_factor[1] = 1;
  } else if (ts_number_layers == 3) {
    svc_params.framerate_factor[0] = 4;
    svc_params.framerate_factor[1] = 2;
    svc_params.framerate_factor[2] = 1;
  }

  // Real time parameters.
  cfg.g_usage = AOM_USAGE_REALTIME;

  cfg.rc_dropframe_thresh = (unsigned int)strtoul(argv[9], NULL, 0);
  cfg.rc_end_usage = AOM_CBR;
  cfg.rc_min_quantizer = 2;
  cfg.rc_max_quantizer = 52;
  cfg.rc_undershoot_pct = 50;
  cfg.rc_overshoot_pct = 50;
  cfg.rc_buf_initial_sz = 600;
  cfg.rc_buf_optimal_sz = 600;
  cfg.rc_buf_sz = 1000;

  // Use 1 thread as default.
  cfg.g_threads = (unsigned int)strtoul(argv[11], NULL, 0);

  error_resilient = (uint32_t)strtoul(argv[10], NULL, 0);
  if (error_resilient != 0 && error_resilient != 1) {
    die("Invalid value for error resilient (0, 1): %d.", error_resilient);
  }
  // Enable error resilient mode.
  cfg.g_error_resilient = error_resilient;
  cfg.g_lag_in_frames = 0;
  cfg.kf_mode = AOM_KF_AUTO;

  // Disable automatic keyframe placement.
  cfg.kf_min_dist = cfg.kf_max_dist = 3000;

  framerate = cfg.g_timebase.den / cfg.g_timebase.num;
  set_rate_control_metrics(&rc, framerate, ss_number_layers, ts_number_layers);

  if (input_ctx.file_type == FILE_TYPE_Y4M) {
    if (input_ctx.width != cfg.g_w || input_ctx.height != cfg.g_h) {
      die("Incorrect width or height: %d x %d", cfg.g_w, cfg.g_h);
    }
    if (input_ctx.framerate.numerator != cfg.g_timebase.den ||
        input_ctx.framerate.denominator != cfg.g_timebase.num) {
      die("Incorrect framerate: numerator %d denominator %d",
          cfg.g_timebase.num, cfg.g_timebase.den);
    }
  }

  // Open an output file for each stream.
  for (unsigned int sl = 0; sl < ss_number_layers; ++sl) {
    for (unsigned tl = 0; tl < ts_number_layers; ++tl) {
      i = sl * ts_number_layers + tl;
      char file_name[PATH_MAX];
      AvxVideoInfo info;
      info.codec_fourcc = encoder->fourcc;
      info.frame_width = cfg.g_w;
      info.frame_height = cfg.g_h;
      info.time_base.numerator = cfg.g_timebase.num;
      info.time_base.denominator = cfg.g_timebase.den;

      snprintf(file_name, sizeof(file_name), "%s_%d.av1", argv[2], i);
      outfile[i] = aom_video_writer_open(file_name, kContainerIVF, &info);
      if (!outfile[i]) die("Failed to open %s for writing", file_name);
      assert(outfile[i] != NULL);
    }
  }

  // Initialize codec.
  if (aom_codec_enc_init(&codec, encoder->codec_interface(), &cfg, 0))
    die_codec(&codec, "Failed to initialize encoder");

  aom_codec_control(&codec, AOME_SET_CPUUSED, speed);
  aom_codec_control(&codec, AV1E_SET_AQ_MODE, 3);
  aom_codec_control(&codec, AV1E_SET_GF_CBR_BOOST_PCT, 0);
  aom_codec_control(&codec, AV1E_SET_ENABLE_CDEF, 1);
  aom_codec_control(&codec, AV1E_SET_ENABLE_ORDER_HINT, 0);
  aom_codec_control(&codec, AV1E_SET_ENABLE_TPL_MODEL, 0);
  aom_codec_control(&codec, AV1E_SET_DELTAQ_MODE, 0);

  svc_params.number_spatial_layers = ss_number_layers;
  svc_params.number_temporal_layers = ts_number_layers;
  for (i = 0; i < ss_number_layers * ts_number_layers; ++i) {
    svc_params.max_quantizers[i] = cfg.rc_max_quantizer;
    svc_params.min_quantizers[i] = cfg.rc_min_quantizer;
  }
  for (i = 0; i < ss_number_layers; ++i) {
    svc_params.scaling_factor_num[i] = 1;
    svc_params.scaling_factor_den[i] = 1;
  }
  if (ss_number_layers == 2) {
    svc_params.scaling_factor_num[0] = 1;
    svc_params.scaling_factor_den[0] = 2;
  } else if (ss_number_layers == 3) {
    svc_params.scaling_factor_num[0] = 1;
    svc_params.scaling_factor_den[0] = 4;
    svc_params.scaling_factor_num[1] = 1;
    svc_params.scaling_factor_den[1] = 2;
  }

  aom_codec_control(&codec, AV1E_SET_SVC_PARAMS, &svc_params);

  // This controls the maximum target size of the key frame.
  // For generating smaller key frames, use a smaller max_intra_size_pct
  // value, like 100 or 200.
  {
    const int max_intra_size_pct = 300;
    aom_codec_control(&codec, AOME_SET_MAX_INTRA_BITRATE_PCT,
                      max_intra_size_pct);
  }

  frame_avail = 1;
  while (frame_avail || got_data) {
    struct aom_usec_timer timer;
    frame_avail = read_frame(&input_ctx, &raw);
    int is_key_frame = (frame_cnt % cfg.kf_max_dist) == 0;
    // Loop over spatial layers.
    for (unsigned int slx = 0; slx < ss_number_layers; slx++) {
      aom_codec_iter_t iter = NULL;
      const aom_codec_cx_pkt_t *pkt;
      int layer = 0;

      // Set the reference/update flags, layer_id, and reference_map
      // buffer index.
      flags = set_layer_pattern(layering_mode, frame_cnt, &layer_id,
                                &ref_frame_config, &use_svc_control, slx,
                                is_key_frame, (layering_mode == 9));
      aom_codec_control(&codec, AV1E_SET_SVC_LAYER_ID, &layer_id);
      if (use_svc_control)
        aom_codec_control(&codec, AV1E_SET_SVC_REF_FRAME_CONFIG,
                          &ref_frame_config);

      layer = slx * ts_number_layers + layer_id.temporal_layer_id;
      if (frame_avail && slx == 0) ++rc.layer_input_frames[layer];

      if (test_dynamic_scaling_single_layer) {
        if (frame_cnt >= 200 && frame_cnt <= 400) {
          // Scale source down by 2x2.
          struct aom_scaling_mode mode = { AOME_ONETWO, AOME_ONETWO };
          aom_codec_control(&codec, AOME_SET_SCALEMODE, &mode);
        } else {
          // Source back up to original resolution (no scaling).
          struct aom_scaling_mode mode = { AOME_NORMAL, AOME_NORMAL };
          aom_codec_control(&codec, AOME_SET_SCALEMODE, &mode);
        }
      }

      // Do the layer encode.
      aom_usec_timer_start(&timer);
      if (aom_codec_encode(&codec, frame_avail ? &raw : NULL, pts, 1, flags))
        die_codec(&codec, "Failed to encode frame");
      aom_usec_timer_mark(&timer);
      cx_time += aom_usec_timer_elapsed(&timer);

      got_data = 0;
      while ((pkt = aom_codec_get_cx_data(&codec, &iter))) {
        got_data = 1;
        switch (pkt->kind) {
          case AOM_CODEC_CX_FRAME_PKT:
            for (unsigned int sl = layer_id.spatial_layer_id;
                 sl < ss_number_layers; ++sl) {
              for (unsigned tl = layer_id.temporal_layer_id;
                   tl < ts_number_layers; ++tl) {
                unsigned int j = sl * ts_number_layers + tl;
                aom_video_writer_write_frame(outfile[j], pkt->data.frame.buf,
                                             pkt->data.frame.sz, pts);
                if (sl == (unsigned int)layer_id.spatial_layer_id)
                  rc.layer_encoding_bitrate[j] += 8.0 * pkt->data.frame.sz;
                // Keep count of rate control stats per layer (for non-key).
                if (tl == (unsigned int)layer_id.temporal_layer_id &&
                    sl == (unsigned int)layer_id.spatial_layer_id &&
                    !(pkt->data.frame.flags & AOM_FRAME_IS_KEY)) {
                  rc.layer_avg_frame_size[j] += 8.0 * pkt->data.frame.sz;
                  rc.layer_avg_rate_mismatch[j] +=
                      fabs(8.0 * pkt->data.frame.sz - rc.layer_pfb[j]) /
                      rc.layer_pfb[j];
                  if (slx == 0) ++rc.layer_enc_frames[tl];
                }
              }
            }

            // Update for short-time encoding bitrate states, for moving window
            // of size rc->window, shifted by rc->window / 2.
            // Ignore first window segment, due to key frame.
            // For spatial layers: only do this for top/highest SL.
            if (frame_cnt > rc.window_size && slx == ss_number_layers - 1) {
              sum_bitrate += 0.001 * 8.0 * pkt->data.frame.sz * framerate;
              rc.window_size = (rc.window_size <= 0) ? 1 : rc.window_size;
              if (frame_cnt % rc.window_size == 0) {
                rc.window_count += 1;
                rc.avg_st_encoding_bitrate += sum_bitrate / rc.window_size;
                rc.variance_st_encoding_bitrate +=
                    (sum_bitrate / rc.window_size) *
                    (sum_bitrate / rc.window_size);
                sum_bitrate = 0.0;
              }
            }
            // Second shifted window.
            if (frame_cnt > rc.window_size + rc.window_size / 2 &&
                slx == ss_number_layers - 1) {
              sum_bitrate2 += 0.001 * 8.0 * pkt->data.frame.sz * framerate;
              if (frame_cnt > 2 * rc.window_size &&
                  frame_cnt % rc.window_size == 0) {
                rc.window_count += 1;
                rc.avg_st_encoding_bitrate += sum_bitrate2 / rc.window_size;
                rc.variance_st_encoding_bitrate +=
                    (sum_bitrate2 / rc.window_size) *
                    (sum_bitrate2 / rc.window_size);
                sum_bitrate2 = 0.0;
              }
            }
            break;
          default: break;
        }
      }
    }  // loop over spatial layers
    ++frame_cnt;
    pts += frame_duration;
  }
  close_input_file(&input_ctx);
  printout_rate_control_summary(&rc, frame_cnt, ss_number_layers,
                                ts_number_layers);
  printf("\n");
  printf("Frame cnt and encoding time/FPS stats for encoding: %d %f %f\n",
         frame_cnt, 1000 * (float)cx_time / (double)(frame_cnt * 1000000),
         1000000 * (double)frame_cnt / (double)cx_time);

  if (aom_codec_destroy(&codec)) die_codec(&codec, "Failed to destroy codec");

  // Try to rewrite the output file headers with the actual frame count.
  for (i = 0; i < ss_number_layers * ts_number_layers; ++i)
    aom_video_writer_close(outfile[i]);

  if (input_ctx.file_type != FILE_TYPE_Y4M) {
    aom_img_free(&raw);
  }
  return EXIT_SUCCESS;
}