summaryrefslogtreecommitdiff
path: root/media/libaom/src/av1/encoder/x86/ml_sse3.c
blob: 89b1e6a05b8b8ba5af12e4ba84fb3b29d723f777 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
/*
 * Copyright (c) 2018, Alliance for Open Media. All rights reserved
 *
 * This source code is subject to the terms of the BSD 2 Clause License and
 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
 * was not distributed with this source code in the LICENSE file, you can
 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
 * Media Patent License 1.0 was not distributed with this source code in the
 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
 */

#include <stdbool.h>
#include <assert.h>
#include <pmmintrin.h>

#include "config/av1_rtcd.h"
#include "av1/encoder/ml.h"

// In order to avoid the high-latency of swapping between FPU and SIMD
// operations, we keep the result in a 128-bit register even though we only
// care about a single value.
static void nn_propagate_8to1(const float *const inputs,
                              const float *const weights,
                              __m128 *const output) {
  const __m128 inputs_h = _mm_loadu_ps(&inputs[4]);
  const __m128 inputs_l = _mm_loadu_ps(inputs);

  const __m128 weights_h = _mm_loadu_ps(&weights[4]);
  const __m128 weights_l = _mm_loadu_ps(weights);

  const __m128 mul_h = _mm_mul_ps(inputs_h, weights_h);
  const __m128 mul_l = _mm_mul_ps(inputs_l, weights_l);
  // [7 6 5 4] [3 2 1 0] (weight and input indices)

  const __m128 vadd = _mm_add_ps(mul_l, mul_h);
  // [7+3 6+2 5+1 4+0]
  const __m128 hadd1 = _mm_hadd_ps(vadd, vadd);
  // [7+6+3+2 5+4+1+0 7+6+3+2 5+4+1+0]
  const __m128 hadd2 = _mm_hadd_ps(hadd1, hadd1);
  // [7+6+5+4+3+2+1+0 7+6+5+4+3+2+1+0 7+6+5+4+3+2+1+0 7+6+5+4+3+2+1+0]
  *output = _mm_add_ps(*output, hadd2);
}

static void nn_propagate_4to1(const float *const inputs,
                              const float *const weights,
                              __m128 *const output) {
  const __m128 inputs128 = _mm_loadu_ps(inputs);

  const __m128 weights128 = _mm_loadu_ps(weights);

  const __m128 mul = _mm_mul_ps(inputs128, weights128);
  // [3 2 1 0] (weight and input indices)

  const __m128 hadd1 = _mm_hadd_ps(mul, mul);
  // [3+2 1+0 3+2 1+0]
  const __m128 hadd2 = _mm_hadd_ps(hadd1, hadd1);
  // [3+2+1+0 3+2+1+0 3+2+1+0 3+2+1+0]
  *output = _mm_add_ps(*output, hadd2);
}

static void nn_propagate_4to4(const float *const inputs,
                              const float *const weights, __m128 *const outputs,
                              const int num_inputs) {
  const __m128 inputs128 = _mm_loadu_ps(inputs);

  __m128 hadd[2];
  for (int i = 0; i < 2; i++) {  // For each pair of outputs
    const __m128 weight0 = _mm_loadu_ps(&weights[2 * i * num_inputs]);
    const __m128 mul0 = _mm_mul_ps(weight0, inputs128);
    const __m128 weight1 = _mm_loadu_ps(&weights[(2 * i + 1) * num_inputs]);
    const __m128 mul1 = _mm_mul_ps(weight1, inputs128);
    hadd[i] = _mm_hadd_ps(mul0, mul1);
  }
  // hadd[0] = [7+6 5+4 3+2 1+0] (weight indices)
  // hadd[1] = [15+14 13+12 11+10 9+8]

  const __m128 hh = _mm_hadd_ps(hadd[0], hadd[1]);
  // [15+14+13+12 11+10+9+8 7+6+5+4 3+2+1+0]

  *outputs = _mm_add_ps(*outputs, hh);
}

static void nn_propagate_4to8(const float *const inputs,
                              const float *const weights, __m128 *const out_h,
                              __m128 *const out_l, const int num_inputs) {
  const __m128 inputs128 = _mm_loadu_ps(inputs);

  __m128 hadd[4];
  for (int i = 0; i < 4; i++) {  // For each pair of outputs
    const __m128 weight0 = _mm_loadu_ps(&weights[2 * i * num_inputs]);
    const __m128 weight1 = _mm_loadu_ps(&weights[(2 * i + 1) * num_inputs]);
    const __m128 mul0 = _mm_mul_ps(inputs128, weight0);
    const __m128 mul1 = _mm_mul_ps(inputs128, weight1);
    hadd[i] = _mm_hadd_ps(mul0, mul1);
  }
  // hadd[0] = [7+6 5+4 3+2 1+0] (weight indices)
  // hadd[1] = [15+14 13+12 11+10 9+8]
  // hadd[2] = [23+22 21+20 19+18 17+16]
  // hadd[3] = [31+30 29+28 27+26 25+24]

  const __m128 hh0 = _mm_hadd_ps(hadd[0], hadd[1]);
  // [15+14+13+12 11+10+9+8 7+6+5+4 3+2+1+0]
  const __m128 hh1 = _mm_hadd_ps(hadd[2], hadd[3]);
  // [31+30+29+28 27+26+25+24 23+22+21+20 19+18+17+16]

  *out_h = _mm_add_ps(*out_h, hh1);
  *out_l = _mm_add_ps(*out_l, hh0);
}

static void nn_propagate_8to4(const float *const inputs,
                              const float *const weights, __m128 *const outputs,
                              const int num_inputs) {
  const __m128 inputs_h = _mm_loadu_ps(inputs + 4);
  const __m128 inputs_l = _mm_loadu_ps(inputs);
  // [7 6 5 4] [3 2 1 0] (input indices)

  __m128 add[4];
  for (int i = 0; i < 4; i++) {  // For each output:
    const __m128 weight_h = _mm_loadu_ps(&weights[i * num_inputs + 4]);
    const __m128 weight_l = _mm_loadu_ps(&weights[i * num_inputs]);
    const __m128 mul_h = _mm_mul_ps(inputs_h, weight_h);
    const __m128 mul_l = _mm_mul_ps(inputs_l, weight_l);
    add[i] = _mm_add_ps(mul_l, mul_h);
  }
  // add[0] = [7+3 6+2 5+1 4+0]
  // add[1] = [15+11 14+10 13+9 12+8]
  // add[2] = [23+19 22+18 21+17 20+16]
  // add[3] = [31+27 30+26 29+25 28+24]

  const __m128 hadd_h = _mm_hadd_ps(add[2], add[3]);
  // [31+30+27+26 29+28+25+24 23+22+19+18 21+20+17+16]
  const __m128 hadd_l = _mm_hadd_ps(add[0], add[1]);
  // [15+14+11+10 13+12+9+8 7+6+3+2 5+4+1+0]

  const __m128 haddhadd = _mm_hadd_ps(hadd_l, hadd_h);
  // [31+30+29+28+27+26+25+24 23+22+21+20+19+18+17+16
  //  15+14+13+12+11+10+9+8 7+6+5+4+3+2+1+0]

  *outputs = _mm_add_ps(*outputs, haddhadd);
}

static void nn_activate8(__m128 *out_h, __m128 *out_l) {
  const __m128 zero = _mm_setzero_ps();
  *out_h = _mm_max_ps(*out_h, zero);
  *out_l = _mm_max_ps(*out_l, zero);
}

static void nn_activate4(__m128 *x) { *x = _mm_max_ps(*x, _mm_setzero_ps()); }

// Calculate prediction based on the given input features and neural net config.
// Assume there are no more than NN_MAX_NODES_PER_LAYER nodes in each hidden
// layer.
void av1_nn_predict_sse3(const float *input_nodes,
                         const NN_CONFIG *const nn_config, int reduce_prec,
                         float *const output) {
  float buf[2][NN_MAX_NODES_PER_LAYER];
  int buf_index = 0;
  int num_inputs = nn_config->num_inputs;

  // Hidden layers, except the final iteration is the output layer.
  for (int layer = 0; layer <= nn_config->num_hidden_layers; layer++) {
    const float *layer_weights = nn_config->weights[layer];
    const float *layer_bias = nn_config->bias[layer];
    bool output_layer = (layer == nn_config->num_hidden_layers);
    float *const output_nodes = output_layer ? output : &buf[buf_index][0];
    const int num_outputs = output_layer ? nn_config->num_outputs
                                         : nn_config->num_hidden_nodes[layer];

    if (num_inputs % 4 == 0 && num_outputs % 8 == 0) {
      for (int out = 0; out < num_outputs; out += 8) {
        __m128 out_h = _mm_loadu_ps(&layer_bias[out + 4]);
        __m128 out_l = _mm_loadu_ps(&layer_bias[out]);
        for (int in = 0; in < num_inputs; in += 4) {
          nn_propagate_4to8(&input_nodes[in],
                            &layer_weights[out * num_inputs + in], &out_h,
                            &out_l, num_inputs);
        }
        if (!output_layer) nn_activate8(&out_h, &out_l);
        _mm_storeu_ps(&output_nodes[out + 4], out_h);
        _mm_storeu_ps(&output_nodes[out], out_l);
      }
    } else if (num_inputs % 8 == 0 && num_outputs % 4 == 0) {
      for (int out = 0; out < num_outputs; out += 4) {
        __m128 outputs = _mm_loadu_ps(&layer_bias[out]);
        for (int in = 0; in < num_inputs; in += 8) {
          nn_propagate_8to4(&input_nodes[in],
                            &layer_weights[out * num_inputs + in], &outputs,
                            num_inputs);
        }
        if (!output_layer) nn_activate4(&outputs);
        _mm_storeu_ps(&output_nodes[out], outputs);
      }
    } else if (num_inputs % 4 == 0 && num_outputs % 4 == 0) {
      for (int out = 0; out < num_outputs; out += 4) {
        __m128 outputs = _mm_loadu_ps(&layer_bias[out]);
        for (int in = 0; in < num_inputs; in += 4) {
          nn_propagate_4to4(&input_nodes[in],
                            &layer_weights[out * num_inputs + in], &outputs,
                            num_inputs);
        }
        if (!output_layer) nn_activate4(&outputs);
        _mm_storeu_ps(&output_nodes[out], outputs);
      }
    } else if (num_inputs % 8 == 0) {
      for (int out = 0; out < num_outputs; out++) {
        __m128 total = _mm_load1_ps(&layer_bias[out]);
        for (int in = 0; in < num_inputs; in += 8) {
          nn_propagate_8to1(&input_nodes[in],
                            &layer_weights[out * num_inputs + in], &total);
        }
        if (!output_layer) nn_activate4(&total);
        output_nodes[out] = _mm_cvtss_f32(total);
      }
    } else if (num_inputs % 4 == 0) {
      for (int out = 0; out < num_outputs; out++) {
        __m128 total = _mm_load1_ps(&layer_bias[out]);
        for (int in = 0; in < num_inputs; in += 4) {
          nn_propagate_4to1(&input_nodes[in],
                            &layer_weights[out * num_inputs + in], &total);
        }
        if (!output_layer) nn_activate4(&total);
        output_nodes[out] = _mm_cvtss_f32(total);
      }
    } else {
      // Use SSE instructions for scalar operations to avoid the latency of
      // swapping between SIMD and FPU modes.
      for (int out = 0; out < num_outputs; out++) {
        __m128 total = _mm_load1_ps(&layer_bias[out]);
        for (int in_node = 0; in_node < num_inputs; in_node++) {
          __m128 input = _mm_load1_ps(&input_nodes[in_node]);
          __m128 weight =
              _mm_load1_ps(&layer_weights[num_inputs * out + in_node]);
          total = _mm_add_ps(total, _mm_mul_ps(input, weight));
        }
        if (!output_layer) nn_activate4(&total);
        output_nodes[out] = _mm_cvtss_f32(total);
      }
    }
    input_nodes = output_nodes;
    num_inputs = num_outputs;
    buf_index = 1 - buf_index;
  }
  if (reduce_prec) av1_nn_output_prec_reduce(output, nn_config->num_outputs);
}