summaryrefslogtreecommitdiff
path: root/media/libaom/src/av1/encoder/cnn.c
blob: 5d8a236a06799d5007c328e88042c07a0f0f48f8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
/*
 * Copyright (c) 2019, Alliance for Open Media. All rights reserved
 *
 * This source code is subject to the terms of the BSD 2 Clause License and
 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
 * was not distributed with this source code in the LICENSE file, you can
 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
 * Media Patent License 1.0 was not distributed with this source code in the
 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
 */

#include <assert.h>
#include <math.h>

#include "aom_dsp/aom_dsp_common.h"
#include "av1/encoder/cnn.h"
#include "av1/common/av1_common_int.h"

#define CLAMPINDEX(a, hi) ((a) < 0 ? 0 : ((a) >= (hi) ? ((hi)-1) : (a)))

typedef struct {
  const float **input;
  int in_width;
  int in_height;
  int in_stride;
  const CNN_LAYER_CONFIG *layer_config;
  float **output;
  int out_stride;
  int start_idx;
  int th_step;
} CONVOLVE_OPS;

typedef float (*activation_fn)(float);

static float softsign(float x) { return x / (float)(fabsf(x) + 1.0); }

static float relu(float x) { return (x < 0) ? 0 : x; }

static float identity(float x) { return x; }

typedef struct {
  int allocsize;
  int channels;
  int width, height, stride;
  float *buf[CNN_MAX_CHANNELS];
} TENSOR;

static void init_tensor(TENSOR *tensor) { memset(tensor, 0, sizeof(*tensor)); }

static void free_tensor(TENSOR *tensor) {
  if (tensor->allocsize) {
    aom_free(tensor->buf[0]);
    tensor->buf[0] = NULL;
    tensor->allocsize = 0;
  }
}

static void realloc_tensor(TENSOR *tensor, int channels, int width,
                           int height) {
  const int newallocsize = channels * width * height;
  if (tensor->allocsize < newallocsize) {
    free_tensor(tensor);
    tensor->buf[0] =
        (float *)aom_malloc(sizeof(*tensor->buf[0]) * newallocsize);
    tensor->allocsize = newallocsize;
  }
  tensor->width = width;
  tensor->height = height;
  tensor->stride = width;
  tensor->channels = channels;
  for (int c = 1; c < channels; ++c)
    tensor->buf[c] = &tensor->buf[0][c * width * height];
}

static void copy_tensor(const TENSOR *src, int copy_channels, int dst_offset,
                        TENSOR *dst) {
  assert(src->width == dst->width);
  assert(src->height == dst->height);
  assert(copy_channels <= src->channels);
  if (src->stride == dst->width && dst->stride == dst->width) {
    for (int c = 0; c < copy_channels; ++c) {
      memcpy(dst->buf[dst_offset + c], src->buf[c],
             sizeof(*dst->buf[0]) * src->width * src->height);
    }
  } else {
    for (int c = 0; c < copy_channels; ++c) {
      for (int r = 0; r < dst->height; ++r) {
        memcpy(&dst->buf[dst_offset + c][r * dst->stride],
               &src->buf[c][r * src->stride],
               dst->width * sizeof(*dst->buf[c]));
      }
    }
  }
}

static void assign_tensor(TENSOR *tensor, float *buf[CNN_MAX_CHANNELS],
                          int channels, int width, int height, int stride) {
  tensor->allocsize = 0;
  tensor->channels = channels;
  tensor->width = width;
  tensor->height = height;
  tensor->stride = stride;
  if (buf) {
    for (int c = 0; c < channels; ++c) tensor->buf[c] = buf[c];
  } else {
    for (int c = 0; c < channels; ++c) tensor->buf[c] = NULL;
  }
}

static void swap_tensor(TENSOR *t1, TENSOR *t2) {
  TENSOR t = *t1;
  *t1 = *t2;
  *t2 = t;
}

// The concatenated tensor goes into dst with first the channels in
// original dst followed by the channels in the src
static void concat_tensor(const TENSOR *src, TENSOR *dst) {
  assert(src->width == dst->width);
  assert(src->height == dst->height);

  const int dst_channels = dst->channels;
  const int channels = dst->channels + src->channels;
  const int newallocsize = channels * dst->width * dst->height;
  if (dst->allocsize < newallocsize) {
    TENSOR t;
    init_tensor(&t);
    // allocate new buffers and copy first the dst channels
    realloc_tensor(&t, channels, dst->width, dst->height);
    copy_tensor(dst, dst->channels, 0, &t);
    // Swap the tensors and free the old buffers
    swap_tensor(dst, &t);
    free_tensor(&t);
  }
  for (int c = 1; c < channels; ++c)
    dst->buf[c] = &dst->buf[0][c * dst->width * dst->height];
  // Copy the channels in src after the first dst_channels channels.
  copy_tensor(src, src->channels, dst_channels, dst);
}

int check_tensor_equal_dims(TENSOR *t1, TENSOR *t2) {
  return (t1->width == t2->width && t1->height == t2->height);
}

int check_tensor_equal_size(TENSOR *t1, TENSOR *t2) {
  return (t1->channels == t2->channels && t1->width == t2->width &&
          t1->height == t2->height);
}

static void find_layer_output_size(int in_width, int in_height,
                                   const CNN_LAYER_CONFIG *layer_config,
                                   int *out_width, int *out_height) {
  if (!layer_config->deconvolve) {
    switch (layer_config->pad) {
      case PADDING_SAME_ZERO:
      case PADDING_SAME_REPLICATE:
        *out_width = (in_width + layer_config->skip_width - 1) /
                     layer_config->skip_width;
        *out_height = (in_height + layer_config->skip_height - 1) /
                      layer_config->skip_height;
        break;
      case PADDING_VALID:
        *out_width =
            (in_width - layer_config->filter_width + layer_config->skip_width) /
            layer_config->skip_width;
        *out_height = (in_height - layer_config->filter_height +
                       layer_config->skip_height) /
                      layer_config->skip_height;
        break;
      default: assert(0 && "Unknown padding type");
    }
  } else {
    switch (layer_config->pad) {
      case PADDING_SAME_ZERO:
      case PADDING_SAME_REPLICATE:
        *out_width = in_width * layer_config->skip_width;
        *out_height = in_height * layer_config->skip_height;
        break;
      case PADDING_VALID:
        *out_width = (in_width - 1) * layer_config->skip_width +
                     layer_config->filter_width;
        *out_height = (in_height - 1) * layer_config->skip_height +
                      layer_config->filter_height;
        break;
      default: assert(0 && "Unknown padding type");
    }
  }
}

void find_cnn_out_channels(const CNN_LAYER_CONFIG *layer_config,
                           int channels_per_branch[]) {
  int branch = layer_config->branch;
  const CNN_BRANCH_CONFIG *branch_config = &layer_config->branch_config;
  for (int b = 0; b < CNN_MAX_BRANCHES; ++b) {
    if ((branch_config->input_to_branches & (1 << b)) && b != branch) {
      if (layer_config->branch_copy_type == BRANCH_INPUT) {
        channels_per_branch[b] = layer_config->in_channels;
      } else if (layer_config->branch_copy_type == BRANCH_OUTPUT) {
        channels_per_branch[b] = layer_config->out_channels;
      } else if (layer_config->branch_copy_type == BRANCH_COMBINED) {
        channels_per_branch[b] = layer_config->out_channels;
        for (int c = 0; c < CNN_MAX_BRANCHES; ++c) {
          if ((branch_config->branches_to_combine & (1 << c)) && c != branch) {
            assert(channels_per_branch[c] > 0);
            channels_per_branch[b] += channels_per_branch[c];
          }
        }
      }
    }
  }
  channels_per_branch[branch] = layer_config->out_channels;
  for (int c = 0; c < CNN_MAX_BRANCHES; ++c) {
    if ((branch_config->branches_to_combine & (1 << c)) && c != branch) {
      assert(channels_per_branch[c] > 0);
      channels_per_branch[branch] += channels_per_branch[c];
    }
  }
}

#if CONFIG_DEBUG
static INLINE int cnn_has_at_least_one_output(const CNN_CONFIG *cnn_config) {
  const int num_layers = cnn_config->num_layers;
  const CNN_LAYER_CONFIG *layer_configs = cnn_config->layer_config;

  for (int idx = 0; idx < num_layers; idx++) {
    if (layer_configs[idx].output_num != -1) {
      return 1;
    }
  }
  return 0;
}
#endif

void av1_find_cnn_output_size(int in_width, int in_height,
                              const CNN_CONFIG *cnn_config, int *out_width,
                              int *out_height, int *out_channels) {
  int channels_per_branch[CNN_MAX_BRANCHES] = { 0 };
  int i_width[CNN_MAX_BRANCHES] = { 0 };
  int i_height[CNN_MAX_BRANCHES] = { 0 };
  i_width[0] = in_width + cnn_config->ext_width * 2;
  i_height[0] = in_height + cnn_config->ext_height * 2;

#if CONFIG_DEBUG
  assert(cnn_has_at_least_one_output(cnn_config));
#endif

  for (int i = 0; i < cnn_config->num_layers; ++i) {
    const CNN_LAYER_CONFIG *layer_config = &cnn_config->layer_config[i];
    const CNN_BRANCH_CONFIG *branch_config = &layer_config->branch_config;
    const int branch = layer_config->branch;
    int o_width = 0, o_height = 0;

    if (layer_config->branch_copy_type == BRANCH_INPUT) {
      for (int b = 0; b < CNN_MAX_BRANCHES; ++b) {
        if ((branch_config->input_to_branches & (1 << b)) && b != branch) {
          assert(i_width[branch] > 0 && i_height[branch] > 0);
          i_width[b] = i_width[branch];
          i_height[b] = i_height[branch];
        }
      }
    }

    find_layer_output_size(i_width[branch], i_height[branch], layer_config,
                           &o_width, &o_height);
    i_width[branch] = o_width;
    i_height[branch] = o_height;

    if (layer_config->branch_copy_type == BRANCH_OUTPUT) {
      for (int b = 0; b < CNN_MAX_BRANCHES; ++b) {
        if ((branch_config->input_to_branches & (1 << b)) && b != branch) {
          i_width[b] = o_width;
          i_height[b] = o_height;
        }
      }
    }

    find_cnn_out_channels(layer_config, channels_per_branch);

    const int output_num = layer_config->output_num;
    if (output_num != -1) {  // Current layer is an output layer
      out_width[output_num] = o_width;
      out_height[output_num] = o_height;
      out_channels[output_num] = channels_per_branch[layer_config->branch];
    }
  }
}

activation_fn get_activation(ACTIVATION layer_activation) {
  switch (layer_activation) {
    case NONE: return identity;
    case RELU: return relu;
    case SOFTSIGN: return softsign;
    case SIGMOID:
      assert(0 && "Sigmoid has not been supported in CNN.");  // TO DO
      return NULL;
    default: assert(0 && "Unknown activation type"); return NULL;
  }
}

static INLINE int get_start_shift_convolve(int width, int filt_width,
                                           int stride) {
  const int mod = (width % stride);
  const int filt_off = (filt_width - 1) / 2;
  const int dif = (mod ? mod - 1 : stride - 1);
  return AOMMIN((dif + (filt_width % 2)) / 2, filt_off);
}

void av1_cnn_add_c(float **output, int channels, int width, int height,
                   int stride, const float **add) {
  for (int c = 0; c < channels; ++c) {
    for (int i = 0; i < height; ++i)
      for (int j = 0; j < width; ++j)
        output[c][i * stride + j] += add[c][i * stride + j];
  }
}

void av1_cnn_activate_c(float **output, int channels, int width, int height,
                        int stride, ACTIVATION layer_activation) {
  activation_fn activation = get_activation(layer_activation);
  for (int c = 0; c < channels; ++c) {
    for (int i = 0; i < height; ++i)
      for (int j = 0; j < width; ++j)
        output[c][i * stride + j] = activation(output[c][i * stride + j]);
  }
}

static void copy_active_tensor_to_branches(const TENSOR *layer_active_tensor,
                                           const CNN_LAYER_CONFIG *layer_config,
                                           int branch, TENSOR branch_output[]) {
  const CNN_BRANCH_CONFIG *branch_config = &layer_config->branch_config;
  for (int b = 0; b < CNN_MAX_BRANCHES; ++b) {
    if ((branch_config->input_to_branches & (1 << b)) && b != branch) {
      // Copy layer's active tensor to output tensor of branch b if set in
      // mask. The output becomes the input of the first layer of the branch
      // because the layer of the branch is not the first layer.
      int copy_channels = branch_config->channels_to_copy > 0
                              ? branch_config->channels_to_copy
                              : layer_active_tensor->channels;
      realloc_tensor(&branch_output[b], copy_channels,
                     layer_active_tensor->width, layer_active_tensor->height);
      copy_tensor(layer_active_tensor, copy_channels, 0, &branch_output[b]);
    }
  }
}

static int convolve_layer(void *arg1, void *arg2) {
  const CONVOLVE_OPS *convolve_ops = arg1;
  (void)arg2;
  av1_cnn_convolve(
      convolve_ops->input, convolve_ops->in_width, convolve_ops->in_height,
      convolve_ops->in_stride, convolve_ops->layer_config, convolve_ops->output,
      convolve_ops->out_stride, convolve_ops->start_idx, convolve_ops->th_step);
  return 1;
}

static void convolve_layer_mt(const float **input, int in_width, int in_height,
                              int in_stride,
                              const CNN_LAYER_CONFIG *layer_config,
                              const CNN_THREAD_DATA *thread_data,
                              float **output, int out_stride) {
  const AVxWorkerInterface *const winterface = aom_get_worker_interface();
  const int num_workers = thread_data->num_workers;

  CONVOLVE_OPS convolve_ops[CNN_MAX_THREADS];
  for (int th = 0; th < AOMMIN(num_workers, CNN_MAX_THREADS); ++th) {
    AVxWorker *const worker = &thread_data->workers[th];
    winterface->reset(worker);

    CONVOLVE_OPS convolve_op = { input,      in_width,     in_height,
                                 in_stride,  layer_config, output,
                                 out_stride, th,           num_workers };
    convolve_ops[th] = convolve_op;
    worker->hook = convolve_layer;
    worker->data1 = &(convolve_ops[th]);
    worker->data2 = NULL;

    // Start convolving.
    if (th == num_workers - 1) {
      winterface->execute(worker);
    } else {
      winterface->launch(worker);
    }
  }

  // Wait until all workers have finished.
  for (int th = 0; th < AOMMIN(num_workers, CNN_MAX_THREADS); ++th) {
    winterface->sync(&thread_data->workers[th]);
  }
}

void av1_cnn_convolve_c(const float **input, int in_width, int in_height,
                        int in_stride, const CNN_LAYER_CONFIG *layer_config,
                        float **output, int out_stride, int start_idx,
                        int step) {
  assert(!layer_config->deconvolve);
  const int cstep = layer_config->in_channels * layer_config->out_channels;
  const int filter_height_half = layer_config->filter_height >> 1;
  const int filter_width_half = layer_config->filter_width >> 1;
  const int channel_step = AOMMAX(step, 1);

  if (layer_config->maxpool &&
      (layer_config->skip_height > 1 || layer_config->skip_width > 1)) {
    switch (layer_config->pad) {
      case PADDING_SAME_ZERO:
        for (int i = 0; i < layer_config->out_channels; ++i) {
          for (int h = 0, u = 0; h < in_height;
               h += layer_config->skip_height, ++u) {
            for (int w = 0, v = 0; w < in_width;
                 w += layer_config->skip_width, ++v) {
              for (int hh = h;
                   hh < AOMMIN(in_height, h + layer_config->skip_height);
                   ++hh) {
                for (int ww = w;
                     ww < AOMMIN(in_width, w + layer_config->skip_width);
                     ++ww) {
                  float sum = layer_config->bias[i];
                  for (int k = 0; k < layer_config->in_channels; ++k) {
                    int off = k * layer_config->out_channels + i;
                    for (int l = 0; l < layer_config->filter_height; ++l) {
                      const int ii = hh + l - filter_height_half;
                      for (int m = 0; m < layer_config->filter_width;
                           ++m, off += cstep) {
                        const int jj = ww + m - filter_width_half;
                        if (ii < 0 || ii >= in_height || jj < 0 ||
                            jj >= in_width)
                          continue;
                        sum += layer_config->weights[off] *
                               input[k][ii * in_stride + jj];
                      }
                    }
                  }
                  const float a = sum;
                  if (h == hh && w == ww)
                    output[i][u * out_stride + v] = a;
                  else
                    output[i][u * out_stride + v] =
                        AOMMAX(output[i][u * out_stride + v], a);
                }
              }
            }
          }
        }
        break;
      case PADDING_SAME_REPLICATE:
        for (int i = 0; i < layer_config->out_channels; ++i) {
          for (int h = 0, u = 0; h < in_height;
               h += layer_config->skip_height, ++u) {
            for (int w = 0, v = 0; w < in_width;
                 w += layer_config->skip_width, ++v) {
              for (int hh = h;
                   hh < AOMMIN(in_height, h + layer_config->skip_height);
                   ++hh) {
                for (int ww = w;
                     ww < AOMMIN(in_width, w + layer_config->skip_width);
                     ++ww) {
                  float sum = layer_config->bias[i];
                  for (int k = 0; k < layer_config->in_channels; ++k) {
                    int off = k * layer_config->out_channels + i;
                    for (int l = 0; l < layer_config->filter_height; ++l) {
                      const int ii =
                          CLAMPINDEX(hh + l - filter_height_half, in_height);
                      for (int m = 0; m < layer_config->filter_width;
                           ++m, off += cstep) {
                        const int jj =
                            CLAMPINDEX(ww + m - filter_width_half, in_width);
                        assert(ii >= 0 && ii < in_height && jj >= 0 &&
                               jj < in_width);
                        sum += layer_config->weights[off] *
                               input[k][ii * in_stride + jj];
                      }
                    }
                  }
                  const float a = sum;
                  if (h == hh && w == ww)
                    output[i][u * out_stride + v] = a;
                  else
                    output[i][u * out_stride + v] =
                        AOMMAX(output[i][u * out_stride + v], a);
                }
              }
            }
          }
        }
        break;
      case PADDING_VALID:
        for (int i = 0; i < layer_config->out_channels; ++i) {
          for (int h = 0, u = 0;
               h < in_height - layer_config->filter_height + 1;
               h += layer_config->skip_height, ++u) {
            for (int w = 0, v = 0;
                 w < in_width - layer_config->filter_width + 1;
                 w += layer_config->skip_width, ++v) {
              for (int hh = h;
                   hh < AOMMIN(in_height, h + layer_config->skip_height);
                   ++hh) {
                for (int ww = w;
                     ww < AOMMIN(in_width, w + layer_config->skip_width);
                     ++ww) {
                  float sum = layer_config->bias[i];
                  for (int k = 0; k < layer_config->in_channels; ++k) {
                    int off = k * layer_config->out_channels + i;
                    for (int l = 0; l < layer_config->filter_height; ++l) {
                      const int ii = hh + l;
                      for (int m = 0; m < layer_config->filter_width;
                           ++m, off += cstep) {
                        const int jj = ww + m;
                        assert(ii >= 0 && ii < in_height && jj >= 0 &&
                               jj < in_width);
                        sum += layer_config->weights[off] *
                               input[k][ii * in_stride + jj];
                      }
                    }
                  }
                  const float a = sum;
                  if (h == hh && w == ww)
                    output[i][u * out_stride + v] = a;
                  else
                    output[i][u * out_stride + v] =
                        AOMMAX(output[i][u * out_stride + v], a);
                }
              }
            }
          }
        }
        break;
      default: assert(0 && "Unknown padding type");
    }
  } else {
    // Results in element-wise matrix multiplication.
    if (layer_config->filter_height == 1 && layer_config->filter_width == 1) {
      const int start_h = get_start_shift_convolve(
          in_height, layer_config->filter_height, layer_config->skip_height);
      const int start_w =
          get_start_shift_convolve(in_width, layer_config->filter_width,
                                   layer_config->skip_width) +
          start_idx * layer_config->skip_width;
      const int out_w_step = AOMMAX(step, 1);
      const int in_w_step = layer_config->skip_width * out_w_step;
      for (int i = 0; i < layer_config->out_channels; ++i) {
        for (int h = start_h, u = 0; h < in_height;
             h += layer_config->skip_height, ++u) {
          const int in_h = h * in_stride;
          const int out_h = u * out_stride + start_idx;
          for (int w = start_w, out_index = out_h; w < in_width;
               w += in_w_step, out_index += out_w_step) {
            float sum = layer_config->bias[i];
            for (int k = 0; k < layer_config->in_channels; ++k) {
              sum += layer_config->weights[k * layer_config->out_channels + i] *
                     input[k][in_h + w];
            }
            output[i][out_index] = sum;
          }
        }
      }
      return;
    }
    const int ii_shift =
        filter_height_half - (layer_config->filter_height - 1) % 2;
    const int jj_shift =
        filter_width_half - (layer_config->filter_width - 1) % 2;
    switch (layer_config->pad) {
      case PADDING_SAME_ZERO: {
        const int start_h = get_start_shift_convolve(
            in_height, layer_config->filter_height, layer_config->skip_height);
        const int start_w = get_start_shift_convolve(
            in_width, layer_config->filter_width, layer_config->skip_width);
        const int end_ii_shift = filter_height_half + 1;
        const int end_jj_shift = filter_width_half + 1;
        // *_filter_margin stores the number of pixels along a dimension in the
        // intersection of the complement of the image in the extended image
        // and the filter.
        const int top_filter_margin = layer_config->filter_width * ii_shift;
        const int right_filter_margin = end_jj_shift - in_width;
        for (int i = start_idx; i < layer_config->out_channels;
             i += channel_step) {
          for (int h = start_h, u = 0; h < in_height;
               h += layer_config->skip_height, ++u) {
            const int out_h = u * out_stride;
            const int top_cstep =
                AOMMAX(0, top_filter_margin - h * layer_config->filter_width) *
                    cstep +
                i;
            const int start_ii = AOMMAX(0, h - ii_shift);
            const int end_ii = AOMMIN(in_height, h + end_ii_shift);
            for (int w = start_w, out_index = out_h; w < in_width;
                 w += layer_config->skip_width, ++out_index) {
              const int left_cstep = AOMMAX(0, jj_shift - w) * cstep;
              const int right_cstep =
                  AOMMAX(0, right_filter_margin + w) * cstep;
              const int start_jj = AOMMAX(0, w - jj_shift);
              const int end_jj = AOMMIN(in_width, w + end_jj_shift);
              float sum = layer_config->bias[i];
              for (int k = 0; k < layer_config->in_channels; ++k) {
                int off = k * layer_config->out_channels + top_cstep;
                for (int ii = start_ii; ii < end_ii; ++ii) {
                  off += left_cstep;
                  for (int jj = start_jj; jj < end_jj; ++jj, off += cstep) {
                    sum += layer_config->weights[off] *
                           input[k][ii * in_stride + jj];
                  }
                  off += right_cstep;
                }
              }
              output[i][out_index] = sum;
            }
          }
        }
        break;
      }
      case PADDING_SAME_REPLICATE: {
        // h and w are shifted to an offset coordinate system to reduce in-loop
        // computation.
        const int start_h =
            get_start_shift_convolve(in_height, layer_config->filter_height,
                                     layer_config->skip_height) -
            ii_shift;
        const int start_w =
            get_start_shift_convolve(in_width, layer_config->filter_width,
                                     layer_config->skip_width) -
            jj_shift;
        const int end_h = in_height - ii_shift;
        const int end_w = in_width - jj_shift;
        for (int i = start_idx; i < layer_config->out_channels;
             i += channel_step) {
          for (int h = start_h, u = 0; h < end_h;
               h += layer_config->skip_height, ++u) {
            const int out_h = u * out_stride;
            const int upper_ii_index = layer_config->filter_height + h;
            for (int w = start_w, out_index = out_h; w < end_w;
                 w += layer_config->skip_width, ++out_index) {
              const int upper_jj_index = layer_config->filter_width + w;
              float sum = layer_config->bias[i];
              for (int k = 0; k < layer_config->in_channels; ++k) {
                int off = k * layer_config->out_channels + i;
                for (int ii = h; ii < upper_ii_index; ++ii) {
                  const int clamped_ii = CLAMPINDEX(ii, in_height);
                  for (int jj = w; jj < upper_jj_index; ++jj) {
                    const int clamped_jj = CLAMPINDEX(jj, in_width);
                    assert(clamped_ii >= 0 && clamped_ii < in_height &&
                           clamped_jj >= 0 && clamped_jj < in_width);
                    sum += layer_config->weights[off] *
                           input[k][clamped_ii * in_stride + clamped_jj];
                    off += cstep;
                  }
                }
              }
              output[i][out_index] = sum;
            }
          }
        }
        break;
      }
      case PADDING_VALID: {
        for (int i = start_idx; i < layer_config->out_channels;
             i += channel_step) {
          for (int h = 0, u = 0;
               h < in_height - layer_config->filter_height + 1;
               h += layer_config->skip_height, ++u) {
            const int out_h = u * out_stride;
            const int upper_ii_index = layer_config->filter_height + h;
            for (int w = 0, out_index = out_h;
                 w < in_width - layer_config->filter_width + 1;
                 w += layer_config->skip_width, ++out_index) {
              const int upper_jj_index = layer_config->filter_width + w;
              float sum = layer_config->bias[i];
              for (int k = 0; k < layer_config->in_channels; ++k) {
                int off = k * layer_config->out_channels + i;
                for (int ii = h; ii < upper_ii_index; ++ii) {
                  for (int jj = w; jj < upper_jj_index; ++jj) {
                    assert(ii >= 0 && ii < in_height && jj >= 0 &&
                           jj < in_width);
                    sum += layer_config->weights[off] *
                           input[k][ii * in_stride + jj];
                    off += cstep;
                  }
                }
              }
              output[i][out_index] = sum;
            }
          }
        }
        break;
      }
      default: assert(0 && "Unknown padding type");
    }
  }
}

static INLINE int get_start_shift_deconvolve(int filt_width, int stride) {
  const int dif = AOMMAX(filt_width - stride, 0);
  return dif / 2;
}

void av1_cnn_batchnorm_c(float **image, int channels, int width, int height,
                         int stride, const float *gamma, const float *beta,
                         const float *mean, const float *std) {
  assert(gamma && beta && beta && std && "batchnorm has null parameter!");
  for (int ch = 0; ch < channels; ch++) {
    const float ch_gamma = gamma[ch];
    const float ch_beta = beta[ch];
    const float ch_mean = mean[ch];
    const float ch_std = std[ch];
    float *image_row = image[ch];

    for (int row = 0; row < height; row++) {
      for (int col = 0; col < width; col++) {
        image_row[col] =
            ch_gamma * (image_row[col] - ch_mean) / ch_std + ch_beta;
      }
      image_row += stride;
    }
  }
}

void av1_cnn_deconvolve_c(const float **input, int in_width, int in_height,
                          int in_stride, const CNN_LAYER_CONFIG *layer_config,
                          float **output, int out_stride) {
  assert(layer_config->deconvolve);

  const int cstep = layer_config->in_channels * layer_config->out_channels;

  int out_width = 0;
  int out_height = 0;
  find_layer_output_size(in_width, in_height, layer_config, &out_width,
                         &out_height);
  switch (layer_config->pad) {
    case PADDING_SAME_ZERO:
      for (int i = 0; i < layer_config->out_channels; ++i) {
        for (int u = 0; u < out_height; ++u) {
          for (int v = 0; v < out_width; ++v) {
            float sum = layer_config->bias[i];
            for (int k = 0; k < layer_config->in_channels; ++k) {
              int off = k * layer_config->out_channels + i;
              for (int l = 0; l < layer_config->filter_height; ++l) {
                const int h =
                    u - l +
                    get_start_shift_deconvolve(layer_config->filter_height,
                                               layer_config->skip_height);
                for (int m = 0; m < layer_config->filter_width;
                     ++m, off += cstep) {
                  const int w =
                      v - m +
                      get_start_shift_deconvolve(layer_config->filter_width,
                                                 layer_config->skip_width);
                  if ((h % layer_config->skip_height) != 0 ||
                      (w % layer_config->skip_width) != 0)
                    continue;
                  const int ii = h / layer_config->skip_height;
                  const int jj = w / layer_config->skip_width;
                  if (ii < 0 || ii >= in_height || jj < 0 || jj >= in_width)
                    continue;
                  sum += layer_config->weights[off] *
                         input[k][ii * in_stride + jj];
                }
              }
            }
            output[i][u * out_stride + v] = sum;
          }
        }
      }
      break;
    case PADDING_SAME_REPLICATE:
      for (int i = 0; i < layer_config->out_channels; ++i) {
        for (int u = 0; u < out_height; ++u) {
          for (int v = 0; v < out_width; ++v) {
            float sum = layer_config->bias[i];
            for (int k = 0; k < layer_config->in_channels; ++k) {
              int off = k * layer_config->out_channels + i;
              for (int l = 0; l < layer_config->filter_height; ++l) {
                const int h =
                    u - l +
                    get_start_shift_deconvolve(layer_config->filter_height,
                                               layer_config->skip_height);
                for (int m = 0; m < layer_config->filter_width;
                     ++m, off += cstep) {
                  const int w =
                      v - m +
                      get_start_shift_deconvolve(layer_config->filter_width,
                                                 layer_config->skip_width);
                  if ((h % layer_config->skip_height) != 0 ||
                      (w % layer_config->skip_width) != 0)
                    continue;
                  const int ii =
                      CLAMPINDEX(h / layer_config->skip_height, in_height);
                  const int jj =
                      CLAMPINDEX(w / layer_config->skip_width, in_width);
                  assert(ii >= 0 && ii < in_height && jj >= 0 && jj < in_width);
                  continue;
                  sum += layer_config->weights[off] *
                         input[k][ii * in_stride + jj];
                }
              }
            }
            output[i][u * out_stride + v] = sum;
          }
        }
      }
      break;
    case PADDING_VALID:
      for (int i = 0; i < layer_config->out_channels; ++i) {
        for (int u = 0; u < out_height; ++u) {
          for (int v = 0; v < out_width; ++v) {
            float sum = layer_config->bias[i];
            for (int k = 0; k < layer_config->in_channels; ++k) {
              int off = k * layer_config->out_channels + i;
              for (int l = 0; l < layer_config->filter_height; ++l) {
                const int h = u - l;
                for (int m = 0; m < layer_config->filter_width;
                     ++m, off += cstep) {
                  const int w = v - m;
                  if ((h % layer_config->skip_height) != 0 ||
                      (w % layer_config->skip_width) != 0)
                    continue;
                  const int ii = h / layer_config->skip_height;
                  const int jj = w / layer_config->skip_width;
                  if (ii < 0 || ii >= in_height || jj < 0 || jj >= in_width)
                    continue;
                  sum += layer_config->weights[off] *
                         input[k][ii * in_stride + jj];
                }
              }
            }
            output[i][u * out_stride + v] = sum;
          }
        }
      }
      break;
    default: assert(0 && "Unknown padding type");
  }
}

void av1_cnn_predict_c(const float **input, int in_width, int in_height,
                       int in_stride, const CNN_CONFIG *cnn_config,
                       const CNN_THREAD_DATA *thread_data,
                       CNN_MULTI_OUT *output_struct) {
  TENSOR tensor1[CNN_MAX_BRANCHES] = { 0 };
  TENSOR tensor2[CNN_MAX_BRANCHES] = { 0 };

  float **output[CNN_MAX_BRANCHES];
  const int *out_chs = output_struct->output_channels;
  output[0] = output_struct->output_buffer;
  for (int out_idx = 1; out_idx < output_struct->num_outputs; out_idx++) {
    output[out_idx] = output[out_idx - 1] + out_chs[out_idx - 1];
  }

  int i_width = in_width;
  int i_height = in_height;
  int o_width = 0, o_height = 0;
  for (int b = 0; b < CNN_MAX_BRANCHES; ++b) {
    init_tensor(&tensor1[b]);
    init_tensor(&tensor2[b]);
  }

  const int *out_stride = output_struct->output_strides;
  for (int layer = 0; layer < cnn_config->num_layers; ++layer) {
    const CNN_LAYER_CONFIG *layer_config = &cnn_config->layer_config[layer];
    const int branch = layer_config->branch;
    const CNN_BRANCH_CONFIG *branch_config = &layer_config->branch_config;

    // Allocate input tensor
    if (layer == 0) {       // First layer
      assert(branch == 0);  // First layer must be primary branch
      assign_tensor(&tensor1[branch], (float **)input,
                    layer_config->in_channels, in_width, in_height, in_stride);
    } else {  // Non-first layer
      // Swap tensor1 and tensor2
      swap_tensor(&tensor1[branch], &tensor2[branch]);

      i_width = tensor1[branch].width;
      i_height = tensor1[branch].height;
    }

    // Allocate output tensor
    find_layer_output_size(i_width, i_height, layer_config, &o_width,
                           &o_height);
    const int output_num = layer_config->output_num;
    if (output_num == -1) {  // Non-output layer
      realloc_tensor(&tensor2[branch], layer_config->out_channels, o_width,
                     o_height);
    } else {  // Output layer
      free_tensor(&tensor2[branch]);
      assign_tensor(&tensor2[branch], output[output_num],
                    layer_config->out_channels, o_width, o_height,
                    out_stride[output_num]);
    }

    // If we are combining branches make sure that the branch to combine
    // is different from the current branch.
    assert(IMPLIES(layer_config->branch_combine_type != BRANCH_NOC,
                   !(branch_config->branches_to_combine & (1 << branch))));

    if (layer_config->branch_copy_type == BRANCH_INPUT) {
      copy_active_tensor_to_branches(&tensor1[branch], layer_config, branch,
                                     tensor2);
    }
    // Check consistency of input and output channels
    assert(tensor1[branch].channels == layer_config->in_channels);
    assert(tensor2[branch].channels == layer_config->out_channels);

    // Convolve/Deconvolve
    if (!cnn_config->layer_config[layer].deconvolve) {
      if (thread_data->num_workers > 1) {
        convolve_layer_mt((const float **)tensor1[branch].buf,
                          tensor1[branch].width, tensor1[branch].height,
                          tensor1[branch].stride, layer_config, thread_data,
                          tensor2[branch].buf, tensor2[branch].stride);
      } else {
        av1_cnn_convolve((const float **)tensor1[branch].buf,
                         tensor1[branch].width, tensor1[branch].height,
                         tensor1[branch].stride, layer_config,
                         tensor2[branch].buf, tensor2[branch].stride, 0, 1);
      }
    } else {
      av1_cnn_deconvolve((const float **)tensor1[branch].buf,
                         tensor1[branch].width, tensor1[branch].height,
                         tensor1[branch].stride, layer_config,
                         tensor2[branch].buf, tensor2[branch].stride);
    }

    if (layer_config->branch_copy_type == BRANCH_OUTPUT) {
      copy_active_tensor_to_branches(&tensor2[branch], layer_config, branch,
                                     tensor2);
    }

    // Add tensors from other branches if needed
    if (layer_config->branch_combine_type == BRANCH_ADD) {
      for (int b = 0; b < CNN_MAX_BRANCHES; ++b) {
        if ((branch_config->branches_to_combine & (1 << b)) && b != branch) {
          assert(check_tensor_equal_size(&tensor2[b], &tensor2[branch]));
          av1_cnn_add(tensor2[branch].buf, tensor2[branch].channels,
                      tensor2[branch].width, tensor2[branch].height,
                      tensor2[branch].stride, (const float **)tensor2[b].buf);
        }
      }
    }

    // Non-linearity
    if (layer_config->activation != IDENTITY)
      av1_cnn_activate(tensor2[branch].buf, tensor2[branch].channels,
                       tensor2[branch].width, tensor2[branch].height,
                       tensor2[branch].stride, layer_config->activation);

    if (layer_config->bn_params.bn_gamma) {
      av1_cnn_batchnorm(
          tensor2[branch].buf, tensor2[branch].channels, tensor2[branch].width,
          tensor2[branch].height, tensor2[branch].stride,
          layer_config->bn_params.bn_gamma, layer_config->bn_params.bn_beta,
          layer_config->bn_params.bn_mean, layer_config->bn_params.bn_std);
    }

    // Concatenate tensors
    if (layer_config->branch_combine_type == BRANCH_CAT) {
      if (output_num == -1) {  // Non-output layer
        for (int b = 0; b < CNN_MAX_BRANCHES; ++b) {
          if ((branch_config->branches_to_combine & (1 << b)) && b != branch) {
            assert(check_tensor_equal_dims(&tensor2[b], &tensor2[branch]));
            assert(tensor2[b].channels > 0);
            concat_tensor(&tensor2[b], &tensor2[branch]);
          }
        }
      } else {  // Output layer
        const int existing_channels = tensor2[branch].channels;
        int num_chs = existing_channels;
        for (int b = 0; b < CNN_MAX_BRANCHES; ++b) {
          if ((branch_config->branches_to_combine & (1 << b)) && b != branch) {
            assert(check_tensor_equal_dims(&tensor2[b], &tensor2[branch]));
            // Needed only to assign the new channel buffers
            num_chs += tensor2[b].channels;
          }
        }
        assign_tensor(&tensor2[branch], output[output_num], num_chs, o_width,
                      o_height, out_stride[output_num]);

        num_chs = existing_channels;
        for (int b = 0; b < CNN_MAX_BRANCHES; ++b) {
          if ((branch_config->branches_to_combine & (1 << b)) && b != branch) {
            assert(check_tensor_equal_dims(&tensor2[b], &tensor2[branch]));
            // Needed only to assign the new channel buffers
            copy_tensor(&tensor2[b], tensor2[b].channels, num_chs,
                        &tensor2[branch]);
            num_chs += tensor2[b].channels;
          }
        }
      }
    }

    if (layer_config->branch_copy_type == BRANCH_COMBINED) {
      copy_active_tensor_to_branches(&tensor2[branch], layer_config, branch,
                                     tensor2);
    }
  }

  for (int b = 0; b < CNN_MAX_BRANCHES; ++b) {
    free_tensor(&tensor1[b]);
    free_tensor(&tensor2[b]);
  }
}

// Assume output already has proper allocation
// Assume input image buffers all have same resolution and strides
void av1_cnn_predict_img_multi_out(uint8_t **dgd, int width, int height,
                                   int stride, const CNN_CONFIG *cnn_config,
                                   const CNN_THREAD_DATA *thread_data,
                                   CNN_MULTI_OUT *output) {
  const float max_val = 255.0;

  const int in_width = width + 2 * cnn_config->ext_width;
  const int in_height = height + 2 * cnn_config->ext_height;
  const int in_channels = cnn_config->layer_config[0].in_channels;
  float *inputs[CNN_MAX_CHANNELS];
  float *input_ =
      (float *)aom_malloc(in_width * in_height * in_channels * sizeof(*input_));
  const int in_stride = in_width;

  for (int c = 0; c < in_channels; ++c) {
    inputs[c] = input_ + c * in_stride * in_height;
    float *input =
        inputs[c] + cnn_config->ext_height * in_stride + cnn_config->ext_width;

    if (cnn_config->strict_bounds) {
      for (int i = 0; i < height; ++i)
        for (int j = 0; j < width; ++j)
          input[i * in_stride + j] = (float)dgd[c][i * stride + j] / max_val;
      // extend left and right
      for (int i = 0; i < height; ++i) {
        for (int j = -cnn_config->ext_width; j < 0; ++j)
          input[i * in_stride + j] = input[i * in_stride];
        for (int j = width; j < width + cnn_config->ext_width; ++j)
          input[i * in_stride + j] = input[i * in_stride + width - 1];
      }
      // extend top and bottom
      for (int i = -cnn_config->ext_height; i < 0; ++i)
        memcpy(&input[i * in_stride - cnn_config->ext_width],
               &input[-cnn_config->ext_width], in_width * sizeof(*input));
      for (int i = height; i < height + cnn_config->ext_height; ++i)
        memcpy(&input[i * in_stride - cnn_config->ext_width],
               &input[(height - 1) * in_stride - cnn_config->ext_width],
               in_width * sizeof(*input));
    } else {
      for (int i = -cnn_config->ext_height; i < height + cnn_config->ext_height;
           ++i)
        for (int j = -cnn_config->ext_width; j < width + cnn_config->ext_width;
             ++j)
          input[i * in_stride + j] = (float)dgd[c][i * stride + j] / max_val;
    }
  }
  av1_cnn_predict((const float **)inputs, in_width, in_height, in_stride,
                  cnn_config, thread_data, output);

  aom_free(input_);
}

// Assume output already has proper allocation
// Assume input image buffers all have same resolution and strides
void av1_cnn_predict_img_multi_out_highbd(uint16_t **dgd, int width, int height,
                                          int stride,
                                          const CNN_CONFIG *cnn_config,
                                          const CNN_THREAD_DATA *thread_data,
                                          int bit_depth,
                                          CNN_MULTI_OUT *output) {
  const float max_val = (float)((1 << bit_depth) - 1);

  const int in_width = width + 2 * cnn_config->ext_width;
  const int in_height = height + 2 * cnn_config->ext_height;
  const int in_channels = cnn_config->layer_config[0].in_channels;
  float *inputs[CNN_MAX_CHANNELS];
  float *input_ =
      (float *)aom_malloc(in_width * in_height * in_channels * sizeof(*input_));
  const int in_stride = in_width;

  for (int c = 0; c < in_channels; ++c) {
    inputs[c] = input_ + c * in_stride * in_height;
    float *input =
        inputs[c] + cnn_config->ext_height * in_stride + cnn_config->ext_width;

    if (cnn_config->strict_bounds) {
      for (int i = 0; i < height; ++i)
        for (int j = 0; j < width; ++j)
          input[i * in_stride + j] = (float)dgd[c][i * stride + j] / max_val;
      // extend left and right
      for (int i = 0; i < height; ++i) {
        for (int j = -cnn_config->ext_width; j < 0; ++j)
          input[i * in_stride + j] = input[i * in_stride];
        for (int j = width; j < width + cnn_config->ext_width; ++j)
          input[i * in_stride + j] = input[i * in_stride + width - 1];
      }
      // extend top and bottom
      for (int i = -cnn_config->ext_height; i < 0; ++i)
        memcpy(&input[i * in_stride - cnn_config->ext_width],
               &input[-cnn_config->ext_width], in_width * sizeof(*input));
      for (int i = height; i < height + cnn_config->ext_height; ++i)
        memcpy(&input[i * in_stride - cnn_config->ext_width],
               &input[(height - 1) * in_stride - cnn_config->ext_width],
               in_width * sizeof(*input));
    } else {
      for (int i = -cnn_config->ext_height; i < height + cnn_config->ext_height;
           ++i)
        for (int j = -cnn_config->ext_width; j < width + cnn_config->ext_width;
             ++j)
          input[i * in_stride + j] = (float)dgd[c][i * stride + j] / max_val;
    }
  }

  av1_cnn_predict((const float **)inputs, in_width, in_height, in_stride,
                  cnn_config, thread_data, output);

  aom_free(input_);
}

// Assume output already has proper allocation
// Assume input image buffers all have same resolution and strides
void av1_cnn_predict_img(uint8_t **dgd, int width, int height, int stride,
                         const CNN_CONFIG *cnn_config,
                         const CNN_THREAD_DATA *thread_data, float **output,
                         int out_stride) {
  int out_width = 0, out_height = 0, out_channels = 0;
  av1_find_cnn_output_size(width, height, cnn_config, &out_width, &out_height,
                           &out_channels);
  const int output_chs[1] = { out_channels };
  const int output_strides[1] = { out_stride };
  CNN_MULTI_OUT output_struct = { .output_channels = output_chs,
                                  .output_strides = output_strides,
                                  .output_buffer = output };
  av1_cnn_predict_img_multi_out(dgd, width, height, stride, cnn_config,
                                thread_data, &output_struct);
}

// Assume output already has proper allocation
// Assume input image buffers all have same resolution and strides
void av1_cnn_predict_img_highbd(uint16_t **dgd, int width, int height,
                                int stride, const CNN_CONFIG *cnn_config,
                                const CNN_THREAD_DATA *thread_data,
                                int bit_depth, float **output, int out_stride) {
  int out_width = 0, out_height = 0, out_channels = 0;
  av1_find_cnn_output_size(width, height, cnn_config, &out_width, &out_height,
                           &out_channels);
  const int output_chs[1] = { out_channels };
  const int output_strides[1] = { out_stride };
  CNN_MULTI_OUT output_struct = { .output_channels = output_chs,
                                  .output_strides = output_strides,
                                  .output_buffer = output };
  av1_cnn_predict_img_multi_out_highbd(dgd, width, height, stride, cnn_config,
                                       thread_data, bit_depth, &output_struct);
}