summaryrefslogtreecommitdiff
path: root/media/libaom/src/av1/decoder/obu.c
blob: 44ecf818e7c8de4495b69e4a50cf0a98a2d235e5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
/*
 * Copyright (c) 2017, Alliance for Open Media. All rights reserved
 *
 * This source code is subject to the terms of the BSD 2 Clause License and
 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
 * was not distributed with this source code in the LICENSE file, you can
 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
 * Media Patent License 1.0 was not distributed with this source code in the
 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
 */

#include <assert.h>

#include "config/aom_config.h"

#include "aom/aom_codec.h"
#include "aom_dsp/bitreader_buffer.h"
#include "aom_ports/mem_ops.h"

#include "av1/common/common.h"
#include "av1/common/obu_util.h"
#include "av1/common/timing.h"
#include "av1/decoder/decoder.h"
#include "av1/decoder/decodeframe.h"
#include "av1/decoder/obu.h"

// Picture prediction structures (0-12 are predefined) in scalability metadata.
typedef enum {
  SCALABILITY_L1T2 = 0,
  SCALABILITY_L1T3 = 1,
  SCALABILITY_L2T1 = 2,
  SCALABILITY_L2T2 = 3,
  SCALABILITY_L2T3 = 4,
  SCALABILITY_S2T1 = 5,
  SCALABILITY_S2T2 = 6,
  SCALABILITY_S2T3 = 7,
  SCALABILITY_L2T1h = 8,
  SCALABILITY_L2T2h = 9,
  SCALABILITY_L2T3h = 10,
  SCALABILITY_S2T1h = 11,
  SCALABILITY_S2T2h = 12,
  SCALABILITY_S2T3h = 13,
  SCALABILITY_SS = 14
} SCALABILITY_STRUCTURES;

aom_codec_err_t aom_get_num_layers_from_operating_point_idc(
    int operating_point_idc, unsigned int *number_spatial_layers,
    unsigned int *number_temporal_layers) {
  // derive number of spatial/temporal layers from operating_point_idc

  if (!number_spatial_layers || !number_temporal_layers)
    return AOM_CODEC_INVALID_PARAM;

  if (operating_point_idc == 0) {
    *number_temporal_layers = 1;
    *number_spatial_layers = 1;
  } else {
    *number_spatial_layers = 0;
    *number_temporal_layers = 0;
    for (int j = 0; j < MAX_NUM_SPATIAL_LAYERS; j++) {
      *number_spatial_layers +=
          (operating_point_idc >> (j + MAX_NUM_TEMPORAL_LAYERS)) & 0x1;
    }
    for (int j = 0; j < MAX_NUM_TEMPORAL_LAYERS; j++) {
      *number_temporal_layers += (operating_point_idc >> j) & 0x1;
    }
  }

  return AOM_CODEC_OK;
}

static int is_obu_in_current_operating_point(AV1Decoder *pbi,
                                             ObuHeader obu_header) {
  if (!pbi->current_operating_point) {
    return 1;
  }

  if ((pbi->current_operating_point >> obu_header.temporal_layer_id) & 0x1 &&
      (pbi->current_operating_point >> (obu_header.spatial_layer_id + 8)) &
          0x1) {
    return 1;
  }
  return 0;
}

static int byte_alignment(AV1_COMMON *const cm,
                          struct aom_read_bit_buffer *const rb) {
  while (rb->bit_offset & 7) {
    if (aom_rb_read_bit(rb)) {
      cm->error.error_code = AOM_CODEC_CORRUPT_FRAME;
      return -1;
    }
  }
  return 0;
}

static uint32_t read_temporal_delimiter_obu() { return 0; }

// Returns a boolean that indicates success.
static int read_bitstream_level(BitstreamLevel *bl,
                                struct aom_read_bit_buffer *rb) {
  const uint8_t seq_level_idx = aom_rb_read_literal(rb, LEVEL_BITS);
  if (!is_valid_seq_level_idx(seq_level_idx)) return 0;
  bl->major = (seq_level_idx >> LEVEL_MINOR_BITS) + LEVEL_MAJOR_MIN;
  bl->minor = seq_level_idx & ((1 << LEVEL_MINOR_BITS) - 1);
  return 1;
}

// Returns whether two sequence headers are consistent with each other.
// TODO(huisu,wtc@google.com): make sure the code matches the spec exactly.
static int are_seq_headers_consistent(const SequenceHeader *seq_params_old,
                                      const SequenceHeader *seq_params_new) {
  return !memcmp(seq_params_old, seq_params_new, sizeof(SequenceHeader));
}

// On success, sets pbi->sequence_header_ready to 1 and returns the number of
// bytes read from 'rb'.
// On failure, sets pbi->common.error.error_code and returns 0.
static uint32_t read_sequence_header_obu(AV1Decoder *pbi,
                                         struct aom_read_bit_buffer *rb) {
  AV1_COMMON *const cm = &pbi->common;
  const uint32_t saved_bit_offset = rb->bit_offset;

  // Verify rb has been configured to report errors.
  assert(rb->error_handler);

  // Use a local variable to store the information as we decode. At the end,
  // if no errors have occurred, cm->seq_params is updated.
  SequenceHeader sh = cm->seq_params;
  SequenceHeader *const seq_params = &sh;

  seq_params->profile = av1_read_profile(rb);
  if (seq_params->profile > CONFIG_MAX_DECODE_PROFILE) {
    cm->error.error_code = AOM_CODEC_UNSUP_BITSTREAM;
    return 0;
  }

  // Still picture or not
  seq_params->still_picture = aom_rb_read_bit(rb);
  seq_params->reduced_still_picture_hdr = aom_rb_read_bit(rb);
  // Video must have reduced_still_picture_hdr = 0
  if (!seq_params->still_picture && seq_params->reduced_still_picture_hdr) {
    cm->error.error_code = AOM_CODEC_UNSUP_BITSTREAM;
    return 0;
  }

  if (seq_params->reduced_still_picture_hdr) {
    cm->timing_info_present = 0;
    seq_params->decoder_model_info_present_flag = 0;
    seq_params->display_model_info_present_flag = 0;
    seq_params->operating_points_cnt_minus_1 = 0;
    seq_params->operating_point_idc[0] = 0;
    if (!read_bitstream_level(&seq_params->level[0], rb)) {
      cm->error.error_code = AOM_CODEC_UNSUP_BITSTREAM;
      return 0;
    }
    seq_params->tier[0] = 0;
    cm->op_params[0].decoder_model_param_present_flag = 0;
    cm->op_params[0].display_model_param_present_flag = 0;
  } else {
    cm->timing_info_present = aom_rb_read_bit(rb);  // timing_info_present_flag
    if (cm->timing_info_present) {
      av1_read_timing_info_header(cm, rb);

      seq_params->decoder_model_info_present_flag = aom_rb_read_bit(rb);
      if (seq_params->decoder_model_info_present_flag)
        av1_read_decoder_model_info(cm, rb);
    } else {
      seq_params->decoder_model_info_present_flag = 0;
    }
    seq_params->display_model_info_present_flag = aom_rb_read_bit(rb);
    seq_params->operating_points_cnt_minus_1 =
        aom_rb_read_literal(rb, OP_POINTS_CNT_MINUS_1_BITS);
    for (int i = 0; i < seq_params->operating_points_cnt_minus_1 + 1; i++) {
      seq_params->operating_point_idc[i] =
          aom_rb_read_literal(rb, OP_POINTS_IDC_BITS);
      if (!read_bitstream_level(&seq_params->level[i], rb)) {
        cm->error.error_code = AOM_CODEC_UNSUP_BITSTREAM;
        return 0;
      }
      // This is the seq_level_idx[i] > 7 check in the spec. seq_level_idx 7
      // is equivalent to level 3.3.
      if (seq_params->level[i].major > 3)
        seq_params->tier[i] = aom_rb_read_bit(rb);
      else
        seq_params->tier[i] = 0;
      if (seq_params->decoder_model_info_present_flag) {
        cm->op_params[i].decoder_model_param_present_flag = aom_rb_read_bit(rb);
        if (cm->op_params[i].decoder_model_param_present_flag)
          av1_read_op_parameters_info(cm, rb, i);
      } else {
        cm->op_params[i].decoder_model_param_present_flag = 0;
      }
      if (cm->timing_info_present &&
          (cm->timing_info.equal_picture_interval ||
           cm->op_params[i].decoder_model_param_present_flag)) {
        cm->op_params[i].bitrate = max_level_bitrate(
            seq_params->profile,
            major_minor_to_seq_level_idx(seq_params->level[i]),
            seq_params->tier[i]);
        // Level with seq_level_idx = 31 returns a high "dummy" bitrate to pass
        // the check
        if (cm->op_params[i].bitrate == 0)
          aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM,
                             "AV1 does not support this combination of "
                             "profile, level, and tier.");
        // Buffer size in bits/s is bitrate in bits/s * 1 s
        cm->op_params[i].buffer_size = cm->op_params[i].bitrate;
      }
      if (cm->timing_info_present && cm->timing_info.equal_picture_interval &&
          !cm->op_params[i].decoder_model_param_present_flag) {
        // When the decoder_model_parameters are not sent for this op, set
        // the default ones that can be used with the resource availability mode
        cm->op_params[i].decoder_buffer_delay = 70000;
        cm->op_params[i].encoder_buffer_delay = 20000;
        cm->op_params[i].low_delay_mode_flag = 0;
      }

      if (seq_params->display_model_info_present_flag) {
        cm->op_params[i].display_model_param_present_flag = aom_rb_read_bit(rb);
        if (cm->op_params[i].display_model_param_present_flag) {
          cm->op_params[i].initial_display_delay =
              aom_rb_read_literal(rb, 4) + 1;
          if (cm->op_params[i].initial_display_delay > 10)
            aom_internal_error(
                &cm->error, AOM_CODEC_UNSUP_BITSTREAM,
                "AV1 does not support more than 10 decoded frames delay");
        } else {
          cm->op_params[i].initial_display_delay = 10;
        }
      } else {
        cm->op_params[i].display_model_param_present_flag = 0;
        cm->op_params[i].initial_display_delay = 10;
      }
    }
  }
  // This decoder supports all levels.  Choose operating point provided by
  // external means
  int operating_point = pbi->operating_point;
  if (operating_point < 0 ||
      operating_point > seq_params->operating_points_cnt_minus_1)
    operating_point = 0;
  pbi->current_operating_point =
      seq_params->operating_point_idc[operating_point];
  if (aom_get_num_layers_from_operating_point_idc(
          pbi->current_operating_point, &cm->number_spatial_layers,
          &cm->number_temporal_layers) != AOM_CODEC_OK) {
    cm->error.error_code = AOM_CODEC_ERROR;
    return 0;
  }

  av1_read_sequence_header(cm, rb, seq_params);

  av1_read_color_config(rb, pbi->allow_lowbitdepth, seq_params, &cm->error);
  if (!(seq_params->subsampling_x == 0 && seq_params->subsampling_y == 0) &&
      !(seq_params->subsampling_x == 1 && seq_params->subsampling_y == 1) &&
      !(seq_params->subsampling_x == 1 && seq_params->subsampling_y == 0)) {
    aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM,
                       "Only 4:4:4, 4:2:2 and 4:2:0 are currently supported, "
                       "%d %d subsampling is not supported.\n",
                       seq_params->subsampling_x, seq_params->subsampling_y);
  }

  seq_params->film_grain_params_present = aom_rb_read_bit(rb);

  if (av1_check_trailing_bits(pbi, rb) != 0) {
    // cm->error.error_code is already set.
    return 0;
  }

  // If a sequence header has been decoded before, we check if the new
  // one is consistent with the old one.
  if (pbi->sequence_header_ready) {
    if (!are_seq_headers_consistent(&cm->seq_params, seq_params))
      pbi->sequence_header_changed = 1;
  }

  cm->seq_params = *seq_params;
  pbi->sequence_header_ready = 1;

  return ((rb->bit_offset - saved_bit_offset + 7) >> 3);
}

// On success, returns the frame header size. On failure, calls
// aom_internal_error and does not return.
static uint32_t read_frame_header_obu(AV1Decoder *pbi,
                                      struct aom_read_bit_buffer *rb,
                                      const uint8_t *data,
                                      const uint8_t **p_data_end,
                                      int trailing_bits_present) {
  return av1_decode_frame_headers_and_setup(pbi, rb, data, p_data_end,
                                            trailing_bits_present);
}

static int32_t read_tile_group_header(AV1Decoder *pbi,
                                      struct aom_read_bit_buffer *rb,
                                      int *start_tile, int *end_tile,
                                      int tile_start_implicit) {
  AV1_COMMON *const cm = &pbi->common;
  uint32_t saved_bit_offset = rb->bit_offset;
  int tile_start_and_end_present_flag = 0;
  const int num_tiles = pbi->common.tile_rows * pbi->common.tile_cols;

  if (!pbi->common.large_scale_tile && num_tiles > 1) {
    tile_start_and_end_present_flag = aom_rb_read_bit(rb);
  }
  if (pbi->common.large_scale_tile || num_tiles == 1 ||
      !tile_start_and_end_present_flag) {
    *start_tile = 0;
    *end_tile = num_tiles - 1;
    return ((rb->bit_offset - saved_bit_offset + 7) >> 3);
  }
  if (tile_start_implicit && tile_start_and_end_present_flag) {
    aom_internal_error(
        &cm->error, AOM_CODEC_UNSUP_BITSTREAM,
        "For OBU_FRAME type obu tile_start_and_end_present_flag must be 0");
    return -1;
  }
  *start_tile =
      aom_rb_read_literal(rb, cm->log2_tile_rows + cm->log2_tile_cols);
  *end_tile = aom_rb_read_literal(rb, cm->log2_tile_rows + cm->log2_tile_cols);

  return ((rb->bit_offset - saved_bit_offset + 7) >> 3);
}

static uint32_t read_one_tile_group_obu(
    AV1Decoder *pbi, struct aom_read_bit_buffer *rb, int is_first_tg,
    const uint8_t *data, const uint8_t *data_end, const uint8_t **p_data_end,
    int *is_last_tg, int tile_start_implicit) {
  AV1_COMMON *const cm = &pbi->common;
  int start_tile, end_tile;
  int32_t header_size, tg_payload_size;

  assert((rb->bit_offset & 7) == 0);
  assert(rb->bit_buffer + aom_rb_bytes_read(rb) == data);

  header_size = read_tile_group_header(pbi, rb, &start_tile, &end_tile,
                                       tile_start_implicit);
  if (header_size == -1 || byte_alignment(cm, rb)) return 0;
  if (start_tile > end_tile) return header_size;
  data += header_size;
  av1_decode_tg_tiles_and_wrapup(pbi, data, data_end, p_data_end, start_tile,
                                 end_tile, is_first_tg);

  tg_payload_size = (uint32_t)(*p_data_end - data);

  // TODO(shan):  For now, assume all tile groups received in order
  *is_last_tg = end_tile == cm->tile_rows * cm->tile_cols - 1;
  return header_size + tg_payload_size;
}

static void alloc_tile_list_buffer(AV1Decoder *pbi) {
  // TODO(yunqing): for now, copy each tile's decoded YUV data directly to the
  // output buffer. This needs to be modified according to the application
  // requirement.
  AV1_COMMON *const cm = &pbi->common;
  const int tile_width_in_pixels = cm->tile_width * MI_SIZE;
  const int tile_height_in_pixels = cm->tile_height * MI_SIZE;
  const int ssy = cm->seq_params.subsampling_y;
  const int ssx = cm->seq_params.subsampling_x;
  const int num_planes = av1_num_planes(cm);
  const size_t yplane_tile_size = tile_height_in_pixels * tile_width_in_pixels;
  const size_t uvplane_tile_size =
      (num_planes > 1)
          ? (tile_height_in_pixels >> ssy) * (tile_width_in_pixels >> ssx)
          : 0;
  const size_t tile_size = (cm->seq_params.use_highbitdepth ? 2 : 1) *
                           (yplane_tile_size + 2 * uvplane_tile_size);
  pbi->tile_list_size = tile_size * (pbi->tile_count_minus_1 + 1);

  if (pbi->tile_list_size > pbi->buffer_sz) {
    if (pbi->tile_list_output != NULL) aom_free(pbi->tile_list_output);
    pbi->tile_list_output = NULL;

    pbi->tile_list_output = (uint8_t *)aom_memalign(32, pbi->tile_list_size);
    if (pbi->tile_list_output == NULL)
      aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR,
                         "Failed to allocate the tile list output buffer");
    pbi->buffer_sz = pbi->tile_list_size;
  }
}

static void copy_decoded_tile_to_tile_list_buffer(AV1Decoder *pbi,
                                                  uint8_t **output) {
  AV1_COMMON *const cm = &pbi->common;
  const int tile_width_in_pixels = cm->tile_width * MI_SIZE;
  const int tile_height_in_pixels = cm->tile_height * MI_SIZE;
  const int ssy = cm->seq_params.subsampling_y;
  const int ssx = cm->seq_params.subsampling_x;
  const int num_planes = av1_num_planes(cm);

  // Copy decoded tile to the tile list output buffer.
  YV12_BUFFER_CONFIG *cur_frame = get_frame_new_buffer(cm);
  const int mi_row = pbi->dec_tile_row * cm->tile_height;
  const int mi_col = pbi->dec_tile_col * cm->tile_width;
  const int is_hbd = (cur_frame->flags & YV12_FLAG_HIGHBITDEPTH) ? 1 : 0;
  uint8_t *bufs[MAX_MB_PLANE] = { NULL, NULL, NULL };
  int strides[MAX_MB_PLANE] = { 0, 0, 0 };
  int plane;

  for (plane = 0; plane < num_planes; ++plane) {
    int shift_x = plane > 0 ? ssx : 0;
    int shift_y = plane > 0 ? ssy : 0;

    bufs[plane] = cur_frame->buffers[plane];
    strides[plane] =
        (plane > 0) ? cur_frame->strides[1] : cur_frame->strides[0];

    bufs[plane] += mi_row * (MI_SIZE >> shift_y) * strides[plane] +
                   mi_col * (MI_SIZE >> shift_x);

    if (is_hbd) {
      bufs[plane] = (uint8_t *)CONVERT_TO_SHORTPTR(bufs[plane]);
      strides[plane] *= 2;
    }

    int w, h;
    w = (plane > 0 && shift_x > 0) ? ((tile_width_in_pixels + 1) >> shift_x)
                                   : tile_width_in_pixels;
    w *= (1 + is_hbd);
    h = (plane > 0 && shift_y > 0) ? ((tile_height_in_pixels + 1) >> shift_y)
                                   : tile_height_in_pixels;
    int j;

    for (j = 0; j < h; ++j) {
      memcpy(*output, bufs[plane], w);
      bufs[plane] += strides[plane];
      *output += w;
    }
  }
}

// Only called while large_scale_tile = 1.
static uint32_t read_and_decode_one_tile_list(AV1Decoder *pbi,
                                              struct aom_read_bit_buffer *rb,
                                              const uint8_t *data,
                                              const uint8_t *data_end,
                                              const uint8_t **p_data_end,
                                              int *frame_decoding_finished) {
  AV1_COMMON *const cm = &pbi->common;
  uint32_t tile_list_payload_size = 0;
  const int num_tiles = cm->tile_cols * cm->tile_rows;
  const int start_tile = 0;
  const int end_tile = num_tiles - 1;
  int i = 0;

  // Process the tile list info.
  pbi->output_frame_width_in_tiles_minus_1 = aom_rb_read_literal(rb, 8);
  pbi->output_frame_height_in_tiles_minus_1 = aom_rb_read_literal(rb, 8);
  pbi->tile_count_minus_1 = aom_rb_read_literal(rb, 16);
  if (pbi->tile_count_minus_1 > MAX_TILES - 1) {
    cm->error.error_code = AOM_CODEC_CORRUPT_FRAME;
    return 0;
  }

  // Allocate output frame buffer for the tile list.
  alloc_tile_list_buffer(pbi);

  uint32_t tile_list_info_bytes = 4;
  tile_list_payload_size += tile_list_info_bytes;
  data += tile_list_info_bytes;
  uint8_t *output = pbi->tile_list_output;

  for (i = 0; i <= pbi->tile_count_minus_1; i++) {
    // Process 1 tile.
    // Reset the bit reader.
    rb->bit_offset = 0;
    rb->bit_buffer = data;

    // Read out the tile info.
    uint32_t tile_info_bytes = 5;
    // Set reference for each tile.
    int ref_idx = aom_rb_read_literal(rb, 8);
    if (ref_idx >= MAX_EXTERNAL_REFERENCES) {
      cm->error.error_code = AOM_CODEC_CORRUPT_FRAME;
      return 0;
    }
    av1_set_reference_dec(cm, 0, 1, &pbi->ext_refs.refs[ref_idx]);

    pbi->dec_tile_row = aom_rb_read_literal(rb, 8);
    pbi->dec_tile_col = aom_rb_read_literal(rb, 8);
    if (pbi->dec_tile_row < 0 || pbi->dec_tile_col < 0 ||
        pbi->dec_tile_row >= cm->tile_rows ||
        pbi->dec_tile_col >= cm->tile_cols) {
      cm->error.error_code = AOM_CODEC_CORRUPT_FRAME;
      return 0;
    }

    pbi->coded_tile_data_size = aom_rb_read_literal(rb, 16) + 1;
    data += tile_info_bytes;
    if ((size_t)(data_end - data) < pbi->coded_tile_data_size) {
      cm->error.error_code = AOM_CODEC_CORRUPT_FRAME;
      return 0;
    }

    av1_decode_tg_tiles_and_wrapup(pbi, data, data + pbi->coded_tile_data_size,
                                   p_data_end, start_tile, end_tile, 0);
    uint32_t tile_payload_size = (uint32_t)(*p_data_end - data);

    tile_list_payload_size += tile_info_bytes + tile_payload_size;

    // Update data ptr for next tile decoding.
    data = *p_data_end;
    assert(data <= data_end);

    // Copy the decoded tile to the tile list output buffer.
    copy_decoded_tile_to_tile_list_buffer(pbi, &output);
  }

  *frame_decoding_finished = 1;
  return tile_list_payload_size;
}

static void read_metadata_itut_t35(const uint8_t *data, size_t sz) {
  struct aom_read_bit_buffer rb = { data, data + sz, 0, NULL, NULL };
  for (size_t i = 0; i < sz; i++) {
    aom_rb_read_literal(&rb, 8);
  }
}

static void read_metadata_hdr_cll(const uint8_t *data, size_t sz) {
  struct aom_read_bit_buffer rb = { data, data + sz, 0, NULL, NULL };
  aom_rb_read_literal(&rb, 16);  // max_cll
  aom_rb_read_literal(&rb, 16);  // max_fall
}

static void read_metadata_hdr_mdcv(const uint8_t *data, size_t sz) {
  struct aom_read_bit_buffer rb = { data, data + sz, 0, NULL, NULL };
  for (int i = 0; i < 3; i++) {
    aom_rb_read_literal(&rb, 16);  // primary_i_chromaticity_x
    aom_rb_read_literal(&rb, 16);  // primary_i_chromaticity_y
  }

  aom_rb_read_literal(&rb, 16);  // white_point_chromaticity_x
  aom_rb_read_literal(&rb, 16);  // white_point_chromaticity_y

  aom_rb_read_unsigned_literal(&rb, 32);  // luminance_max
  aom_rb_read_unsigned_literal(&rb, 32);  // luminance_min
}

static void scalability_structure(struct aom_read_bit_buffer *rb) {
  int spatial_layers_cnt = aom_rb_read_literal(rb, 2);
  int spatial_layer_dimensions_present_flag = aom_rb_read_bit(rb);
  int spatial_layer_description_present_flag = aom_rb_read_bit(rb);
  int temporal_group_description_present_flag = aom_rb_read_bit(rb);
  aom_rb_read_literal(rb, 3);  // reserved

  if (spatial_layer_dimensions_present_flag) {
    int i;
    for (i = 0; i < spatial_layers_cnt + 1; i++) {
      aom_rb_read_literal(rb, 16);
      aom_rb_read_literal(rb, 16);
    }
  }
  if (spatial_layer_description_present_flag) {
    int i;
    for (i = 0; i < spatial_layers_cnt + 1; i++) {
      aom_rb_read_literal(rb, 8);
    }
  }
  if (temporal_group_description_present_flag) {
    int i, j, temporal_group_size;
    temporal_group_size = aom_rb_read_literal(rb, 8);
    for (i = 0; i < temporal_group_size; i++) {
      aom_rb_read_literal(rb, 3);
      aom_rb_read_bit(rb);
      aom_rb_read_bit(rb);
      int temporal_group_ref_cnt = aom_rb_read_literal(rb, 3);
      for (j = 0; j < temporal_group_ref_cnt; j++) {
        aom_rb_read_literal(rb, 8);
      }
    }
  }
}

static void read_metadata_scalability(const uint8_t *data, size_t sz) {
  struct aom_read_bit_buffer rb = { data, data + sz, 0, NULL, NULL };
  int scalability_mode_idc = aom_rb_read_literal(&rb, 8);
  if (scalability_mode_idc == SCALABILITY_SS) {
    scalability_structure(&rb);
  }
}

static void read_metadata_timecode(const uint8_t *data, size_t sz) {
  struct aom_read_bit_buffer rb = { data, data + sz, 0, NULL, NULL };
  aom_rb_read_literal(&rb, 5);                     // counting_type f(5)
  int full_timestamp_flag = aom_rb_read_bit(&rb);  // full_timestamp_flag f(1)
  aom_rb_read_bit(&rb);                            // discontinuity_flag (f1)
  aom_rb_read_bit(&rb);                            // cnt_dropped_flag f(1)
  aom_rb_read_literal(&rb, 9);                     // n_frames f(9)
  if (full_timestamp_flag) {
    aom_rb_read_literal(&rb, 6);  // seconds_value f(6)
    aom_rb_read_literal(&rb, 6);  // minutes_value f(6)
    aom_rb_read_literal(&rb, 5);  // hours_value f(5)
  } else {
    int seconds_flag = aom_rb_read_bit(&rb);  // seconds_flag f(1)
    if (seconds_flag) {
      aom_rb_read_literal(&rb, 6);              // seconds_value f(6)
      int minutes_flag = aom_rb_read_bit(&rb);  // minutes_flag f(1)
      if (minutes_flag) {
        aom_rb_read_literal(&rb, 6);            // minutes_value f(6)
        int hours_flag = aom_rb_read_bit(&rb);  // hours_flag f(1)
        if (hours_flag) {
          aom_rb_read_literal(&rb, 5);  // hours_value f(5)
        }
      }
    }
  }
  // time_offset_length f(5)
  int time_offset_length = aom_rb_read_literal(&rb, 5);
  if (time_offset_length) {
    aom_rb_read_literal(&rb, time_offset_length);  // f(time_offset_length)
  }
}

static size_t read_metadata(const uint8_t *data, size_t sz) {
  size_t type_length;
  uint64_t type_value;
  OBU_METADATA_TYPE metadata_type;
  if (aom_uleb_decode(data, sz, &type_value, &type_length) < 0) {
    return sz;
  }
  metadata_type = (OBU_METADATA_TYPE)type_value;
  if (metadata_type == OBU_METADATA_TYPE_ITUT_T35) {
    read_metadata_itut_t35(data + type_length, sz - type_length);
  } else if (metadata_type == OBU_METADATA_TYPE_HDR_CLL) {
    read_metadata_hdr_cll(data + type_length, sz - type_length);
  } else if (metadata_type == OBU_METADATA_TYPE_HDR_MDCV) {
    read_metadata_hdr_mdcv(data + type_length, sz - type_length);
  } else if (metadata_type == OBU_METADATA_TYPE_SCALABILITY) {
    read_metadata_scalability(data + type_length, sz - type_length);
  } else if (metadata_type == OBU_METADATA_TYPE_TIMECODE) {
    read_metadata_timecode(data + type_length, sz - type_length);
  }

  return sz;
}

// On success, returns a boolean that indicates whether the decoding of the
// current frame is finished. On failure, sets cm->error.error_code and
// returns -1.
int aom_decode_frame_from_obus(struct AV1Decoder *pbi, const uint8_t *data,
                               const uint8_t *data_end,
                               const uint8_t **p_data_end) {
  AV1_COMMON *const cm = &pbi->common;
  int frame_decoding_finished = 0;
  int is_first_tg_obu_received = 1;
  uint32_t frame_header_size = 0;
  ObuHeader obu_header;
  memset(&obu_header, 0, sizeof(obu_header));
  pbi->seen_frame_header = 0;

  if (data_end < data) {
    cm->error.error_code = AOM_CODEC_CORRUPT_FRAME;
    return -1;
  }

  // Reset pbi->camera_frame_header_ready to 0 if cm->large_scale_tile = 0.
  if (!cm->large_scale_tile) pbi->camera_frame_header_ready = 0;

  // decode frame as a series of OBUs
  while (!frame_decoding_finished && !cm->error.error_code) {
    struct aom_read_bit_buffer rb;
    size_t payload_size = 0;
    size_t decoded_payload_size = 0;
    size_t obu_payload_offset = 0;
    size_t bytes_read = 0;
    const size_t bytes_available = data_end - data;

    if (bytes_available == 0 && !pbi->seen_frame_header) {
      *p_data_end = data;
      cm->error.error_code = AOM_CODEC_OK;
      break;
    }

    aom_codec_err_t status =
        aom_read_obu_header_and_size(data, bytes_available, cm->is_annexb,
                                     &obu_header, &payload_size, &bytes_read);

    if (status != AOM_CODEC_OK) {
      cm->error.error_code = status;
      return -1;
    }

    // Record obu size header information.
    pbi->obu_size_hdr.data = data + obu_header.size;
    pbi->obu_size_hdr.size = bytes_read - obu_header.size;

    // Note: aom_read_obu_header_and_size() takes care of checking that this
    // doesn't cause 'data' to advance past 'data_end'.
    data += bytes_read;

    if ((size_t)(data_end - data) < payload_size) {
      cm->error.error_code = AOM_CODEC_CORRUPT_FRAME;
      return -1;
    }

    cm->temporal_layer_id = obu_header.temporal_layer_id;
    cm->spatial_layer_id = obu_header.spatial_layer_id;

    if (obu_header.type != OBU_TEMPORAL_DELIMITER &&
        obu_header.type != OBU_SEQUENCE_HEADER &&
        obu_header.type != OBU_PADDING) {
      // don't decode obu if it's not in current operating mode
      if (!is_obu_in_current_operating_point(pbi, obu_header)) {
        data += payload_size;
        continue;
      }
    }

    av1_init_read_bit_buffer(pbi, &rb, data, data + payload_size);

    switch (obu_header.type) {
      case OBU_TEMPORAL_DELIMITER:
        decoded_payload_size = read_temporal_delimiter_obu();
        pbi->seen_frame_header = 0;
        break;
      case OBU_SEQUENCE_HEADER:
        decoded_payload_size = read_sequence_header_obu(pbi, &rb);
        if (cm->error.error_code != AOM_CODEC_OK) return -1;
        break;
      case OBU_FRAME_HEADER:
      case OBU_REDUNDANT_FRAME_HEADER:
      case OBU_FRAME:
        // Only decode first frame header received
        if (!pbi->seen_frame_header ||
            (cm->large_scale_tile && !pbi->camera_frame_header_ready)) {
          frame_header_size = read_frame_header_obu(
              pbi, &rb, data, p_data_end, obu_header.type != OBU_FRAME);
          pbi->seen_frame_header = 1;
          if (!pbi->ext_tile_debug && cm->large_scale_tile)
            pbi->camera_frame_header_ready = 1;
        } else {
          // TODO(wtc): Verify that the frame_header_obu is identical to the
          // original frame_header_obu. For now just skip frame_header_size
          // bytes in the bit buffer.
          if (frame_header_size > payload_size) {
            cm->error.error_code = AOM_CODEC_CORRUPT_FRAME;
            return -1;
          }
          assert(rb.bit_offset == 0);
          rb.bit_offset = 8 * frame_header_size;
        }

        decoded_payload_size = frame_header_size;
        pbi->frame_header_size = frame_header_size;

        if (cm->show_existing_frame) {
          if (obu_header.type == OBU_FRAME) {
            cm->error.error_code = AOM_CODEC_UNSUP_BITSTREAM;
            return -1;
          }
          frame_decoding_finished = 1;
          pbi->seen_frame_header = 0;
          break;
        }

        // In large scale tile coding, decode the common camera frame header
        // before any tile list OBU.
        if (!pbi->ext_tile_debug && pbi->camera_frame_header_ready) {
          frame_decoding_finished = 1;
          // Skip the rest of the frame data.
          decoded_payload_size = payload_size;
          // Update data_end.
          *p_data_end = data_end;
          break;
        }

        if (obu_header.type != OBU_FRAME) break;
        obu_payload_offset = frame_header_size;
        // Byte align the reader before reading the tile group.
        if (byte_alignment(cm, &rb)) return -1;
        AOM_FALLTHROUGH_INTENDED;  // fall through to read tile group.
      case OBU_TILE_GROUP:
        if (!pbi->seen_frame_header) {
          cm->error.error_code = AOM_CODEC_CORRUPT_FRAME;
          return -1;
        }
        if (obu_payload_offset > payload_size) {
          cm->error.error_code = AOM_CODEC_CORRUPT_FRAME;
          return -1;
        }
        decoded_payload_size += read_one_tile_group_obu(
            pbi, &rb, is_first_tg_obu_received, data + obu_payload_offset,
            data + payload_size, p_data_end, &frame_decoding_finished,
            obu_header.type == OBU_FRAME);
        is_first_tg_obu_received = 0;
        if (frame_decoding_finished) pbi->seen_frame_header = 0;
        break;
      case OBU_METADATA:
        decoded_payload_size = read_metadata(data, payload_size);
        break;
      case OBU_TILE_LIST:
        if (CONFIG_NORMAL_TILE_MODE) {
          cm->error.error_code = AOM_CODEC_UNSUP_BITSTREAM;
          return -1;
        }

        // This OBU type is purely for the large scale tile coding mode.
        // The common camera frame header has to be already decoded.
        if (!pbi->camera_frame_header_ready) {
          cm->error.error_code = AOM_CODEC_CORRUPT_FRAME;
          return -1;
        }

        cm->large_scale_tile = 1;
        av1_set_single_tile_decoding_mode(cm);
        decoded_payload_size =
            read_and_decode_one_tile_list(pbi, &rb, data, data + payload_size,
                                          p_data_end, &frame_decoding_finished);
        if (cm->error.error_code != AOM_CODEC_OK) return -1;
        break;
      case OBU_PADDING:
      default:
        // Skip unrecognized OBUs
        decoded_payload_size = payload_size;
        break;
    }

    // Check that the signalled OBU size matches the actual amount of data read
    if (decoded_payload_size > payload_size) {
      cm->error.error_code = AOM_CODEC_CORRUPT_FRAME;
      return -1;
    }

    // If there are extra padding bytes, they should all be zero
    while (decoded_payload_size < payload_size) {
      uint8_t padding_byte = data[decoded_payload_size++];
      if (padding_byte != 0) {
        cm->error.error_code = AOM_CODEC_CORRUPT_FRAME;
        return -1;
      }
    }

    data += payload_size;
  }

  return frame_decoding_finished;
}