summaryrefslogtreecommitdiff
path: root/media/libaom/src/av1/decoder/decodeframe.c
blob: 7abfac4aaae8e38bc5699b4bd1344fb4c18c98ca (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
/*
 * Copyright (c) 2016, Alliance for Open Media. All rights reserved
 *
 * This source code is subject to the terms of the BSD 2 Clause License and
 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
 * was not distributed with this source code in the LICENSE file, you can
 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
 * Media Patent License 1.0 was not distributed with this source code in the
 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
 */

#include <assert.h>
#include <stddef.h>

#include "config/aom_config.h"
#include "config/aom_dsp_rtcd.h"
#include "config/aom_scale_rtcd.h"
#include "config/av1_rtcd.h"

#include "aom/aom_codec.h"
#include "aom_dsp/aom_dsp_common.h"
#include "aom_dsp/binary_codes_reader.h"
#include "aom_dsp/bitreader.h"
#include "aom_dsp/bitreader_buffer.h"
#include "aom_mem/aom_mem.h"
#include "aom_ports/aom_timer.h"
#include "aom_ports/mem.h"
#include "aom_ports/mem_ops.h"
#include "aom_scale/aom_scale.h"
#include "aom_util/aom_thread.h"

#if CONFIG_BITSTREAM_DEBUG || CONFIG_MISMATCH_DEBUG
#include "aom_util/debug_util.h"
#endif  // CONFIG_BITSTREAM_DEBUG || CONFIG_MISMATCH_DEBUG

#include "av1/common/alloccommon.h"
#include "av1/common/cdef.h"
#include "av1/common/cfl.h"
#if CONFIG_INSPECTION
#include "av1/decoder/inspection.h"
#endif
#include "av1/common/common.h"
#include "av1/common/entropy.h"
#include "av1/common/entropymode.h"
#include "av1/common/entropymv.h"
#include "av1/common/frame_buffers.h"
#include "av1/common/idct.h"
#include "av1/common/mvref_common.h"
#include "av1/common/pred_common.h"
#include "av1/common/quant_common.h"
#include "av1/common/reconinter.h"
#include "av1/common/reconintra.h"
#include "av1/common/resize.h"
#include "av1/common/seg_common.h"
#include "av1/common/thread_common.h"
#include "av1/common/tile_common.h"
#include "av1/common/warped_motion.h"
#include "av1/common/obmc.h"
#include "av1/decoder/decodeframe.h"
#include "av1/decoder/decodemv.h"
#include "av1/decoder/decoder.h"
#include "av1/decoder/decodetxb.h"
#include "av1/decoder/detokenize.h"

#define ACCT_STR __func__

#define AOM_MIN_THREADS_PER_TILE 1
#define AOM_MAX_THREADS_PER_TILE 2

// This is needed by ext_tile related unit tests.
#define EXT_TILE_DEBUG 1
#define MC_TEMP_BUF_PELS                       \
  (((MAX_SB_SIZE)*2 + (AOM_INTERP_EXTEND)*2) * \
   ((MAX_SB_SIZE)*2 + (AOM_INTERP_EXTEND)*2))

// Checks that the remaining bits start with a 1 and ends with 0s.
// It consumes an additional byte, if already byte aligned before the check.
int av1_check_trailing_bits(AV1Decoder *pbi, struct aom_read_bit_buffer *rb) {
  AV1_COMMON *const cm = &pbi->common;
  // bit_offset is set to 0 (mod 8) when the reader is already byte aligned
  int bits_before_alignment = 8 - rb->bit_offset % 8;
  int trailing = aom_rb_read_literal(rb, bits_before_alignment);
  if (trailing != (1 << (bits_before_alignment - 1))) {
    cm->error.error_code = AOM_CODEC_CORRUPT_FRAME;
    return -1;
  }
  return 0;
}

// Use only_chroma = 1 to only set the chroma planes
static AOM_INLINE void set_planes_to_neutral_grey(
    const SequenceHeader *const seq_params, const YV12_BUFFER_CONFIG *const buf,
    int only_chroma) {
  if (seq_params->use_highbitdepth) {
    const int val = 1 << (seq_params->bit_depth - 1);
    for (int plane = only_chroma; plane < MAX_MB_PLANE; plane++) {
      const int is_uv = plane > 0;
      uint16_t *const base = CONVERT_TO_SHORTPTR(buf->buffers[plane]);
      // Set the first row to neutral grey. Then copy the first row to all
      // subsequent rows.
      if (buf->crop_heights[is_uv] > 0) {
        aom_memset16(base, val, buf->crop_widths[is_uv]);
        for (int row_idx = 1; row_idx < buf->crop_heights[is_uv]; row_idx++) {
          memcpy(&base[row_idx * buf->strides[is_uv]], base,
                 sizeof(*base) * buf->crop_widths[is_uv]);
        }
      }
    }
  } else {
    for (int plane = only_chroma; plane < MAX_MB_PLANE; plane++) {
      const int is_uv = plane > 0;
      for (int row_idx = 0; row_idx < buf->crop_heights[is_uv]; row_idx++) {
        memset(&buf->buffers[plane][row_idx * buf->uv_stride], 1 << 7,
               buf->crop_widths[is_uv]);
      }
    }
  }
}

static AOM_INLINE void loop_restoration_read_sb_coeffs(
    const AV1_COMMON *const cm, MACROBLOCKD *xd, aom_reader *const r, int plane,
    int runit_idx);

static int read_is_valid(const uint8_t *start, size_t len, const uint8_t *end) {
  return len != 0 && len <= (size_t)(end - start);
}

static TX_MODE read_tx_mode(struct aom_read_bit_buffer *rb,
                            int coded_lossless) {
  if (coded_lossless) return ONLY_4X4;
  return aom_rb_read_bit(rb) ? TX_MODE_SELECT : TX_MODE_LARGEST;
}

static REFERENCE_MODE read_frame_reference_mode(
    const AV1_COMMON *cm, struct aom_read_bit_buffer *rb) {
  if (frame_is_intra_only(cm)) {
    return SINGLE_REFERENCE;
  } else {
    return aom_rb_read_bit(rb) ? REFERENCE_MODE_SELECT : SINGLE_REFERENCE;
  }
}

static AOM_INLINE void inverse_transform_block(MACROBLOCKD *xd, int plane,
                                               const TX_TYPE tx_type,
                                               const TX_SIZE tx_size,
                                               uint8_t *dst, int stride,
                                               int reduced_tx_set) {
  struct macroblockd_plane *const pd = &xd->plane[plane];
  tran_low_t *const dqcoeff = pd->dqcoeff_block + xd->cb_offset[plane];
  eob_info *eob_data = pd->eob_data + xd->txb_offset[plane];
  uint16_t scan_line = eob_data->max_scan_line;
  uint16_t eob = eob_data->eob;
  av1_inverse_transform_block(xd, dqcoeff, plane, tx_type, tx_size, dst, stride,
                              eob, reduced_tx_set);
  memset(dqcoeff, 0, (scan_line + 1) * sizeof(dqcoeff[0]));
}

static AOM_INLINE void read_coeffs_tx_intra_block(
    const AV1_COMMON *const cm, MACROBLOCKD *const xd, aom_reader *const r,
    const int plane, const int row, const int col, const TX_SIZE tx_size) {
  MB_MODE_INFO *mbmi = xd->mi[0];
  if (!mbmi->skip) {
#if TXCOEFF_TIMER
    struct aom_usec_timer timer;
    aom_usec_timer_start(&timer);
#endif
    av1_read_coeffs_txb_facade(cm, xd, r, plane, row, col, tx_size);
#if TXCOEFF_TIMER
    aom_usec_timer_mark(&timer);
    const int64_t elapsed_time = aom_usec_timer_elapsed(&timer);
    cm->txcoeff_timer += elapsed_time;
    ++cm->txb_count;
#endif
  }
}

static AOM_INLINE void decode_block_void(const AV1_COMMON *const cm,
                                         MACROBLOCKD *const xd,
                                         aom_reader *const r, const int plane,
                                         const int row, const int col,
                                         const TX_SIZE tx_size) {
  (void)cm;
  (void)xd;
  (void)r;
  (void)plane;
  (void)row;
  (void)col;
  (void)tx_size;
}

static AOM_INLINE void predict_inter_block_void(AV1_COMMON *const cm,
                                                MACROBLOCKD *const xd,
                                                BLOCK_SIZE bsize) {
  (void)cm;
  (void)xd;
  (void)bsize;
}

static AOM_INLINE void cfl_store_inter_block_void(AV1_COMMON *const cm,
                                                  MACROBLOCKD *const xd) {
  (void)cm;
  (void)xd;
}

static AOM_INLINE void predict_and_reconstruct_intra_block(
    const AV1_COMMON *const cm, MACROBLOCKD *const xd, aom_reader *const r,
    const int plane, const int row, const int col, const TX_SIZE tx_size) {
  (void)r;
  MB_MODE_INFO *mbmi = xd->mi[0];
  PLANE_TYPE plane_type = get_plane_type(plane);

  av1_predict_intra_block_facade(cm, xd, plane, col, row, tx_size);

  if (!mbmi->skip) {
    struct macroblockd_plane *const pd = &xd->plane[plane];
    eob_info *eob_data = pd->eob_data + xd->txb_offset[plane];
    if (eob_data->eob) {
      const bool reduced_tx_set_used = cm->features.reduced_tx_set_used;
      // tx_type was read out in av1_read_coeffs_txb.
      const TX_TYPE tx_type = av1_get_tx_type(xd, plane_type, row, col, tx_size,
                                              reduced_tx_set_used);
      uint8_t *dst = &pd->dst.buf[(row * pd->dst.stride + col) << MI_SIZE_LOG2];
      inverse_transform_block(xd, plane, tx_type, tx_size, dst, pd->dst.stride,
                              reduced_tx_set_used);
    }
  }
  if (plane == AOM_PLANE_Y && store_cfl_required(cm, xd)) {
    cfl_store_tx(xd, row, col, tx_size, mbmi->sb_type);
  }
}

static AOM_INLINE void inverse_transform_inter_block(
    const AV1_COMMON *const cm, MACROBLOCKD *const xd, aom_reader *const r,
    const int plane, const int blk_row, const int blk_col,
    const TX_SIZE tx_size) {
  (void)r;
  PLANE_TYPE plane_type = get_plane_type(plane);
  const struct macroblockd_plane *const pd = &xd->plane[plane];
  const bool reduced_tx_set_used = cm->features.reduced_tx_set_used;
  // tx_type was read out in av1_read_coeffs_txb.
  const TX_TYPE tx_type = av1_get_tx_type(xd, plane_type, blk_row, blk_col,
                                          tx_size, reduced_tx_set_used);

  uint8_t *dst =
      &pd->dst.buf[(blk_row * pd->dst.stride + blk_col) << MI_SIZE_LOG2];
  inverse_transform_block(xd, plane, tx_type, tx_size, dst, pd->dst.stride,
                          reduced_tx_set_used);
#if CONFIG_MISMATCH_DEBUG
  int pixel_c, pixel_r;
  BLOCK_SIZE bsize = txsize_to_bsize[tx_size];
  int blk_w = block_size_wide[bsize];
  int blk_h = block_size_high[bsize];
  const int mi_row = -xd->mb_to_top_edge >> (3 + MI_SIZE_LOG2);
  const int mi_col = -xd->mb_to_left_edge >> (3 + MI_SIZE_LOG2);
  mi_to_pixel_loc(&pixel_c, &pixel_r, mi_col, mi_row, blk_col, blk_row,
                  pd->subsampling_x, pd->subsampling_y);
  mismatch_check_block_tx(dst, pd->dst.stride, cm->current_frame.order_hint,
                          plane, pixel_c, pixel_r, blk_w, blk_h,
                          xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH);
#endif
}

static AOM_INLINE void set_cb_buffer_offsets(MACROBLOCKD *const xd,
                                             TX_SIZE tx_size, int plane) {
  xd->cb_offset[plane] += tx_size_wide[tx_size] * tx_size_high[tx_size];
  xd->txb_offset[plane] =
      xd->cb_offset[plane] / (TX_SIZE_W_MIN * TX_SIZE_H_MIN);
}

static AOM_INLINE void decode_reconstruct_tx(
    AV1_COMMON *cm, ThreadData *const td, aom_reader *r,
    MB_MODE_INFO *const mbmi, int plane, BLOCK_SIZE plane_bsize, int blk_row,
    int blk_col, int block, TX_SIZE tx_size, int *eob_total) {
  MACROBLOCKD *const xd = &td->xd;
  const struct macroblockd_plane *const pd = &xd->plane[plane];
  const TX_SIZE plane_tx_size =
      plane ? av1_get_max_uv_txsize(mbmi->sb_type, pd->subsampling_x,
                                    pd->subsampling_y)
            : mbmi->inter_tx_size[av1_get_txb_size_index(plane_bsize, blk_row,
                                                         blk_col)];
  // Scale to match transform block unit.
  const int max_blocks_high = max_block_high(xd, plane_bsize, plane);
  const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane);

  if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return;

  if (tx_size == plane_tx_size || plane) {
    td->read_coeffs_tx_inter_block_visit(cm, xd, r, plane, blk_row, blk_col,
                                         tx_size);

    td->inverse_tx_inter_block_visit(cm, xd, r, plane, blk_row, blk_col,
                                     tx_size);
    eob_info *eob_data = pd->eob_data + xd->txb_offset[plane];
    *eob_total += eob_data->eob;
    set_cb_buffer_offsets(xd, tx_size, plane);
  } else {
    const TX_SIZE sub_txs = sub_tx_size_map[tx_size];
    assert(IMPLIES(tx_size <= TX_4X4, sub_txs == tx_size));
    assert(IMPLIES(tx_size > TX_4X4, sub_txs < tx_size));
    const int bsw = tx_size_wide_unit[sub_txs];
    const int bsh = tx_size_high_unit[sub_txs];
    const int sub_step = bsw * bsh;

    assert(bsw > 0 && bsh > 0);

    for (int row = 0; row < tx_size_high_unit[tx_size]; row += bsh) {
      for (int col = 0; col < tx_size_wide_unit[tx_size]; col += bsw) {
        const int offsetr = blk_row + row;
        const int offsetc = blk_col + col;

        if (offsetr >= max_blocks_high || offsetc >= max_blocks_wide) continue;

        decode_reconstruct_tx(cm, td, r, mbmi, plane, plane_bsize, offsetr,
                              offsetc, block, sub_txs, eob_total);
        block += sub_step;
      }
    }
  }
}

static AOM_INLINE void set_offsets(AV1_COMMON *const cm, MACROBLOCKD *const xd,
                                   BLOCK_SIZE bsize, int mi_row, int mi_col,
                                   int bw, int bh, int x_mis, int y_mis) {
  const int num_planes = av1_num_planes(cm);
  const CommonModeInfoParams *const mi_params = &cm->mi_params;
  const TileInfo *const tile = &xd->tile;

  set_mi_offsets(mi_params, xd, mi_row, mi_col);
  xd->mi[0]->sb_type = bsize;
#if CONFIG_RD_DEBUG
  xd->mi[0]->mi_row = mi_row;
  xd->mi[0]->mi_col = mi_col;
#endif

  assert(x_mis && y_mis);
  for (int x = 1; x < x_mis; ++x) xd->mi[x] = xd->mi[0];
  int idx = mi_params->mi_stride;
  for (int y = 1; y < y_mis; ++y) {
    memcpy(&xd->mi[idx], &xd->mi[0], x_mis * sizeof(xd->mi[0]));
    idx += mi_params->mi_stride;
  }

  set_plane_n4(xd, bw, bh, num_planes);
  set_entropy_context(xd, mi_row, mi_col, num_planes);

  // Distance of Mb to the various image edges. These are specified to 8th pel
  // as they are always compared to values that are in 1/8th pel units
  set_mi_row_col(xd, tile, mi_row, bh, mi_col, bw, mi_params->mi_rows,
                 mi_params->mi_cols);

  av1_setup_dst_planes(xd->plane, bsize, &cm->cur_frame->buf, mi_row, mi_col, 0,
                       num_planes);
}

static AOM_INLINE void decode_mbmi_block(AV1Decoder *const pbi,
                                         MACROBLOCKD *const xd, int mi_row,
                                         int mi_col, aom_reader *r,
                                         PARTITION_TYPE partition,
                                         BLOCK_SIZE bsize) {
  AV1_COMMON *const cm = &pbi->common;
  const SequenceHeader *const seq_params = &cm->seq_params;
  const int bw = mi_size_wide[bsize];
  const int bh = mi_size_high[bsize];
  const int x_mis = AOMMIN(bw, cm->mi_params.mi_cols - mi_col);
  const int y_mis = AOMMIN(bh, cm->mi_params.mi_rows - mi_row);

#if CONFIG_ACCOUNTING
  aom_accounting_set_context(&pbi->accounting, mi_col, mi_row);
#endif
  set_offsets(cm, xd, bsize, mi_row, mi_col, bw, bh, x_mis, y_mis);
  xd->mi[0]->partition = partition;
  av1_read_mode_info(pbi, xd, r, x_mis, y_mis);
  if (bsize >= BLOCK_8X8 &&
      (seq_params->subsampling_x || seq_params->subsampling_y)) {
    const BLOCK_SIZE uv_subsize =
        ss_size_lookup[bsize][seq_params->subsampling_x]
                      [seq_params->subsampling_y];
    if (uv_subsize == BLOCK_INVALID)
      aom_internal_error(xd->error_info, AOM_CODEC_CORRUPT_FRAME,
                         "Invalid block size.");
  }
}

typedef struct PadBlock {
  int x0;
  int x1;
  int y0;
  int y1;
} PadBlock;

#if CONFIG_AV1_HIGHBITDEPTH
static AOM_INLINE void highbd_build_mc_border(const uint8_t *src8,
                                              int src_stride, uint8_t *dst8,
                                              int dst_stride, int x, int y,
                                              int b_w, int b_h, int w, int h) {
  // Get a pointer to the start of the real data for this row.
  const uint16_t *src = CONVERT_TO_SHORTPTR(src8);
  uint16_t *dst = CONVERT_TO_SHORTPTR(dst8);
  const uint16_t *ref_row = src - x - y * src_stride;

  if (y >= h)
    ref_row += (h - 1) * src_stride;
  else if (y > 0)
    ref_row += y * src_stride;

  do {
    int right = 0, copy;
    int left = x < 0 ? -x : 0;

    if (left > b_w) left = b_w;

    if (x + b_w > w) right = x + b_w - w;

    if (right > b_w) right = b_w;

    copy = b_w - left - right;

    if (left) aom_memset16(dst, ref_row[0], left);

    if (copy) memcpy(dst + left, ref_row + x + left, copy * sizeof(uint16_t));

    if (right) aom_memset16(dst + left + copy, ref_row[w - 1], right);

    dst += dst_stride;
    ++y;

    if (y > 0 && y < h) ref_row += src_stride;
  } while (--b_h);
}
#endif  // CONFIG_AV1_HIGHBITDEPTH

static AOM_INLINE void build_mc_border(const uint8_t *src, int src_stride,
                                       uint8_t *dst, int dst_stride, int x,
                                       int y, int b_w, int b_h, int w, int h) {
  // Get a pointer to the start of the real data for this row.
  const uint8_t *ref_row = src - x - y * src_stride;

  if (y >= h)
    ref_row += (h - 1) * src_stride;
  else if (y > 0)
    ref_row += y * src_stride;

  do {
    int right = 0, copy;
    int left = x < 0 ? -x : 0;

    if (left > b_w) left = b_w;

    if (x + b_w > w) right = x + b_w - w;

    if (right > b_w) right = b_w;

    copy = b_w - left - right;

    if (left) memset(dst, ref_row[0], left);

    if (copy) memcpy(dst + left, ref_row + x + left, copy);

    if (right) memset(dst + left + copy, ref_row[w - 1], right);

    dst += dst_stride;
    ++y;

    if (y > 0 && y < h) ref_row += src_stride;
  } while (--b_h);
}

static INLINE int update_extend_mc_border_params(
    const struct scale_factors *const sf, struct buf_2d *const pre_buf,
    MV32 scaled_mv, PadBlock *block, int subpel_x_mv, int subpel_y_mv,
    int do_warp, int is_intrabc, int *x_pad, int *y_pad) {
  const int is_scaled = av1_is_scaled(sf);
  // Get reference width and height.
  int frame_width = pre_buf->width;
  int frame_height = pre_buf->height;

  // Do border extension if there is motion or
  // width/height is not a multiple of 8 pixels.
  if ((!is_intrabc) && (!do_warp) &&
      (is_scaled || scaled_mv.col || scaled_mv.row || (frame_width & 0x7) ||
       (frame_height & 0x7))) {
    if (subpel_x_mv || (sf->x_step_q4 != SUBPEL_SHIFTS)) {
      block->x0 -= AOM_INTERP_EXTEND - 1;
      block->x1 += AOM_INTERP_EXTEND;
      *x_pad = 1;
    }

    if (subpel_y_mv || (sf->y_step_q4 != SUBPEL_SHIFTS)) {
      block->y0 -= AOM_INTERP_EXTEND - 1;
      block->y1 += AOM_INTERP_EXTEND;
      *y_pad = 1;
    }

    // Skip border extension if block is inside the frame.
    if (block->x0 < 0 || block->x1 > frame_width - 1 || block->y0 < 0 ||
        block->y1 > frame_height - 1) {
      return 1;
    }
  }
  return 0;
}

static INLINE void extend_mc_border(const struct scale_factors *const sf,
                                    struct buf_2d *const pre_buf,
                                    MV32 scaled_mv, PadBlock block,
                                    int subpel_x_mv, int subpel_y_mv,
                                    int do_warp, int is_intrabc, int highbd,
                                    uint8_t *mc_buf, uint8_t **pre,
                                    int *src_stride) {
  int x_pad = 0, y_pad = 0;
  if (update_extend_mc_border_params(sf, pre_buf, scaled_mv, &block,
                                     subpel_x_mv, subpel_y_mv, do_warp,
                                     is_intrabc, &x_pad, &y_pad)) {
    // Get reference block pointer.
    const uint8_t *const buf_ptr =
        pre_buf->buf0 + block.y0 * pre_buf->stride + block.x0;
    int buf_stride = pre_buf->stride;
    const int b_w = block.x1 - block.x0;
    const int b_h = block.y1 - block.y0;

#if CONFIG_AV1_HIGHBITDEPTH
    // Extend the border.
    if (highbd) {
      highbd_build_mc_border(buf_ptr, buf_stride, mc_buf, b_w, block.x0,
                             block.y0, b_w, b_h, pre_buf->width,
                             pre_buf->height);
    } else {
      build_mc_border(buf_ptr, buf_stride, mc_buf, b_w, block.x0, block.y0, b_w,
                      b_h, pre_buf->width, pre_buf->height);
    }
#else
    (void)highbd;
    build_mc_border(buf_ptr, buf_stride, mc_buf, b_w, block.x0, block.y0, b_w,
                    b_h, pre_buf->width, pre_buf->height);
#endif
    *src_stride = b_w;
    *pre = mc_buf + y_pad * (AOM_INTERP_EXTEND - 1) * b_w +
           x_pad * (AOM_INTERP_EXTEND - 1);
  }
}

static void dec_calc_subpel_params(const MV *const src_mv,
                                   InterPredParams *const inter_pred_params,
                                   const MACROBLOCKD *const xd, int mi_x,
                                   int mi_y, uint8_t **pre,
                                   SubpelParams *subpel_params, int *src_stride,
                                   PadBlock *block, MV32 *scaled_mv,
                                   int *subpel_x_mv, int *subpel_y_mv) {
  const struct scale_factors *sf = inter_pred_params->scale_factors;
  struct buf_2d *pre_buf = &inter_pred_params->ref_frame_buf;
  const int bw = inter_pred_params->block_width;
  const int bh = inter_pred_params->block_height;
  const int is_scaled = av1_is_scaled(sf);
  if (is_scaled) {
    int ssx = inter_pred_params->subsampling_x;
    int ssy = inter_pred_params->subsampling_y;
    int orig_pos_y = inter_pred_params->pix_row << SUBPEL_BITS;
    orig_pos_y += src_mv->row * (1 << (1 - ssy));
    int orig_pos_x = inter_pred_params->pix_col << SUBPEL_BITS;
    orig_pos_x += src_mv->col * (1 << (1 - ssx));
    int pos_y = sf->scale_value_y(orig_pos_y, sf);
    int pos_x = sf->scale_value_x(orig_pos_x, sf);
    pos_x += SCALE_EXTRA_OFF;
    pos_y += SCALE_EXTRA_OFF;

    const int top = -AOM_LEFT_TOP_MARGIN_SCALED(ssy);
    const int left = -AOM_LEFT_TOP_MARGIN_SCALED(ssx);
    const int bottom = (pre_buf->height + AOM_INTERP_EXTEND)
                       << SCALE_SUBPEL_BITS;
    const int right = (pre_buf->width + AOM_INTERP_EXTEND) << SCALE_SUBPEL_BITS;
    pos_y = clamp(pos_y, top, bottom);
    pos_x = clamp(pos_x, left, right);

    subpel_params->subpel_x = pos_x & SCALE_SUBPEL_MASK;
    subpel_params->subpel_y = pos_y & SCALE_SUBPEL_MASK;
    subpel_params->xs = sf->x_step_q4;
    subpel_params->ys = sf->y_step_q4;

    // Get reference block top left coordinate.
    block->x0 = pos_x >> SCALE_SUBPEL_BITS;
    block->y0 = pos_y >> SCALE_SUBPEL_BITS;

    // Get reference block bottom right coordinate.
    block->x1 =
        ((pos_x + (bw - 1) * subpel_params->xs) >> SCALE_SUBPEL_BITS) + 1;
    block->y1 =
        ((pos_y + (bh - 1) * subpel_params->ys) >> SCALE_SUBPEL_BITS) + 1;

    MV temp_mv;
    temp_mv = clamp_mv_to_umv_border_sb(xd, src_mv, bw, bh,
                                        inter_pred_params->subsampling_x,
                                        inter_pred_params->subsampling_y);
    *scaled_mv = av1_scale_mv(&temp_mv, mi_x, mi_y, sf);
    scaled_mv->row += SCALE_EXTRA_OFF;
    scaled_mv->col += SCALE_EXTRA_OFF;

    *subpel_x_mv = scaled_mv->col & SCALE_SUBPEL_MASK;
    *subpel_y_mv = scaled_mv->row & SCALE_SUBPEL_MASK;
  } else {
    // Get block position in current frame.
    int pos_x = inter_pred_params->pix_col << SUBPEL_BITS;
    int pos_y = inter_pred_params->pix_row << SUBPEL_BITS;

    const MV mv_q4 = clamp_mv_to_umv_border_sb(
        xd, src_mv, bw, bh, inter_pred_params->subsampling_x,
        inter_pred_params->subsampling_y);
    subpel_params->xs = subpel_params->ys = SCALE_SUBPEL_SHIFTS;
    subpel_params->subpel_x = (mv_q4.col & SUBPEL_MASK) << SCALE_EXTRA_BITS;
    subpel_params->subpel_y = (mv_q4.row & SUBPEL_MASK) << SCALE_EXTRA_BITS;

    // Get reference block top left coordinate.
    pos_x += mv_q4.col;
    pos_y += mv_q4.row;
    block->x0 = pos_x >> SUBPEL_BITS;
    block->y0 = pos_y >> SUBPEL_BITS;

    // Get reference block bottom right coordinate.
    block->x1 = (pos_x >> SUBPEL_BITS) + (bw - 1) + 1;
    block->y1 = (pos_y >> SUBPEL_BITS) + (bh - 1) + 1;

    scaled_mv->row = mv_q4.row;
    scaled_mv->col = mv_q4.col;
    *subpel_x_mv = scaled_mv->col & SUBPEL_MASK;
    *subpel_y_mv = scaled_mv->row & SUBPEL_MASK;
  }
  *pre = pre_buf->buf0 + block->y0 * pre_buf->stride + block->x0;
  *src_stride = pre_buf->stride;
}

static void dec_calc_subpel_params_and_extend(
    const MV *const src_mv, InterPredParams *const inter_pred_params,
    MACROBLOCKD *xd, int mi_x, int mi_y, int ref, uint8_t **pre,
    SubpelParams *subpel_params, int *src_stride) {
  PadBlock block;
  MV32 scaled_mv;
  int subpel_x_mv, subpel_y_mv;
  dec_calc_subpel_params(src_mv, inter_pred_params, xd, mi_x, mi_y, pre,
                         subpel_params, src_stride, &block, &scaled_mv,
                         &subpel_x_mv, &subpel_y_mv);
  extend_mc_border(
      inter_pred_params->scale_factors, &inter_pred_params->ref_frame_buf,
      scaled_mv, block, subpel_x_mv, subpel_y_mv,
      inter_pred_params->mode == WARP_PRED, inter_pred_params->is_intrabc,
      inter_pred_params->use_hbd_buf, xd->mc_buf[ref], pre, src_stride);
}

static void dec_build_inter_predictors(const AV1_COMMON *cm, MACROBLOCKD *xd,
                                       int plane, const MB_MODE_INFO *mi,
                                       int build_for_obmc, int bw, int bh,
                                       int mi_x, int mi_y) {
  av1_build_inter_predictors(cm, xd, plane, mi, build_for_obmc, bw, bh, mi_x,
                             mi_y, dec_calc_subpel_params_and_extend);
}

static AOM_INLINE void dec_build_inter_predictor(const AV1_COMMON *cm,
                                                 MACROBLOCKD *xd, int mi_row,
                                                 int mi_col, BLOCK_SIZE bsize) {
  const int num_planes = av1_num_planes(cm);
  for (int plane = 0; plane < num_planes; ++plane) {
    if (plane && !xd->is_chroma_ref) break;
    const int mi_x = mi_col * MI_SIZE;
    const int mi_y = mi_row * MI_SIZE;
    dec_build_inter_predictors(cm, xd, plane, xd->mi[0], 0,
                               xd->plane[plane].width, xd->plane[plane].height,
                               mi_x, mi_y);
    if (is_interintra_pred(xd->mi[0])) {
      BUFFER_SET ctx = { { xd->plane[0].dst.buf, xd->plane[1].dst.buf,
                           xd->plane[2].dst.buf },
                         { xd->plane[0].dst.stride, xd->plane[1].dst.stride,
                           xd->plane[2].dst.stride } };
      av1_build_interintra_predictor(cm, xd, xd->plane[plane].dst.buf,
                                     xd->plane[plane].dst.stride, &ctx, plane,
                                     bsize);
    }
  }
}

static INLINE void dec_build_prediction_by_above_pred(
    MACROBLOCKD *xd, int rel_mi_row, int rel_mi_col, uint8_t op_mi_size,
    int dir, MB_MODE_INFO *above_mbmi, void *fun_ctxt, const int num_planes) {
  struct build_prediction_ctxt *ctxt = (struct build_prediction_ctxt *)fun_ctxt;
  const int above_mi_col = xd->mi_col + rel_mi_col;
  int mi_x, mi_y;
  MB_MODE_INFO backup_mbmi = *above_mbmi;

  (void)rel_mi_row;
  (void)dir;

  av1_setup_build_prediction_by_above_pred(xd, rel_mi_col, op_mi_size,
                                           &backup_mbmi, ctxt, num_planes);
  mi_x = above_mi_col << MI_SIZE_LOG2;
  mi_y = xd->mi_row << MI_SIZE_LOG2;

  const BLOCK_SIZE bsize = xd->mi[0]->sb_type;

  for (int j = 0; j < num_planes; ++j) {
    const struct macroblockd_plane *pd = &xd->plane[j];
    int bw = (op_mi_size * MI_SIZE) >> pd->subsampling_x;
    int bh = clamp(block_size_high[bsize] >> (pd->subsampling_y + 1), 4,
                   block_size_high[BLOCK_64X64] >> (pd->subsampling_y + 1));

    if (av1_skip_u4x4_pred_in_obmc(bsize, pd, 0)) continue;
    dec_build_inter_predictors(ctxt->cm, xd, j, &backup_mbmi, 1, bw, bh, mi_x,
                               mi_y);
  }
}

static AOM_INLINE void dec_build_prediction_by_above_preds(
    const AV1_COMMON *cm, MACROBLOCKD *xd, uint8_t *tmp_buf[MAX_MB_PLANE],
    int tmp_width[MAX_MB_PLANE], int tmp_height[MAX_MB_PLANE],
    int tmp_stride[MAX_MB_PLANE]) {
  if (!xd->up_available) return;

  // Adjust mb_to_bottom_edge to have the correct value for the OBMC
  // prediction block. This is half the height of the original block,
  // except for 128-wide blocks, where we only use a height of 32.
  const int this_height = xd->height * MI_SIZE;
  const int pred_height = AOMMIN(this_height / 2, 32);
  xd->mb_to_bottom_edge += GET_MV_SUBPEL(this_height - pred_height);
  struct build_prediction_ctxt ctxt = { cm,         tmp_buf,
                                        tmp_width,  tmp_height,
                                        tmp_stride, xd->mb_to_right_edge };
  const BLOCK_SIZE bsize = xd->mi[0]->sb_type;
  foreach_overlappable_nb_above(cm, xd,
                                max_neighbor_obmc[mi_size_wide_log2[bsize]],
                                dec_build_prediction_by_above_pred, &ctxt);

  xd->mb_to_left_edge = -GET_MV_SUBPEL(xd->mi_col * MI_SIZE);
  xd->mb_to_right_edge = ctxt.mb_to_far_edge;
  xd->mb_to_bottom_edge -= GET_MV_SUBPEL(this_height - pred_height);
}

static INLINE void dec_build_prediction_by_left_pred(
    MACROBLOCKD *xd, int rel_mi_row, int rel_mi_col, uint8_t op_mi_size,
    int dir, MB_MODE_INFO *left_mbmi, void *fun_ctxt, const int num_planes) {
  struct build_prediction_ctxt *ctxt = (struct build_prediction_ctxt *)fun_ctxt;
  const int left_mi_row = xd->mi_row + rel_mi_row;
  int mi_x, mi_y;
  MB_MODE_INFO backup_mbmi = *left_mbmi;

  (void)rel_mi_col;
  (void)dir;

  av1_setup_build_prediction_by_left_pred(xd, rel_mi_row, op_mi_size,
                                          &backup_mbmi, ctxt, num_planes);
  mi_x = xd->mi_col << MI_SIZE_LOG2;
  mi_y = left_mi_row << MI_SIZE_LOG2;
  const BLOCK_SIZE bsize = xd->mi[0]->sb_type;

  for (int j = 0; j < num_planes; ++j) {
    const struct macroblockd_plane *pd = &xd->plane[j];
    int bw = clamp(block_size_wide[bsize] >> (pd->subsampling_x + 1), 4,
                   block_size_wide[BLOCK_64X64] >> (pd->subsampling_x + 1));
    int bh = (op_mi_size << MI_SIZE_LOG2) >> pd->subsampling_y;

    if (av1_skip_u4x4_pred_in_obmc(bsize, pd, 1)) continue;
    dec_build_inter_predictors(ctxt->cm, xd, j, &backup_mbmi, 1, bw, bh, mi_x,
                               mi_y);
  }
}

static AOM_INLINE void dec_build_prediction_by_left_preds(
    const AV1_COMMON *cm, MACROBLOCKD *xd, uint8_t *tmp_buf[MAX_MB_PLANE],
    int tmp_width[MAX_MB_PLANE], int tmp_height[MAX_MB_PLANE],
    int tmp_stride[MAX_MB_PLANE]) {
  if (!xd->left_available) return;

  // Adjust mb_to_right_edge to have the correct value for the OBMC
  // prediction block. This is half the width of the original block,
  // except for 128-wide blocks, where we only use a width of 32.
  const int this_width = xd->width * MI_SIZE;
  const int pred_width = AOMMIN(this_width / 2, 32);
  xd->mb_to_right_edge += GET_MV_SUBPEL(this_width - pred_width);

  struct build_prediction_ctxt ctxt = { cm,         tmp_buf,
                                        tmp_width,  tmp_height,
                                        tmp_stride, xd->mb_to_bottom_edge };
  const BLOCK_SIZE bsize = xd->mi[0]->sb_type;
  foreach_overlappable_nb_left(cm, xd,
                               max_neighbor_obmc[mi_size_high_log2[bsize]],
                               dec_build_prediction_by_left_pred, &ctxt);

  xd->mb_to_top_edge = -GET_MV_SUBPEL(xd->mi_row * MI_SIZE);
  xd->mb_to_right_edge -= GET_MV_SUBPEL(this_width - pred_width);
  xd->mb_to_bottom_edge = ctxt.mb_to_far_edge;
}

static void set_dst_buf(MACROBLOCKD *xd, uint8_t **dst_buf1,
                        uint8_t **dst_buf2) {
  dst_buf1[0] = xd->tmp_obmc_bufs[0];
  dst_buf1[1] = xd->tmp_obmc_bufs[0] + MAX_SB_SQUARE;
  dst_buf1[2] = xd->tmp_obmc_bufs[0] + MAX_SB_SQUARE * 2;
  dst_buf2[0] = xd->tmp_obmc_bufs[1];
  dst_buf2[1] = xd->tmp_obmc_bufs[1] + MAX_SB_SQUARE;
  dst_buf2[2] = xd->tmp_obmc_bufs[1] + MAX_SB_SQUARE * 2;
}

#if CONFIG_AV1_HIGHBITDEPTH
static void set_dst_buf_highbd(MACROBLOCKD *xd, uint8_t **dst_buf1,
                               uint8_t **dst_buf2) {
  int len = sizeof(uint16_t);
  dst_buf1[0] = CONVERT_TO_BYTEPTR(xd->tmp_obmc_bufs[0]);
  dst_buf1[1] = CONVERT_TO_BYTEPTR(xd->tmp_obmc_bufs[0] + MAX_SB_SQUARE * len);
  dst_buf1[2] =
      CONVERT_TO_BYTEPTR(xd->tmp_obmc_bufs[0] + MAX_SB_SQUARE * 2 * len);
  dst_buf2[0] = CONVERT_TO_BYTEPTR(xd->tmp_obmc_bufs[1]);
  dst_buf2[1] = CONVERT_TO_BYTEPTR(xd->tmp_obmc_bufs[1] + MAX_SB_SQUARE * len);
  dst_buf2[2] =
      CONVERT_TO_BYTEPTR(xd->tmp_obmc_bufs[1] + MAX_SB_SQUARE * 2 * len);
}
#endif

static AOM_INLINE void dec_build_obmc_inter_predictors_sb(const AV1_COMMON *cm,
                                                          MACROBLOCKD *xd) {
  const int num_planes = av1_num_planes(cm);
  uint8_t *dst_buf1[MAX_MB_PLANE], *dst_buf2[MAX_MB_PLANE];
  int dst_stride1[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE };
  int dst_stride2[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE };
  int dst_width1[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE };
  int dst_width2[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE };
  int dst_height1[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE };
  int dst_height2[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE };

#if CONFIG_AV1_HIGHBITDEPTH
  if (is_cur_buf_hbd(xd)) {
    set_dst_buf_highbd(xd, dst_buf1, dst_buf2);
  } else {
    set_dst_buf(xd, dst_buf1, dst_buf2);
  }
#else
  set_dst_buf(xd, dst_buf1, dst_buf2);
#endif

  dec_build_prediction_by_above_preds(cm, xd, dst_buf1, dst_width1, dst_height1,
                                      dst_stride1);
  dec_build_prediction_by_left_preds(cm, xd, dst_buf2, dst_width2, dst_height2,
                                     dst_stride2);
  const int mi_row = xd->mi_row;
  const int mi_col = xd->mi_col;
  av1_setup_dst_planes(xd->plane, xd->mi[0]->sb_type, &cm->cur_frame->buf,
                       mi_row, mi_col, 0, num_planes);
  av1_build_obmc_inter_prediction(cm, xd, dst_buf1, dst_stride1, dst_buf2,
                                  dst_stride2);
}

static AOM_INLINE void cfl_store_inter_block(AV1_COMMON *const cm,
                                             MACROBLOCKD *const xd) {
  MB_MODE_INFO *mbmi = xd->mi[0];
  if (store_cfl_required(cm, xd)) {
    cfl_store_block(xd, mbmi->sb_type, mbmi->tx_size);
  }
}

static AOM_INLINE void predict_inter_block(AV1_COMMON *const cm,
                                           MACROBLOCKD *const xd,
                                           BLOCK_SIZE bsize) {
  MB_MODE_INFO *mbmi = xd->mi[0];
  const int num_planes = av1_num_planes(cm);
  const int mi_row = xd->mi_row;
  const int mi_col = xd->mi_col;
  for (int ref = 0; ref < 1 + has_second_ref(mbmi); ++ref) {
    const MV_REFERENCE_FRAME frame = mbmi->ref_frame[ref];
    if (frame < LAST_FRAME) {
      assert(is_intrabc_block(mbmi));
      assert(frame == INTRA_FRAME);
      assert(ref == 0);
    } else {
      const RefCntBuffer *ref_buf = get_ref_frame_buf(cm, frame);
      const struct scale_factors *ref_scale_factors =
          get_ref_scale_factors_const(cm, frame);

      xd->block_ref_scale_factors[ref] = ref_scale_factors;
      av1_setup_pre_planes(xd, ref, &ref_buf->buf, mi_row, mi_col,
                           ref_scale_factors, num_planes);
    }
  }

  dec_build_inter_predictor(cm, xd, mi_row, mi_col, bsize);
  if (mbmi->motion_mode == OBMC_CAUSAL) {
    dec_build_obmc_inter_predictors_sb(cm, xd);
  }
#if CONFIG_MISMATCH_DEBUG
  for (int plane = 0; plane < num_planes; ++plane) {
    const struct macroblockd_plane *pd = &xd->plane[plane];
    int pixel_c, pixel_r;
    mi_to_pixel_loc(&pixel_c, &pixel_r, mi_col, mi_row, 0, 0, pd->subsampling_x,
                    pd->subsampling_y);
    if (!is_chroma_reference(mi_row, mi_col, bsize, pd->subsampling_x,
                             pd->subsampling_y))
      continue;
    mismatch_check_block_pre(pd->dst.buf, pd->dst.stride,
                             cm->current_frame.order_hint, plane, pixel_c,
                             pixel_r, pd->width, pd->height,
                             xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH);
  }
#endif
}

static AOM_INLINE void set_color_index_map_offset(MACROBLOCKD *const xd,
                                                  int plane, aom_reader *r) {
  (void)r;
  Av1ColorMapParam params;
  const MB_MODE_INFO *const mbmi = xd->mi[0];
  av1_get_block_dimensions(mbmi->sb_type, plane, xd, &params.plane_width,
                           &params.plane_height, NULL, NULL);
  xd->color_index_map_offset[plane] += params.plane_width * params.plane_height;
}

static AOM_INLINE void decode_token_recon_block(AV1Decoder *const pbi,
                                                ThreadData *const td,
                                                aom_reader *r,
                                                BLOCK_SIZE bsize) {
  AV1_COMMON *const cm = &pbi->common;
  MACROBLOCKD *const xd = &td->xd;
  const int num_planes = av1_num_planes(cm);
  MB_MODE_INFO *mbmi = xd->mi[0];

  if (!is_inter_block(mbmi)) {
    int row, col;
    assert(bsize == get_plane_block_size(bsize, xd->plane[0].subsampling_x,
                                         xd->plane[0].subsampling_y));
    const int max_blocks_wide = max_block_wide(xd, bsize, 0);
    const int max_blocks_high = max_block_high(xd, bsize, 0);
    const BLOCK_SIZE max_unit_bsize = BLOCK_64X64;
    int mu_blocks_wide = mi_size_wide[max_unit_bsize];
    int mu_blocks_high = mi_size_high[max_unit_bsize];
    mu_blocks_wide = AOMMIN(max_blocks_wide, mu_blocks_wide);
    mu_blocks_high = AOMMIN(max_blocks_high, mu_blocks_high);

    for (row = 0; row < max_blocks_high; row += mu_blocks_high) {
      for (col = 0; col < max_blocks_wide; col += mu_blocks_wide) {
        for (int plane = 0; plane < num_planes; ++plane) {
          if (plane && !xd->is_chroma_ref) break;
          const struct macroblockd_plane *const pd = &xd->plane[plane];
          const TX_SIZE tx_size = av1_get_tx_size(plane, xd);
          const int stepr = tx_size_high_unit[tx_size];
          const int stepc = tx_size_wide_unit[tx_size];

          const int unit_height = ROUND_POWER_OF_TWO(
              AOMMIN(mu_blocks_high + row, max_blocks_high), pd->subsampling_y);
          const int unit_width = ROUND_POWER_OF_TWO(
              AOMMIN(mu_blocks_wide + col, max_blocks_wide), pd->subsampling_x);

          for (int blk_row = row >> pd->subsampling_y; blk_row < unit_height;
               blk_row += stepr) {
            for (int blk_col = col >> pd->subsampling_x; blk_col < unit_width;
                 blk_col += stepc) {
              td->read_coeffs_tx_intra_block_visit(cm, xd, r, plane, blk_row,
                                                   blk_col, tx_size);
              td->predict_and_recon_intra_block_visit(cm, xd, r, plane, blk_row,
                                                      blk_col, tx_size);
              set_cb_buffer_offsets(xd, tx_size, plane);
            }
          }
        }
      }
    }
  } else {
    td->predict_inter_block_visit(cm, xd, bsize);
    // Reconstruction
    if (!mbmi->skip) {
      int eobtotal = 0;

      const int max_blocks_wide = max_block_wide(xd, bsize, 0);
      const int max_blocks_high = max_block_high(xd, bsize, 0);
      int row, col;

      const BLOCK_SIZE max_unit_bsize = BLOCK_64X64;
      assert(max_unit_bsize ==
             get_plane_block_size(BLOCK_64X64, xd->plane[0].subsampling_x,
                                  xd->plane[0].subsampling_y));
      int mu_blocks_wide = mi_size_wide[max_unit_bsize];
      int mu_blocks_high = mi_size_high[max_unit_bsize];

      mu_blocks_wide = AOMMIN(max_blocks_wide, mu_blocks_wide);
      mu_blocks_high = AOMMIN(max_blocks_high, mu_blocks_high);

      for (row = 0; row < max_blocks_high; row += mu_blocks_high) {
        for (col = 0; col < max_blocks_wide; col += mu_blocks_wide) {
          for (int plane = 0; plane < num_planes; ++plane) {
            if (plane && !xd->is_chroma_ref) break;
            const struct macroblockd_plane *const pd = &xd->plane[plane];
            const int ss_x = pd->subsampling_x;
            const int ss_y = pd->subsampling_y;
            const BLOCK_SIZE plane_bsize =
                get_plane_block_size(bsize, ss_x, ss_y);
            const TX_SIZE max_tx_size =
                get_vartx_max_txsize(xd, plane_bsize, plane);
            const int bh_var_tx = tx_size_high_unit[max_tx_size];
            const int bw_var_tx = tx_size_wide_unit[max_tx_size];
            int block = 0;
            int step =
                tx_size_wide_unit[max_tx_size] * tx_size_high_unit[max_tx_size];
            int blk_row, blk_col;
            const int unit_height = ROUND_POWER_OF_TWO(
                AOMMIN(mu_blocks_high + row, max_blocks_high), ss_y);
            const int unit_width = ROUND_POWER_OF_TWO(
                AOMMIN(mu_blocks_wide + col, max_blocks_wide), ss_x);

            for (blk_row = row >> ss_y; blk_row < unit_height;
                 blk_row += bh_var_tx) {
              for (blk_col = col >> ss_x; blk_col < unit_width;
                   blk_col += bw_var_tx) {
                decode_reconstruct_tx(cm, td, r, mbmi, plane, plane_bsize,
                                      blk_row, blk_col, block, max_tx_size,
                                      &eobtotal);
                block += step;
              }
            }
          }
        }
      }
    }
    td->cfl_store_inter_block_visit(cm, xd);
  }

  av1_visit_palette(pbi, xd, r, set_color_index_map_offset);
}

static AOM_INLINE void set_inter_tx_size(MB_MODE_INFO *mbmi, int stride_log2,
                                         int tx_w_log2, int tx_h_log2,
                                         int min_txs, int split_size, int txs,
                                         int blk_row, int blk_col) {
  for (int idy = 0; idy < tx_size_high_unit[split_size];
       idy += tx_size_high_unit[min_txs]) {
    for (int idx = 0; idx < tx_size_wide_unit[split_size];
         idx += tx_size_wide_unit[min_txs]) {
      const int index = (((blk_row + idy) >> tx_h_log2) << stride_log2) +
                        ((blk_col + idx) >> tx_w_log2);
      mbmi->inter_tx_size[index] = txs;
    }
  }
}

static AOM_INLINE void read_tx_size_vartx(MACROBLOCKD *xd, MB_MODE_INFO *mbmi,
                                          TX_SIZE tx_size, int depth,
#if CONFIG_LPF_MASK
                                          AV1_COMMON *cm, int mi_row,
                                          int mi_col, int store_bitmask,
#endif
                                          int blk_row, int blk_col,
                                          aom_reader *r) {
  FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
  int is_split = 0;
  const BLOCK_SIZE bsize = mbmi->sb_type;
  const int max_blocks_high = max_block_high(xd, bsize, 0);
  const int max_blocks_wide = max_block_wide(xd, bsize, 0);
  if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return;
  assert(tx_size > TX_4X4);
  TX_SIZE txs = max_txsize_rect_lookup[bsize];
  for (int level = 0; level < MAX_VARTX_DEPTH - 1; ++level)
    txs = sub_tx_size_map[txs];
  const int tx_w_log2 = tx_size_wide_log2[txs] - MI_SIZE_LOG2;
  const int tx_h_log2 = tx_size_high_log2[txs] - MI_SIZE_LOG2;
  const int bw_log2 = mi_size_wide_log2[bsize];
  const int stride_log2 = bw_log2 - tx_w_log2;

  if (depth == MAX_VARTX_DEPTH) {
    set_inter_tx_size(mbmi, stride_log2, tx_w_log2, tx_h_log2, txs, tx_size,
                      tx_size, blk_row, blk_col);
    mbmi->tx_size = tx_size;
    txfm_partition_update(xd->above_txfm_context + blk_col,
                          xd->left_txfm_context + blk_row, tx_size, tx_size);
    return;
  }

  const int ctx = txfm_partition_context(xd->above_txfm_context + blk_col,
                                         xd->left_txfm_context + blk_row,
                                         mbmi->sb_type, tx_size);
  is_split = aom_read_symbol(r, ec_ctx->txfm_partition_cdf[ctx], 2, ACCT_STR);

  if (is_split) {
    const TX_SIZE sub_txs = sub_tx_size_map[tx_size];
    const int bsw = tx_size_wide_unit[sub_txs];
    const int bsh = tx_size_high_unit[sub_txs];

    if (sub_txs == TX_4X4) {
      set_inter_tx_size(mbmi, stride_log2, tx_w_log2, tx_h_log2, txs, tx_size,
                        sub_txs, blk_row, blk_col);
      mbmi->tx_size = sub_txs;
      txfm_partition_update(xd->above_txfm_context + blk_col,
                            xd->left_txfm_context + blk_row, sub_txs, tx_size);
#if CONFIG_LPF_MASK
      if (store_bitmask) {
        av1_store_bitmask_vartx(cm, mi_row + blk_row, mi_col + blk_col,
                                txsize_to_bsize[tx_size], TX_4X4, mbmi);
      }
#endif
      return;
    }
#if CONFIG_LPF_MASK
    if (depth + 1 == MAX_VARTX_DEPTH && store_bitmask) {
      av1_store_bitmask_vartx(cm, mi_row + blk_row, mi_col + blk_col,
                              txsize_to_bsize[tx_size], sub_txs, mbmi);
      store_bitmask = 0;
    }
#endif

    assert(bsw > 0 && bsh > 0);
    for (int row = 0; row < tx_size_high_unit[tx_size]; row += bsh) {
      for (int col = 0; col < tx_size_wide_unit[tx_size]; col += bsw) {
        int offsetr = blk_row + row;
        int offsetc = blk_col + col;
        read_tx_size_vartx(xd, mbmi, sub_txs, depth + 1,
#if CONFIG_LPF_MASK
                           cm, mi_row, mi_col, store_bitmask,
#endif
                           offsetr, offsetc, r);
      }
    }
  } else {
    set_inter_tx_size(mbmi, stride_log2, tx_w_log2, tx_h_log2, txs, tx_size,
                      tx_size, blk_row, blk_col);
    mbmi->tx_size = tx_size;
    txfm_partition_update(xd->above_txfm_context + blk_col,
                          xd->left_txfm_context + blk_row, tx_size, tx_size);
#if CONFIG_LPF_MASK
    if (store_bitmask) {
      av1_store_bitmask_vartx(cm, mi_row + blk_row, mi_col + blk_col,
                              txsize_to_bsize[tx_size], tx_size, mbmi);
    }
#endif
  }
}

static TX_SIZE read_selected_tx_size(const MACROBLOCKD *const xd,
                                     aom_reader *r) {
  // TODO(debargha): Clean up the logic here. This function should only
  // be called for intra.
  const BLOCK_SIZE bsize = xd->mi[0]->sb_type;
  const int32_t tx_size_cat = bsize_to_tx_size_cat(bsize);
  const int max_depths = bsize_to_max_depth(bsize);
  const int ctx = get_tx_size_context(xd);
  FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
  const int depth = aom_read_symbol(r, ec_ctx->tx_size_cdf[tx_size_cat][ctx],
                                    max_depths + 1, ACCT_STR);
  assert(depth >= 0 && depth <= max_depths);
  const TX_SIZE tx_size = depth_to_tx_size(depth, bsize);
  return tx_size;
}

static TX_SIZE read_tx_size(const MACROBLOCKD *const xd, TX_MODE tx_mode,
                            int is_inter, int allow_select_inter,
                            aom_reader *r) {
  const BLOCK_SIZE bsize = xd->mi[0]->sb_type;
  if (xd->lossless[xd->mi[0]->segment_id]) return TX_4X4;

  if (block_signals_txsize(bsize)) {
    if ((!is_inter || allow_select_inter) && tx_mode == TX_MODE_SELECT) {
      const TX_SIZE coded_tx_size = read_selected_tx_size(xd, r);
      return coded_tx_size;
    } else {
      return tx_size_from_tx_mode(bsize, tx_mode);
    }
  } else {
    assert(IMPLIES(tx_mode == ONLY_4X4, bsize == BLOCK_4X4));
    return max_txsize_rect_lookup[bsize];
  }
}

static AOM_INLINE void parse_decode_block(AV1Decoder *const pbi,
                                          ThreadData *const td, int mi_row,
                                          int mi_col, aom_reader *r,
                                          PARTITION_TYPE partition,
                                          BLOCK_SIZE bsize) {
  MACROBLOCKD *const xd = &td->xd;
  decode_mbmi_block(pbi, xd, mi_row, mi_col, r, partition, bsize);

  av1_visit_palette(pbi, xd, r, av1_decode_palette_tokens);

  AV1_COMMON *cm = &pbi->common;
  const int num_planes = av1_num_planes(cm);
  MB_MODE_INFO *mbmi = xd->mi[0];
  int inter_block_tx = is_inter_block(mbmi) || is_intrabc_block(mbmi);
  if (cm->features.tx_mode == TX_MODE_SELECT && block_signals_txsize(bsize) &&
      !mbmi->skip && inter_block_tx && !xd->lossless[mbmi->segment_id]) {
    const TX_SIZE max_tx_size = max_txsize_rect_lookup[bsize];
    const int bh = tx_size_high_unit[max_tx_size];
    const int bw = tx_size_wide_unit[max_tx_size];
    const int width = mi_size_wide[bsize];
    const int height = mi_size_high[bsize];

    for (int idy = 0; idy < height; idy += bh)
      for (int idx = 0; idx < width; idx += bw)
        read_tx_size_vartx(xd, mbmi, max_tx_size, 0,
#if CONFIG_LPF_MASK
                           cm, mi_row, mi_col, 1,
#endif
                           idy, idx, r);
  } else {
    mbmi->tx_size =
        read_tx_size(xd, cm->features.tx_mode, inter_block_tx, !mbmi->skip, r);
    if (inter_block_tx)
      memset(mbmi->inter_tx_size, mbmi->tx_size, sizeof(mbmi->inter_tx_size));
    set_txfm_ctxs(mbmi->tx_size, xd->width, xd->height,
                  mbmi->skip && is_inter_block(mbmi), xd);
#if CONFIG_LPF_MASK
    const int w = mi_size_wide[bsize];
    const int h = mi_size_high[bsize];
    if (w <= mi_size_wide[BLOCK_64X64] && h <= mi_size_high[BLOCK_64X64]) {
      av1_store_bitmask_univariant_tx(cm, mi_row, mi_col, bsize, mbmi);
    } else {
      for (int row = 0; row < h; row += mi_size_high[BLOCK_64X64]) {
        for (int col = 0; col < w; col += mi_size_wide[BLOCK_64X64]) {
          av1_store_bitmask_univariant_tx(cm, mi_row + row, mi_col + col,
                                          BLOCK_64X64, mbmi);
        }
      }
    }
#endif
  }
#if CONFIG_LPF_MASK
  const int w = mi_size_wide[bsize];
  const int h = mi_size_high[bsize];
  if (w <= mi_size_wide[BLOCK_64X64] && h <= mi_size_high[BLOCK_64X64]) {
    av1_store_bitmask_other_info(cm, mi_row, mi_col, bsize, mbmi, 1, 1);
  } else {
    for (int row = 0; row < h; row += mi_size_high[BLOCK_64X64]) {
      for (int col = 0; col < w; col += mi_size_wide[BLOCK_64X64]) {
        av1_store_bitmask_other_info(cm, mi_row + row, mi_col + col,
                                     BLOCK_64X64, mbmi, row == 0, col == 0);
      }
    }
  }
#endif

  if (cm->delta_q_info.delta_q_present_flag) {
    for (int i = 0; i < MAX_SEGMENTS; i++) {
      const int current_qindex =
          av1_get_qindex(&cm->seg, i, xd->current_qindex);
      const CommonQuantParams *const quant_params = &cm->quant_params;
      for (int j = 0; j < num_planes; ++j) {
        const int dc_delta_q = j == 0 ? quant_params->y_dc_delta_q
                                      : (j == 1 ? quant_params->u_dc_delta_q
                                                : quant_params->v_dc_delta_q);
        const int ac_delta_q = j == 0 ? 0
                                      : (j == 1 ? quant_params->u_ac_delta_q
                                                : quant_params->v_ac_delta_q);
        xd->plane[j].seg_dequant_QTX[i][0] = av1_dc_quant_QTX(
            current_qindex, dc_delta_q, cm->seq_params.bit_depth);
        xd->plane[j].seg_dequant_QTX[i][1] = av1_ac_quant_QTX(
            current_qindex, ac_delta_q, cm->seq_params.bit_depth);
      }
    }
  }
  if (mbmi->skip) av1_reset_entropy_context(xd, bsize, num_planes);

  decode_token_recon_block(pbi, td, r, bsize);
}

static AOM_INLINE void set_offsets_for_pred_and_recon(AV1Decoder *const pbi,
                                                      ThreadData *const td,
                                                      int mi_row, int mi_col,
                                                      BLOCK_SIZE bsize) {
  AV1_COMMON *const cm = &pbi->common;
  const CommonModeInfoParams *const mi_params = &cm->mi_params;
  MACROBLOCKD *const xd = &td->xd;
  const int bw = mi_size_wide[bsize];
  const int bh = mi_size_high[bsize];
  const int num_planes = av1_num_planes(cm);

  const int offset = mi_row * mi_params->mi_stride + mi_col;
  const TileInfo *const tile = &xd->tile;

  xd->mi = mi_params->mi_grid_base + offset;
  xd->tx_type_map =
      &mi_params->tx_type_map[mi_row * mi_params->mi_stride + mi_col];
  xd->tx_type_map_stride = mi_params->mi_stride;

  set_plane_n4(xd, bw, bh, num_planes);

  // Distance of Mb to the various image edges. These are specified to 8th pel
  // as they are always compared to values that are in 1/8th pel units
  set_mi_row_col(xd, tile, mi_row, bh, mi_col, bw, mi_params->mi_rows,
                 mi_params->mi_cols);

  av1_setup_dst_planes(xd->plane, bsize, &cm->cur_frame->buf, mi_row, mi_col, 0,
                       num_planes);
}

static AOM_INLINE void decode_block(AV1Decoder *const pbi, ThreadData *const td,
                                    int mi_row, int mi_col, aom_reader *r,
                                    PARTITION_TYPE partition,
                                    BLOCK_SIZE bsize) {
  (void)partition;
  set_offsets_for_pred_and_recon(pbi, td, mi_row, mi_col, bsize);
  decode_token_recon_block(pbi, td, r, bsize);
}

static PARTITION_TYPE read_partition(MACROBLOCKD *xd, int mi_row, int mi_col,
                                     aom_reader *r, int has_rows, int has_cols,
                                     BLOCK_SIZE bsize) {
  const int ctx = partition_plane_context(xd, mi_row, mi_col, bsize);
  FRAME_CONTEXT *ec_ctx = xd->tile_ctx;

  if (!has_rows && !has_cols) return PARTITION_SPLIT;

  assert(ctx >= 0);
  aom_cdf_prob *partition_cdf = ec_ctx->partition_cdf[ctx];
  if (has_rows && has_cols) {
    return (PARTITION_TYPE)aom_read_symbol(
        r, partition_cdf, partition_cdf_length(bsize), ACCT_STR);
  } else if (!has_rows && has_cols) {
    assert(bsize > BLOCK_8X8);
    aom_cdf_prob cdf[2];
    partition_gather_vert_alike(cdf, partition_cdf, bsize);
    assert(cdf[1] == AOM_ICDF(CDF_PROB_TOP));
    return aom_read_cdf(r, cdf, 2, ACCT_STR) ? PARTITION_SPLIT : PARTITION_HORZ;
  } else {
    assert(has_rows && !has_cols);
    assert(bsize > BLOCK_8X8);
    aom_cdf_prob cdf[2];
    partition_gather_horz_alike(cdf, partition_cdf, bsize);
    assert(cdf[1] == AOM_ICDF(CDF_PROB_TOP));
    return aom_read_cdf(r, cdf, 2, ACCT_STR) ? PARTITION_SPLIT : PARTITION_VERT;
  }
}

// TODO(slavarnway): eliminate bsize and subsize in future commits
static AOM_INLINE void decode_partition(AV1Decoder *const pbi,
                                        ThreadData *const td, int mi_row,
                                        int mi_col, aom_reader *reader,
                                        BLOCK_SIZE bsize,
                                        int parse_decode_flag) {
  assert(bsize < BLOCK_SIZES_ALL);
  AV1_COMMON *const cm = &pbi->common;
  MACROBLOCKD *const xd = &td->xd;
  const int bw = mi_size_wide[bsize];
  const int hbs = bw >> 1;
  PARTITION_TYPE partition;
  BLOCK_SIZE subsize;
  const int quarter_step = bw / 4;
  BLOCK_SIZE bsize2 = get_partition_subsize(bsize, PARTITION_SPLIT);
  const int has_rows = (mi_row + hbs) < cm->mi_params.mi_rows;
  const int has_cols = (mi_col + hbs) < cm->mi_params.mi_cols;

  if (mi_row >= cm->mi_params.mi_rows || mi_col >= cm->mi_params.mi_cols)
    return;

  // parse_decode_flag takes the following values :
  // 01 - do parse only
  // 10 - do decode only
  // 11 - do parse and decode
  static const block_visitor_fn_t block_visit[4] = { NULL, parse_decode_block,
                                                     decode_block,
                                                     parse_decode_block };

  if (parse_decode_flag & 1) {
    const int num_planes = av1_num_planes(cm);
    for (int plane = 0; plane < num_planes; ++plane) {
      int rcol0, rcol1, rrow0, rrow1;
      if (av1_loop_restoration_corners_in_sb(cm, plane, mi_row, mi_col, bsize,
                                             &rcol0, &rcol1, &rrow0, &rrow1)) {
        const int rstride = cm->rst_info[plane].horz_units_per_tile;
        for (int rrow = rrow0; rrow < rrow1; ++rrow) {
          for (int rcol = rcol0; rcol < rcol1; ++rcol) {
            const int runit_idx = rcol + rrow * rstride;
            loop_restoration_read_sb_coeffs(cm, xd, reader, plane, runit_idx);
          }
        }
      }
    }

    partition = (bsize < BLOCK_8X8) ? PARTITION_NONE
                                    : read_partition(xd, mi_row, mi_col, reader,
                                                     has_rows, has_cols, bsize);
  } else {
    partition = get_partition(cm, mi_row, mi_col, bsize);
  }
  subsize = get_partition_subsize(bsize, partition);
  if (subsize == BLOCK_INVALID) {
    aom_internal_error(xd->error_info, AOM_CODEC_CORRUPT_FRAME,
                       "Partition is invalid for block size %dx%d",
                       block_size_wide[bsize], block_size_high[bsize]);
  }
  // Check the bitstream is conformant: if there is subsampling on the
  // chroma planes, subsize must subsample to a valid block size.
  const struct macroblockd_plane *const pd_u = &xd->plane[1];
  if (get_plane_block_size(subsize, pd_u->subsampling_x, pd_u->subsampling_y) ==
      BLOCK_INVALID) {
    aom_internal_error(xd->error_info, AOM_CODEC_CORRUPT_FRAME,
                       "Block size %dx%d invalid with this subsampling mode",
                       block_size_wide[subsize], block_size_high[subsize]);
  }

#define DEC_BLOCK_STX_ARG
#define DEC_BLOCK_EPT_ARG partition,
#define DEC_BLOCK(db_r, db_c, db_subsize)                                  \
  block_visit[parse_decode_flag](pbi, td, DEC_BLOCK_STX_ARG(db_r), (db_c), \
                                 reader, DEC_BLOCK_EPT_ARG(db_subsize))
#define DEC_PARTITION(db_r, db_c, db_subsize)                        \
  decode_partition(pbi, td, DEC_BLOCK_STX_ARG(db_r), (db_c), reader, \
                   (db_subsize), parse_decode_flag)

  switch (partition) {
    case PARTITION_NONE: DEC_BLOCK(mi_row, mi_col, subsize); break;
    case PARTITION_HORZ:
      DEC_BLOCK(mi_row, mi_col, subsize);
      if (has_rows) DEC_BLOCK(mi_row + hbs, mi_col, subsize);
      break;
    case PARTITION_VERT:
      DEC_BLOCK(mi_row, mi_col, subsize);
      if (has_cols) DEC_BLOCK(mi_row, mi_col + hbs, subsize);
      break;
    case PARTITION_SPLIT:
      DEC_PARTITION(mi_row, mi_col, subsize);
      DEC_PARTITION(mi_row, mi_col + hbs, subsize);
      DEC_PARTITION(mi_row + hbs, mi_col, subsize);
      DEC_PARTITION(mi_row + hbs, mi_col + hbs, subsize);
      break;
    case PARTITION_HORZ_A:
      DEC_BLOCK(mi_row, mi_col, bsize2);
      DEC_BLOCK(mi_row, mi_col + hbs, bsize2);
      DEC_BLOCK(mi_row + hbs, mi_col, subsize);
      break;
    case PARTITION_HORZ_B:
      DEC_BLOCK(mi_row, mi_col, subsize);
      DEC_BLOCK(mi_row + hbs, mi_col, bsize2);
      DEC_BLOCK(mi_row + hbs, mi_col + hbs, bsize2);
      break;
    case PARTITION_VERT_A:
      DEC_BLOCK(mi_row, mi_col, bsize2);
      DEC_BLOCK(mi_row + hbs, mi_col, bsize2);
      DEC_BLOCK(mi_row, mi_col + hbs, subsize);
      break;
    case PARTITION_VERT_B:
      DEC_BLOCK(mi_row, mi_col, subsize);
      DEC_BLOCK(mi_row, mi_col + hbs, bsize2);
      DEC_BLOCK(mi_row + hbs, mi_col + hbs, bsize2);
      break;
    case PARTITION_HORZ_4:
      for (int i = 0; i < 4; ++i) {
        int this_mi_row = mi_row + i * quarter_step;
        if (i > 0 && this_mi_row >= cm->mi_params.mi_rows) break;
        DEC_BLOCK(this_mi_row, mi_col, subsize);
      }
      break;
    case PARTITION_VERT_4:
      for (int i = 0; i < 4; ++i) {
        int this_mi_col = mi_col + i * quarter_step;
        if (i > 0 && this_mi_col >= cm->mi_params.mi_cols) break;
        DEC_BLOCK(mi_row, this_mi_col, subsize);
      }
      break;
    default: assert(0 && "Invalid partition type");
  }

#undef DEC_PARTITION
#undef DEC_BLOCK
#undef DEC_BLOCK_EPT_ARG
#undef DEC_BLOCK_STX_ARG

  if (parse_decode_flag & 1)
    update_ext_partition_context(xd, mi_row, mi_col, subsize, bsize, partition);
}

static AOM_INLINE void setup_bool_decoder(
    const uint8_t *data, const uint8_t *data_end, const size_t read_size,
    struct aom_internal_error_info *error_info, aom_reader *r,
    uint8_t allow_update_cdf) {
  // Validate the calculated partition length. If the buffer
  // described by the partition can't be fully read, then restrict
  // it to the portion that can be (for EC mode) or throw an error.
  if (!read_is_valid(data, read_size, data_end))
    aom_internal_error(error_info, AOM_CODEC_CORRUPT_FRAME,
                       "Truncated packet or corrupt tile length");

  if (aom_reader_init(r, data, read_size))
    aom_internal_error(error_info, AOM_CODEC_MEM_ERROR,
                       "Failed to allocate bool decoder %d", 1);

  r->allow_update_cdf = allow_update_cdf;
}

static AOM_INLINE void setup_segmentation(AV1_COMMON *const cm,
                                          struct aom_read_bit_buffer *rb) {
  struct segmentation *const seg = &cm->seg;

  seg->update_map = 0;
  seg->update_data = 0;
  seg->temporal_update = 0;

  seg->enabled = aom_rb_read_bit(rb);
  if (!seg->enabled) {
    if (cm->cur_frame->seg_map)
      memset(cm->cur_frame->seg_map, 0,
             (cm->mi_params.mi_rows * cm->mi_params.mi_cols));

    memset(seg, 0, sizeof(*seg));
    segfeatures_copy(&cm->cur_frame->seg, seg);
    return;
  }
  if (cm->seg.enabled && cm->prev_frame &&
      (cm->mi_params.mi_rows == cm->prev_frame->mi_rows) &&
      (cm->mi_params.mi_cols == cm->prev_frame->mi_cols)) {
    cm->last_frame_seg_map = cm->prev_frame->seg_map;
  } else {
    cm->last_frame_seg_map = NULL;
  }
  // Read update flags
  if (cm->features.primary_ref_frame == PRIMARY_REF_NONE) {
    // These frames can't use previous frames, so must signal map + features
    seg->update_map = 1;
    seg->temporal_update = 0;
    seg->update_data = 1;
  } else {
    seg->update_map = aom_rb_read_bit(rb);
    if (seg->update_map) {
      seg->temporal_update = aom_rb_read_bit(rb);
    } else {
      seg->temporal_update = 0;
    }
    seg->update_data = aom_rb_read_bit(rb);
  }

  // Segmentation data update
  if (seg->update_data) {
    av1_clearall_segfeatures(seg);

    for (int i = 0; i < MAX_SEGMENTS; i++) {
      for (int j = 0; j < SEG_LVL_MAX; j++) {
        int data = 0;
        const int feature_enabled = aom_rb_read_bit(rb);
        if (feature_enabled) {
          av1_enable_segfeature(seg, i, j);

          const int data_max = av1_seg_feature_data_max(j);
          const int data_min = -data_max;
          const int ubits = get_unsigned_bits(data_max);

          if (av1_is_segfeature_signed(j)) {
            data = aom_rb_read_inv_signed_literal(rb, ubits);
          } else {
            data = aom_rb_read_literal(rb, ubits);
          }

          data = clamp(data, data_min, data_max);
        }
        av1_set_segdata(seg, i, j, data);
      }
    }
    av1_calculate_segdata(seg);
  } else if (cm->prev_frame) {
    segfeatures_copy(seg, &cm->prev_frame->seg);
  }
  segfeatures_copy(&cm->cur_frame->seg, seg);
}

static AOM_INLINE void decode_restoration_mode(AV1_COMMON *cm,
                                               struct aom_read_bit_buffer *rb) {
  assert(!cm->features.all_lossless);
  const int num_planes = av1_num_planes(cm);
  if (cm->features.allow_intrabc) return;
  int all_none = 1, chroma_none = 1;
  for (int p = 0; p < num_planes; ++p) {
    RestorationInfo *rsi = &cm->rst_info[p];
    if (aom_rb_read_bit(rb)) {
      rsi->frame_restoration_type =
          aom_rb_read_bit(rb) ? RESTORE_SGRPROJ : RESTORE_WIENER;
    } else {
      rsi->frame_restoration_type =
          aom_rb_read_bit(rb) ? RESTORE_SWITCHABLE : RESTORE_NONE;
    }
    if (rsi->frame_restoration_type != RESTORE_NONE) {
      all_none = 0;
      chroma_none &= p == 0;
    }
  }
  if (!all_none) {
    assert(cm->seq_params.sb_size == BLOCK_64X64 ||
           cm->seq_params.sb_size == BLOCK_128X128);
    const int sb_size = cm->seq_params.sb_size == BLOCK_128X128 ? 128 : 64;

    for (int p = 0; p < num_planes; ++p)
      cm->rst_info[p].restoration_unit_size = sb_size;

    RestorationInfo *rsi = &cm->rst_info[0];

    if (sb_size == 64) {
      rsi->restoration_unit_size <<= aom_rb_read_bit(rb);
    }
    if (rsi->restoration_unit_size > 64) {
      rsi->restoration_unit_size <<= aom_rb_read_bit(rb);
    }
  } else {
    const int size = RESTORATION_UNITSIZE_MAX;
    for (int p = 0; p < num_planes; ++p)
      cm->rst_info[p].restoration_unit_size = size;
  }

  if (num_planes > 1) {
    int s = AOMMIN(cm->seq_params.subsampling_x, cm->seq_params.subsampling_y);
    if (s && !chroma_none) {
      cm->rst_info[1].restoration_unit_size =
          cm->rst_info[0].restoration_unit_size >> (aom_rb_read_bit(rb) * s);
    } else {
      cm->rst_info[1].restoration_unit_size =
          cm->rst_info[0].restoration_unit_size;
    }
    cm->rst_info[2].restoration_unit_size =
        cm->rst_info[1].restoration_unit_size;
  }
}

static AOM_INLINE void read_wiener_filter(int wiener_win,
                                          WienerInfo *wiener_info,
                                          WienerInfo *ref_wiener_info,
                                          aom_reader *rb) {
  memset(wiener_info->vfilter, 0, sizeof(wiener_info->vfilter));
  memset(wiener_info->hfilter, 0, sizeof(wiener_info->hfilter));

  if (wiener_win == WIENER_WIN)
    wiener_info->vfilter[0] = wiener_info->vfilter[WIENER_WIN - 1] =
        aom_read_primitive_refsubexpfin(
            rb, WIENER_FILT_TAP0_MAXV - WIENER_FILT_TAP0_MINV + 1,
            WIENER_FILT_TAP0_SUBEXP_K,
            ref_wiener_info->vfilter[0] - WIENER_FILT_TAP0_MINV, ACCT_STR) +
        WIENER_FILT_TAP0_MINV;
  else
    wiener_info->vfilter[0] = wiener_info->vfilter[WIENER_WIN - 1] = 0;
  wiener_info->vfilter[1] = wiener_info->vfilter[WIENER_WIN - 2] =
      aom_read_primitive_refsubexpfin(
          rb, WIENER_FILT_TAP1_MAXV - WIENER_FILT_TAP1_MINV + 1,
          WIENER_FILT_TAP1_SUBEXP_K,
          ref_wiener_info->vfilter[1] - WIENER_FILT_TAP1_MINV, ACCT_STR) +
      WIENER_FILT_TAP1_MINV;
  wiener_info->vfilter[2] = wiener_info->vfilter[WIENER_WIN - 3] =
      aom_read_primitive_refsubexpfin(
          rb, WIENER_FILT_TAP2_MAXV - WIENER_FILT_TAP2_MINV + 1,
          WIENER_FILT_TAP2_SUBEXP_K,
          ref_wiener_info->vfilter[2] - WIENER_FILT_TAP2_MINV, ACCT_STR) +
      WIENER_FILT_TAP2_MINV;
  // The central element has an implicit +WIENER_FILT_STEP
  wiener_info->vfilter[WIENER_HALFWIN] =
      -2 * (wiener_info->vfilter[0] + wiener_info->vfilter[1] +
            wiener_info->vfilter[2]);

  if (wiener_win == WIENER_WIN)
    wiener_info->hfilter[0] = wiener_info->hfilter[WIENER_WIN - 1] =
        aom_read_primitive_refsubexpfin(
            rb, WIENER_FILT_TAP0_MAXV - WIENER_FILT_TAP0_MINV + 1,
            WIENER_FILT_TAP0_SUBEXP_K,
            ref_wiener_info->hfilter[0] - WIENER_FILT_TAP0_MINV, ACCT_STR) +
        WIENER_FILT_TAP0_MINV;
  else
    wiener_info->hfilter[0] = wiener_info->hfilter[WIENER_WIN - 1] = 0;
  wiener_info->hfilter[1] = wiener_info->hfilter[WIENER_WIN - 2] =
      aom_read_primitive_refsubexpfin(
          rb, WIENER_FILT_TAP1_MAXV - WIENER_FILT_TAP1_MINV + 1,
          WIENER_FILT_TAP1_SUBEXP_K,
          ref_wiener_info->hfilter[1] - WIENER_FILT_TAP1_MINV, ACCT_STR) +
      WIENER_FILT_TAP1_MINV;
  wiener_info->hfilter[2] = wiener_info->hfilter[WIENER_WIN - 3] =
      aom_read_primitive_refsubexpfin(
          rb, WIENER_FILT_TAP2_MAXV - WIENER_FILT_TAP2_MINV + 1,
          WIENER_FILT_TAP2_SUBEXP_K,
          ref_wiener_info->hfilter[2] - WIENER_FILT_TAP2_MINV, ACCT_STR) +
      WIENER_FILT_TAP2_MINV;
  // The central element has an implicit +WIENER_FILT_STEP
  wiener_info->hfilter[WIENER_HALFWIN] =
      -2 * (wiener_info->hfilter[0] + wiener_info->hfilter[1] +
            wiener_info->hfilter[2]);
  memcpy(ref_wiener_info, wiener_info, sizeof(*wiener_info));
}

static AOM_INLINE void read_sgrproj_filter(SgrprojInfo *sgrproj_info,
                                           SgrprojInfo *ref_sgrproj_info,
                                           aom_reader *rb) {
  sgrproj_info->ep = aom_read_literal(rb, SGRPROJ_PARAMS_BITS, ACCT_STR);
  const sgr_params_type *params = &av1_sgr_params[sgrproj_info->ep];

  if (params->r[0] == 0) {
    sgrproj_info->xqd[0] = 0;
    sgrproj_info->xqd[1] =
        aom_read_primitive_refsubexpfin(
            rb, SGRPROJ_PRJ_MAX1 - SGRPROJ_PRJ_MIN1 + 1, SGRPROJ_PRJ_SUBEXP_K,
            ref_sgrproj_info->xqd[1] - SGRPROJ_PRJ_MIN1, ACCT_STR) +
        SGRPROJ_PRJ_MIN1;
  } else if (params->r[1] == 0) {
    sgrproj_info->xqd[0] =
        aom_read_primitive_refsubexpfin(
            rb, SGRPROJ_PRJ_MAX0 - SGRPROJ_PRJ_MIN0 + 1, SGRPROJ_PRJ_SUBEXP_K,
            ref_sgrproj_info->xqd[0] - SGRPROJ_PRJ_MIN0, ACCT_STR) +
        SGRPROJ_PRJ_MIN0;
    sgrproj_info->xqd[1] = clamp((1 << SGRPROJ_PRJ_BITS) - sgrproj_info->xqd[0],
                                 SGRPROJ_PRJ_MIN1, SGRPROJ_PRJ_MAX1);
  } else {
    sgrproj_info->xqd[0] =
        aom_read_primitive_refsubexpfin(
            rb, SGRPROJ_PRJ_MAX0 - SGRPROJ_PRJ_MIN0 + 1, SGRPROJ_PRJ_SUBEXP_K,
            ref_sgrproj_info->xqd[0] - SGRPROJ_PRJ_MIN0, ACCT_STR) +
        SGRPROJ_PRJ_MIN0;
    sgrproj_info->xqd[1] =
        aom_read_primitive_refsubexpfin(
            rb, SGRPROJ_PRJ_MAX1 - SGRPROJ_PRJ_MIN1 + 1, SGRPROJ_PRJ_SUBEXP_K,
            ref_sgrproj_info->xqd[1] - SGRPROJ_PRJ_MIN1, ACCT_STR) +
        SGRPROJ_PRJ_MIN1;
  }

  memcpy(ref_sgrproj_info, sgrproj_info, sizeof(*sgrproj_info));
}

static AOM_INLINE void loop_restoration_read_sb_coeffs(
    const AV1_COMMON *const cm, MACROBLOCKD *xd, aom_reader *const r, int plane,
    int runit_idx) {
  const RestorationInfo *rsi = &cm->rst_info[plane];
  RestorationUnitInfo *rui = &rsi->unit_info[runit_idx];
  if (rsi->frame_restoration_type == RESTORE_NONE) return;

  assert(!cm->features.all_lossless);

  const int wiener_win = (plane > 0) ? WIENER_WIN_CHROMA : WIENER_WIN;
  WienerInfo *wiener_info = xd->wiener_info + plane;
  SgrprojInfo *sgrproj_info = xd->sgrproj_info + plane;

  if (rsi->frame_restoration_type == RESTORE_SWITCHABLE) {
    rui->restoration_type =
        aom_read_symbol(r, xd->tile_ctx->switchable_restore_cdf,
                        RESTORE_SWITCHABLE_TYPES, ACCT_STR);
    switch (rui->restoration_type) {
      case RESTORE_WIENER:
        read_wiener_filter(wiener_win, &rui->wiener_info, wiener_info, r);
        break;
      case RESTORE_SGRPROJ:
        read_sgrproj_filter(&rui->sgrproj_info, sgrproj_info, r);
        break;
      default: assert(rui->restoration_type == RESTORE_NONE); break;
    }
  } else if (rsi->frame_restoration_type == RESTORE_WIENER) {
    if (aom_read_symbol(r, xd->tile_ctx->wiener_restore_cdf, 2, ACCT_STR)) {
      rui->restoration_type = RESTORE_WIENER;
      read_wiener_filter(wiener_win, &rui->wiener_info, wiener_info, r);
    } else {
      rui->restoration_type = RESTORE_NONE;
    }
  } else if (rsi->frame_restoration_type == RESTORE_SGRPROJ) {
    if (aom_read_symbol(r, xd->tile_ctx->sgrproj_restore_cdf, 2, ACCT_STR)) {
      rui->restoration_type = RESTORE_SGRPROJ;
      read_sgrproj_filter(&rui->sgrproj_info, sgrproj_info, r);
    } else {
      rui->restoration_type = RESTORE_NONE;
    }
  }
}

static AOM_INLINE void setup_loopfilter(AV1_COMMON *cm,
                                        struct aom_read_bit_buffer *rb) {
  const int num_planes = av1_num_planes(cm);
  struct loopfilter *lf = &cm->lf;

  if (cm->features.allow_intrabc || cm->features.coded_lossless) {
    // write default deltas to frame buffer
    av1_set_default_ref_deltas(cm->cur_frame->ref_deltas);
    av1_set_default_mode_deltas(cm->cur_frame->mode_deltas);
    return;
  }
  assert(!cm->features.coded_lossless);
  if (cm->prev_frame) {
    // write deltas to frame buffer
    memcpy(lf->ref_deltas, cm->prev_frame->ref_deltas, REF_FRAMES);
    memcpy(lf->mode_deltas, cm->prev_frame->mode_deltas, MAX_MODE_LF_DELTAS);
  } else {
    av1_set_default_ref_deltas(lf->ref_deltas);
    av1_set_default_mode_deltas(lf->mode_deltas);
  }
  lf->filter_level[0] = aom_rb_read_literal(rb, 6);
  lf->filter_level[1] = aom_rb_read_literal(rb, 6);
  if (num_planes > 1) {
    if (lf->filter_level[0] || lf->filter_level[1]) {
      lf->filter_level_u = aom_rb_read_literal(rb, 6);
      lf->filter_level_v = aom_rb_read_literal(rb, 6);
    }
  }
  lf->sharpness_level = aom_rb_read_literal(rb, 3);

  // Read in loop filter deltas applied at the MB level based on mode or ref
  // frame.
  lf->mode_ref_delta_update = 0;

  lf->mode_ref_delta_enabled = aom_rb_read_bit(rb);
  if (lf->mode_ref_delta_enabled) {
    lf->mode_ref_delta_update = aom_rb_read_bit(rb);
    if (lf->mode_ref_delta_update) {
      for (int i = 0; i < REF_FRAMES; i++)
        if (aom_rb_read_bit(rb))
          lf->ref_deltas[i] = aom_rb_read_inv_signed_literal(rb, 6);

      for (int i = 0; i < MAX_MODE_LF_DELTAS; i++)
        if (aom_rb_read_bit(rb))
          lf->mode_deltas[i] = aom_rb_read_inv_signed_literal(rb, 6);
    }
  }

  // write deltas to frame buffer
  memcpy(cm->cur_frame->ref_deltas, lf->ref_deltas, REF_FRAMES);
  memcpy(cm->cur_frame->mode_deltas, lf->mode_deltas, MAX_MODE_LF_DELTAS);
}

static AOM_INLINE void setup_cdef(AV1_COMMON *cm,
                                  struct aom_read_bit_buffer *rb) {
  const int num_planes = av1_num_planes(cm);
  CdefInfo *const cdef_info = &cm->cdef_info;

  if (cm->features.allow_intrabc) return;
  cdef_info->cdef_damping = aom_rb_read_literal(rb, 2) + 3;
  cdef_info->cdef_bits = aom_rb_read_literal(rb, 2);
  cdef_info->nb_cdef_strengths = 1 << cdef_info->cdef_bits;
  for (int i = 0; i < cdef_info->nb_cdef_strengths; i++) {
    cdef_info->cdef_strengths[i] = aom_rb_read_literal(rb, CDEF_STRENGTH_BITS);
    cdef_info->cdef_uv_strengths[i] =
        num_planes > 1 ? aom_rb_read_literal(rb, CDEF_STRENGTH_BITS) : 0;
  }
}

static INLINE int read_delta_q(struct aom_read_bit_buffer *rb) {
  return aom_rb_read_bit(rb) ? aom_rb_read_inv_signed_literal(rb, 6) : 0;
}

static AOM_INLINE void setup_quantization(CommonQuantParams *quant_params,
                                          int num_planes,
                                          bool separate_uv_delta_q,
                                          struct aom_read_bit_buffer *rb) {
  quant_params->base_qindex = aom_rb_read_literal(rb, QINDEX_BITS);
  quant_params->y_dc_delta_q = read_delta_q(rb);
  if (num_planes > 1) {
    int diff_uv_delta = 0;
    if (separate_uv_delta_q) diff_uv_delta = aom_rb_read_bit(rb);
    quant_params->u_dc_delta_q = read_delta_q(rb);
    quant_params->u_ac_delta_q = read_delta_q(rb);
    if (diff_uv_delta) {
      quant_params->v_dc_delta_q = read_delta_q(rb);
      quant_params->v_ac_delta_q = read_delta_q(rb);
    } else {
      quant_params->v_dc_delta_q = quant_params->u_dc_delta_q;
      quant_params->v_ac_delta_q = quant_params->u_ac_delta_q;
    }
  } else {
    quant_params->u_dc_delta_q = 0;
    quant_params->u_ac_delta_q = 0;
    quant_params->v_dc_delta_q = 0;
    quant_params->v_ac_delta_q = 0;
  }
  quant_params->using_qmatrix = aom_rb_read_bit(rb);
  if (quant_params->using_qmatrix) {
    quant_params->qmatrix_level_y = aom_rb_read_literal(rb, QM_LEVEL_BITS);
    quant_params->qmatrix_level_u = aom_rb_read_literal(rb, QM_LEVEL_BITS);
    if (!separate_uv_delta_q)
      quant_params->qmatrix_level_v = quant_params->qmatrix_level_u;
    else
      quant_params->qmatrix_level_v = aom_rb_read_literal(rb, QM_LEVEL_BITS);
  } else {
    quant_params->qmatrix_level_y = 0;
    quant_params->qmatrix_level_u = 0;
    quant_params->qmatrix_level_v = 0;
  }
}

// Build y/uv dequant values based on segmentation.
static AOM_INLINE void setup_segmentation_dequant(AV1_COMMON *const cm,
                                                  MACROBLOCKD *const xd) {
  const int bit_depth = cm->seq_params.bit_depth;
  // When segmentation is disabled, only the first value is used.  The
  // remaining are don't cares.
  const int max_segments = cm->seg.enabled ? MAX_SEGMENTS : 1;
  CommonQuantParams *const quant_params = &cm->quant_params;
  for (int i = 0; i < max_segments; ++i) {
    const int qindex = xd->qindex[i];
    quant_params->y_dequant_QTX[i][0] =
        av1_dc_quant_QTX(qindex, quant_params->y_dc_delta_q, bit_depth);
    quant_params->y_dequant_QTX[i][1] = av1_ac_quant_QTX(qindex, 0, bit_depth);
    quant_params->u_dequant_QTX[i][0] =
        av1_dc_quant_QTX(qindex, quant_params->u_dc_delta_q, bit_depth);
    quant_params->u_dequant_QTX[i][1] =
        av1_ac_quant_QTX(qindex, quant_params->u_ac_delta_q, bit_depth);
    quant_params->v_dequant_QTX[i][0] =
        av1_dc_quant_QTX(qindex, quant_params->v_dc_delta_q, bit_depth);
    quant_params->v_dequant_QTX[i][1] =
        av1_ac_quant_QTX(qindex, quant_params->v_ac_delta_q, bit_depth);
    const int use_qmatrix = av1_use_qmatrix(quant_params, xd, i);
    // NB: depends on base index so there is only 1 set per frame
    // No quant weighting when lossless or signalled not using QM
    const int qmlevel_y =
        use_qmatrix ? quant_params->qmatrix_level_y : NUM_QM_LEVELS - 1;
    for (int j = 0; j < TX_SIZES_ALL; ++j) {
      quant_params->y_iqmatrix[i][j] =
          av1_iqmatrix(quant_params, qmlevel_y, AOM_PLANE_Y, j);
    }
    const int qmlevel_u =
        use_qmatrix ? quant_params->qmatrix_level_u : NUM_QM_LEVELS - 1;
    for (int j = 0; j < TX_SIZES_ALL; ++j) {
      quant_params->u_iqmatrix[i][j] =
          av1_iqmatrix(quant_params, qmlevel_u, AOM_PLANE_U, j);
    }
    const int qmlevel_v =
        use_qmatrix ? quant_params->qmatrix_level_v : NUM_QM_LEVELS - 1;
    for (int j = 0; j < TX_SIZES_ALL; ++j) {
      quant_params->v_iqmatrix[i][j] =
          av1_iqmatrix(quant_params, qmlevel_v, AOM_PLANE_V, j);
    }
  }
}

static InterpFilter read_frame_interp_filter(struct aom_read_bit_buffer *rb) {
  return aom_rb_read_bit(rb) ? SWITCHABLE
                             : aom_rb_read_literal(rb, LOG_SWITCHABLE_FILTERS);
}

static AOM_INLINE void setup_render_size(AV1_COMMON *cm,
                                         struct aom_read_bit_buffer *rb) {
  cm->render_width = cm->superres_upscaled_width;
  cm->render_height = cm->superres_upscaled_height;
  if (aom_rb_read_bit(rb))
    av1_read_frame_size(rb, 16, 16, &cm->render_width, &cm->render_height);
}

// TODO(afergs): make "struct aom_read_bit_buffer *const rb"?
static AOM_INLINE void setup_superres(AV1_COMMON *const cm,
                                      struct aom_read_bit_buffer *rb,
                                      int *width, int *height) {
  cm->superres_upscaled_width = *width;
  cm->superres_upscaled_height = *height;

  const SequenceHeader *const seq_params = &cm->seq_params;
  if (!seq_params->enable_superres) return;

  if (aom_rb_read_bit(rb)) {
    cm->superres_scale_denominator =
        (uint8_t)aom_rb_read_literal(rb, SUPERRES_SCALE_BITS);
    cm->superres_scale_denominator += SUPERRES_SCALE_DENOMINATOR_MIN;
    // Don't edit cm->width or cm->height directly, or the buffers won't get
    // resized correctly
    av1_calculate_scaled_superres_size(width, height,
                                       cm->superres_scale_denominator);
  } else {
    // 1:1 scaling - ie. no scaling, scale not provided
    cm->superres_scale_denominator = SCALE_NUMERATOR;
  }
}

static AOM_INLINE void resize_context_buffers(AV1_COMMON *cm, int width,
                                              int height) {
#if CONFIG_SIZE_LIMIT
  if (width > DECODE_WIDTH_LIMIT || height > DECODE_HEIGHT_LIMIT)
    aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME,
                       "Dimensions of %dx%d beyond allowed size of %dx%d.",
                       width, height, DECODE_WIDTH_LIMIT, DECODE_HEIGHT_LIMIT);
#endif
  if (cm->width != width || cm->height != height) {
    const int new_mi_rows =
        ALIGN_POWER_OF_TWO(height, MI_SIZE_LOG2) >> MI_SIZE_LOG2;
    const int new_mi_cols =
        ALIGN_POWER_OF_TWO(width, MI_SIZE_LOG2) >> MI_SIZE_LOG2;

    // Allocations in av1_alloc_context_buffers() depend on individual
    // dimensions as well as the overall size.
    if (new_mi_cols > cm->mi_params.mi_cols ||
        new_mi_rows > cm->mi_params.mi_rows) {
      if (av1_alloc_context_buffers(cm, width, height)) {
        // The cm->mi_* values have been cleared and any existing context
        // buffers have been freed. Clear cm->width and cm->height to be
        // consistent and to force a realloc next time.
        cm->width = 0;
        cm->height = 0;
        aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR,
                           "Failed to allocate context buffers");
      }
    } else {
      cm->mi_params.set_mb_mi(&cm->mi_params, width, height);
    }
    av1_init_mi_buffers(&cm->mi_params);
    cm->width = width;
    cm->height = height;
  }

  ensure_mv_buffer(cm->cur_frame, cm);
  cm->cur_frame->width = cm->width;
  cm->cur_frame->height = cm->height;
}

static AOM_INLINE void setup_buffer_pool(AV1_COMMON *cm) {
  BufferPool *const pool = cm->buffer_pool;
  const SequenceHeader *const seq_params = &cm->seq_params;

  lock_buffer_pool(pool);
  if (aom_realloc_frame_buffer(
          &cm->cur_frame->buf, cm->width, cm->height, seq_params->subsampling_x,
          seq_params->subsampling_y, seq_params->use_highbitdepth,
          AOM_DEC_BORDER_IN_PIXELS, cm->features.byte_alignment,
          &cm->cur_frame->raw_frame_buffer, pool->get_fb_cb, pool->cb_priv)) {
    unlock_buffer_pool(pool);
    aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR,
                       "Failed to allocate frame buffer");
  }
  unlock_buffer_pool(pool);

  cm->cur_frame->buf.bit_depth = (unsigned int)seq_params->bit_depth;
  cm->cur_frame->buf.color_primaries = seq_params->color_primaries;
  cm->cur_frame->buf.transfer_characteristics =
      seq_params->transfer_characteristics;
  cm->cur_frame->buf.matrix_coefficients = seq_params->matrix_coefficients;
  cm->cur_frame->buf.monochrome = seq_params->monochrome;
  cm->cur_frame->buf.chroma_sample_position =
      seq_params->chroma_sample_position;
  cm->cur_frame->buf.color_range = seq_params->color_range;
  cm->cur_frame->buf.render_width = cm->render_width;
  cm->cur_frame->buf.render_height = cm->render_height;
}

static AOM_INLINE void setup_frame_size(AV1_COMMON *cm,
                                        int frame_size_override_flag,
                                        struct aom_read_bit_buffer *rb) {
  const SequenceHeader *const seq_params = &cm->seq_params;
  int width, height;

  if (frame_size_override_flag) {
    int num_bits_width = seq_params->num_bits_width;
    int num_bits_height = seq_params->num_bits_height;
    av1_read_frame_size(rb, num_bits_width, num_bits_height, &width, &height);
    if (width > seq_params->max_frame_width ||
        height > seq_params->max_frame_height) {
      aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME,
                         "Frame dimensions are larger than the maximum values");
    }
  } else {
    width = seq_params->max_frame_width;
    height = seq_params->max_frame_height;
  }

  setup_superres(cm, rb, &width, &height);
  resize_context_buffers(cm, width, height);
  setup_render_size(cm, rb);
  setup_buffer_pool(cm);
}

static AOM_INLINE void setup_sb_size(SequenceHeader *seq_params,
                                     struct aom_read_bit_buffer *rb) {
  set_sb_size(seq_params, aom_rb_read_bit(rb) ? BLOCK_128X128 : BLOCK_64X64);
}

static INLINE int valid_ref_frame_img_fmt(aom_bit_depth_t ref_bit_depth,
                                          int ref_xss, int ref_yss,
                                          aom_bit_depth_t this_bit_depth,
                                          int this_xss, int this_yss) {
  return ref_bit_depth == this_bit_depth && ref_xss == this_xss &&
         ref_yss == this_yss;
}

static AOM_INLINE void setup_frame_size_with_refs(
    AV1_COMMON *cm, struct aom_read_bit_buffer *rb) {
  int width, height;
  int found = 0;
  int has_valid_ref_frame = 0;
  for (int i = LAST_FRAME; i <= ALTREF_FRAME; ++i) {
    if (aom_rb_read_bit(rb)) {
      const RefCntBuffer *const ref_buf = get_ref_frame_buf(cm, i);
      // This will never be NULL in a normal stream, as streams are required to
      // have a shown keyframe before any inter frames, which would refresh all
      // the reference buffers. However, it might be null if we're starting in
      // the middle of a stream, and static analysis will error if we don't do
      // a null check here.
      if (ref_buf == NULL) {
        aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME,
                           "Invalid condition: invalid reference buffer");
      } else {
        const YV12_BUFFER_CONFIG *const buf = &ref_buf->buf;
        width = buf->y_crop_width;
        height = buf->y_crop_height;
        cm->render_width = buf->render_width;
        cm->render_height = buf->render_height;
        setup_superres(cm, rb, &width, &height);
        resize_context_buffers(cm, width, height);
        found = 1;
        break;
      }
    }
  }

  const SequenceHeader *const seq_params = &cm->seq_params;
  if (!found) {
    int num_bits_width = seq_params->num_bits_width;
    int num_bits_height = seq_params->num_bits_height;

    av1_read_frame_size(rb, num_bits_width, num_bits_height, &width, &height);
    setup_superres(cm, rb, &width, &height);
    resize_context_buffers(cm, width, height);
    setup_render_size(cm, rb);
  }

  if (width <= 0 || height <= 0)
    aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME,
                       "Invalid frame size");

  // Check to make sure at least one of frames that this frame references
  // has valid dimensions.
  for (int i = LAST_FRAME; i <= ALTREF_FRAME; ++i) {
    const RefCntBuffer *const ref_frame = get_ref_frame_buf(cm, i);
    has_valid_ref_frame |=
        valid_ref_frame_size(ref_frame->buf.y_crop_width,
                             ref_frame->buf.y_crop_height, width, height);
  }
  if (!has_valid_ref_frame)
    aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME,
                       "Referenced frame has invalid size");
  for (int i = LAST_FRAME; i <= ALTREF_FRAME; ++i) {
    const RefCntBuffer *const ref_frame = get_ref_frame_buf(cm, i);
    if (!valid_ref_frame_img_fmt(
            ref_frame->buf.bit_depth, ref_frame->buf.subsampling_x,
            ref_frame->buf.subsampling_y, seq_params->bit_depth,
            seq_params->subsampling_x, seq_params->subsampling_y))
      aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME,
                         "Referenced frame has incompatible color format");
  }
  setup_buffer_pool(cm);
}

// Same function as av1_read_uniform but reading from uncompresses header wb
static int rb_read_uniform(struct aom_read_bit_buffer *const rb, int n) {
  const int l = get_unsigned_bits(n);
  const int m = (1 << l) - n;
  const int v = aom_rb_read_literal(rb, l - 1);
  assert(l != 0);
  if (v < m)
    return v;
  else
    return (v << 1) - m + aom_rb_read_bit(rb);
}

static AOM_INLINE void read_tile_info_max_tile(
    AV1_COMMON *const cm, struct aom_read_bit_buffer *const rb) {
  const SequenceHeader *const seq_params = &cm->seq_params;
  CommonTileParams *const tiles = &cm->tiles;
  int width_mi =
      ALIGN_POWER_OF_TWO(cm->mi_params.mi_cols, seq_params->mib_size_log2);
  int height_mi =
      ALIGN_POWER_OF_TWO(cm->mi_params.mi_rows, seq_params->mib_size_log2);
  int width_sb = width_mi >> seq_params->mib_size_log2;
  int height_sb = height_mi >> seq_params->mib_size_log2;

  av1_get_tile_limits(cm);
  tiles->uniform_spacing = aom_rb_read_bit(rb);

  // Read tile columns
  if (tiles->uniform_spacing) {
    tiles->log2_cols = tiles->min_log2_cols;
    while (tiles->log2_cols < tiles->max_log2_cols) {
      if (!aom_rb_read_bit(rb)) {
        break;
      }
      tiles->log2_cols++;
    }
  } else {
    int i;
    int start_sb;
    for (i = 0, start_sb = 0; width_sb > 0 && i < MAX_TILE_COLS; i++) {
      const int size_sb =
          1 + rb_read_uniform(rb, AOMMIN(width_sb, tiles->max_width_sb));
      tiles->col_start_sb[i] = start_sb;
      start_sb += size_sb;
      width_sb -= size_sb;
    }
    tiles->cols = i;
    tiles->col_start_sb[i] = start_sb + width_sb;
  }
  av1_calculate_tile_cols(seq_params, cm->mi_params.mi_rows,
                          cm->mi_params.mi_cols, tiles);

  // Read tile rows
  if (tiles->uniform_spacing) {
    tiles->log2_rows = tiles->min_log2_rows;
    while (tiles->log2_rows < tiles->max_log2_rows) {
      if (!aom_rb_read_bit(rb)) {
        break;
      }
      tiles->log2_rows++;
    }
  } else {
    int i;
    int start_sb;
    for (i = 0, start_sb = 0; height_sb > 0 && i < MAX_TILE_ROWS; i++) {
      const int size_sb =
          1 + rb_read_uniform(rb, AOMMIN(height_sb, tiles->max_height_sb));
      tiles->row_start_sb[i] = start_sb;
      start_sb += size_sb;
      height_sb -= size_sb;
    }
    tiles->rows = i;
    tiles->row_start_sb[i] = start_sb + height_sb;
  }
  av1_calculate_tile_rows(seq_params, cm->mi_params.mi_rows, tiles);
}

void av1_set_single_tile_decoding_mode(AV1_COMMON *const cm) {
  cm->tiles.single_tile_decoding = 0;
  if (cm->tiles.large_scale) {
    struct loopfilter *lf = &cm->lf;
    RestorationInfo *const rst_info = cm->rst_info;
    const CdefInfo *const cdef_info = &cm->cdef_info;

    // Figure out single_tile_decoding by loopfilter_level.
    const int no_loopfilter = !(lf->filter_level[0] || lf->filter_level[1]);
    const int no_cdef = cdef_info->cdef_bits == 0 &&
                        cdef_info->cdef_strengths[0] == 0 &&
                        cdef_info->cdef_uv_strengths[0] == 0;
    const int no_restoration =
        rst_info[0].frame_restoration_type == RESTORE_NONE &&
        rst_info[1].frame_restoration_type == RESTORE_NONE &&
        rst_info[2].frame_restoration_type == RESTORE_NONE;
    assert(IMPLIES(cm->features.coded_lossless, no_loopfilter && no_cdef));
    assert(IMPLIES(cm->features.all_lossless, no_restoration));
    cm->tiles.single_tile_decoding = no_loopfilter && no_cdef && no_restoration;
  }
}

static AOM_INLINE void read_tile_info(AV1Decoder *const pbi,
                                      struct aom_read_bit_buffer *const rb) {
  AV1_COMMON *const cm = &pbi->common;

  read_tile_info_max_tile(cm, rb);

  pbi->context_update_tile_id = 0;
  if (cm->tiles.rows * cm->tiles.cols > 1) {
    // tile to use for cdf update
    pbi->context_update_tile_id =
        aom_rb_read_literal(rb, cm->tiles.log2_rows + cm->tiles.log2_cols);
    if (pbi->context_update_tile_id >= cm->tiles.rows * cm->tiles.cols) {
      aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME,
                         "Invalid context_update_tile_id");
    }
    // tile size magnitude
    pbi->tile_size_bytes = aom_rb_read_literal(rb, 2) + 1;
  }
}

#if EXT_TILE_DEBUG
static AOM_INLINE void read_ext_tile_info(
    AV1Decoder *const pbi, struct aom_read_bit_buffer *const rb) {
  AV1_COMMON *const cm = &pbi->common;

  // This information is stored as a separate byte.
  int mod = rb->bit_offset % CHAR_BIT;
  if (mod > 0) aom_rb_read_literal(rb, CHAR_BIT - mod);
  assert(rb->bit_offset % CHAR_BIT == 0);

  if (cm->tiles.cols * cm->tiles.rows > 1) {
    // Read the number of bytes used to store tile size
    pbi->tile_col_size_bytes = aom_rb_read_literal(rb, 2) + 1;
    pbi->tile_size_bytes = aom_rb_read_literal(rb, 2) + 1;
  }
}
#endif  // EXT_TILE_DEBUG

static size_t mem_get_varsize(const uint8_t *src, int sz) {
  switch (sz) {
    case 1: return src[0];
    case 2: return mem_get_le16(src);
    case 3: return mem_get_le24(src);
    case 4: return mem_get_le32(src);
    default: assert(0 && "Invalid size"); return -1;
  }
}

#if EXT_TILE_DEBUG
// Reads the next tile returning its size and adjusting '*data' accordingly
// based on 'is_last'. On return, '*data' is updated to point to the end of the
// raw tile buffer in the bit stream.
static AOM_INLINE void get_ls_tile_buffer(
    const uint8_t *const data_end, struct aom_internal_error_info *error_info,
    const uint8_t **data, TileBufferDec (*const tile_buffers)[MAX_TILE_COLS],
    int tile_size_bytes, int col, int row, int tile_copy_mode) {
  size_t size;

  size_t copy_size = 0;
  const uint8_t *copy_data = NULL;

  if (!read_is_valid(*data, tile_size_bytes, data_end))
    aom_internal_error(error_info, AOM_CODEC_CORRUPT_FRAME,
                       "Truncated packet or corrupt tile length");
  size = mem_get_varsize(*data, tile_size_bytes);

  // If tile_copy_mode = 1, then the top bit of the tile header indicates copy
  // mode.
  if (tile_copy_mode && (size >> (tile_size_bytes * 8 - 1)) == 1) {
    // The remaining bits in the top byte signal the row offset
    int offset = (size >> (tile_size_bytes - 1) * 8) & 0x7f;

    // Currently, only use tiles in same column as reference tiles.
    copy_data = tile_buffers[row - offset][col].data;
    copy_size = tile_buffers[row - offset][col].size;
    size = 0;
  } else {
    size += AV1_MIN_TILE_SIZE_BYTES;
  }

  *data += tile_size_bytes;

  if (size > (size_t)(data_end - *data))
    aom_internal_error(error_info, AOM_CODEC_CORRUPT_FRAME,
                       "Truncated packet or corrupt tile size");

  if (size > 0) {
    tile_buffers[row][col].data = *data;
    tile_buffers[row][col].size = size;
  } else {
    tile_buffers[row][col].data = copy_data;
    tile_buffers[row][col].size = copy_size;
  }

  *data += size;
}

// Returns the end of the last tile buffer
// (tile_buffers[cm->tiles.rows - 1][cm->tiles.cols - 1]).
static const uint8_t *get_ls_tile_buffers(
    AV1Decoder *pbi, const uint8_t *data, const uint8_t *data_end,
    TileBufferDec (*const tile_buffers)[MAX_TILE_COLS]) {
  AV1_COMMON *const cm = &pbi->common;
  const int tile_cols = cm->tiles.cols;
  const int tile_rows = cm->tiles.rows;
  const int have_tiles = tile_cols * tile_rows > 1;
  const uint8_t *raw_data_end;  // The end of the last tile buffer

  if (!have_tiles) {
    const size_t tile_size = data_end - data;
    tile_buffers[0][0].data = data;
    tile_buffers[0][0].size = tile_size;
    raw_data_end = NULL;
  } else {
    // We locate only the tile buffers that are required, which are the ones
    // specified by pbi->dec_tile_col and pbi->dec_tile_row. Also, we always
    // need the last (bottom right) tile buffer, as we need to know where the
    // end of the compressed frame buffer is for proper superframe decoding.

    const uint8_t *tile_col_data_end[MAX_TILE_COLS] = { NULL };
    const uint8_t *const data_start = data;

    const int dec_tile_row = AOMMIN(pbi->dec_tile_row, tile_rows);
    const int single_row = pbi->dec_tile_row >= 0;
    const int tile_rows_start = single_row ? dec_tile_row : 0;
    const int tile_rows_end = single_row ? tile_rows_start + 1 : tile_rows;
    const int dec_tile_col = AOMMIN(pbi->dec_tile_col, tile_cols);
    const int single_col = pbi->dec_tile_col >= 0;
    const int tile_cols_start = single_col ? dec_tile_col : 0;
    const int tile_cols_end = single_col ? tile_cols_start + 1 : tile_cols;

    const int tile_col_size_bytes = pbi->tile_col_size_bytes;
    const int tile_size_bytes = pbi->tile_size_bytes;
    int tile_width, tile_height;
    av1_get_uniform_tile_size(cm, &tile_width, &tile_height);
    const int tile_copy_mode =
        ((AOMMAX(tile_width, tile_height) << MI_SIZE_LOG2) <= 256) ? 1 : 0;
    // Read tile column sizes for all columns (we need the last tile buffer)
    for (int c = 0; c < tile_cols; ++c) {
      const int is_last = c == tile_cols - 1;
      size_t tile_col_size;

      if (!is_last) {
        tile_col_size = mem_get_varsize(data, tile_col_size_bytes);
        data += tile_col_size_bytes;
        tile_col_data_end[c] = data + tile_col_size;
      } else {
        tile_col_size = data_end - data;
        tile_col_data_end[c] = data_end;
      }
      data += tile_col_size;
    }

    data = data_start;

    // Read the required tile sizes.
    for (int c = tile_cols_start; c < tile_cols_end; ++c) {
      const int is_last = c == tile_cols - 1;

      if (c > 0) data = tile_col_data_end[c - 1];

      if (!is_last) data += tile_col_size_bytes;

      // Get the whole of the last column, otherwise stop at the required tile.
      for (int r = 0; r < (is_last ? tile_rows : tile_rows_end); ++r) {
        get_ls_tile_buffer(tile_col_data_end[c], &pbi->common.error, &data,
                           tile_buffers, tile_size_bytes, c, r, tile_copy_mode);
      }
    }

    // If we have not read the last column, then read it to get the last tile.
    if (tile_cols_end != tile_cols) {
      const int c = tile_cols - 1;

      data = tile_col_data_end[c - 1];

      for (int r = 0; r < tile_rows; ++r) {
        get_ls_tile_buffer(tile_col_data_end[c], &pbi->common.error, &data,
                           tile_buffers, tile_size_bytes, c, r, tile_copy_mode);
      }
    }
    raw_data_end = data;
  }
  return raw_data_end;
}
#endif  // EXT_TILE_DEBUG

static const uint8_t *get_ls_single_tile_buffer(
    AV1Decoder *pbi, const uint8_t *data,
    TileBufferDec (*const tile_buffers)[MAX_TILE_COLS]) {
  assert(pbi->dec_tile_row >= 0 && pbi->dec_tile_col >= 0);
  tile_buffers[pbi->dec_tile_row][pbi->dec_tile_col].data = data;
  tile_buffers[pbi->dec_tile_row][pbi->dec_tile_col].size =
      (size_t)pbi->coded_tile_data_size;
  return data + pbi->coded_tile_data_size;
}

// Reads the next tile returning its size and adjusting '*data' accordingly
// based on 'is_last'.
static AOM_INLINE void get_tile_buffer(
    const uint8_t *const data_end, const int tile_size_bytes, int is_last,
    struct aom_internal_error_info *error_info, const uint8_t **data,
    TileBufferDec *const buf) {
  size_t size;

  if (!is_last) {
    if (!read_is_valid(*data, tile_size_bytes, data_end))
      aom_internal_error(error_info, AOM_CODEC_CORRUPT_FRAME,
                         "Not enough data to read tile size");

    size = mem_get_varsize(*data, tile_size_bytes) + AV1_MIN_TILE_SIZE_BYTES;
    *data += tile_size_bytes;

    if (size > (size_t)(data_end - *data))
      aom_internal_error(error_info, AOM_CODEC_CORRUPT_FRAME,
                         "Truncated packet or corrupt tile size");
  } else {
    size = data_end - *data;
  }

  buf->data = *data;
  buf->size = size;

  *data += size;
}

static AOM_INLINE void get_tile_buffers(
    AV1Decoder *pbi, const uint8_t *data, const uint8_t *data_end,
    TileBufferDec (*const tile_buffers)[MAX_TILE_COLS], int start_tile,
    int end_tile) {
  AV1_COMMON *const cm = &pbi->common;
  const int tile_cols = cm->tiles.cols;
  const int tile_rows = cm->tiles.rows;
  int tc = 0;

  for (int r = 0; r < tile_rows; ++r) {
    for (int c = 0; c < tile_cols; ++c, ++tc) {
      TileBufferDec *const buf = &tile_buffers[r][c];

      const int is_last = (tc == end_tile);
      const size_t hdr_offset = 0;

      if (tc < start_tile || tc > end_tile) continue;

      if (data + hdr_offset >= data_end)
        aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME,
                           "Data ended before all tiles were read.");
      data += hdr_offset;
      get_tile_buffer(data_end, pbi->tile_size_bytes, is_last,
                      &pbi->common.error, &data, buf);
    }
  }
}

static AOM_INLINE void set_cb_buffer(AV1Decoder *pbi, MACROBLOCKD *const xd,
                                     CB_BUFFER *cb_buffer_base,
                                     const int num_planes, int mi_row,
                                     int mi_col) {
  AV1_COMMON *const cm = &pbi->common;
  int mib_size_log2 = cm->seq_params.mib_size_log2;
  int stride = (cm->mi_params.mi_cols >> mib_size_log2) + 1;
  int offset = (mi_row >> mib_size_log2) * stride + (mi_col >> mib_size_log2);
  CB_BUFFER *cb_buffer = cb_buffer_base + offset;

  for (int plane = 0; plane < num_planes; ++plane) {
    xd->plane[plane].dqcoeff_block = cb_buffer->dqcoeff[plane];
    xd->plane[plane].eob_data = cb_buffer->eob_data[plane];
    xd->cb_offset[plane] = 0;
    xd->txb_offset[plane] = 0;
  }
  xd->plane[0].color_index_map = cb_buffer->color_index_map[0];
  xd->plane[1].color_index_map = cb_buffer->color_index_map[1];
  xd->color_index_map_offset[0] = 0;
  xd->color_index_map_offset[1] = 0;
}

static AOM_INLINE void decoder_alloc_tile_data(AV1Decoder *pbi,
                                               const int n_tiles) {
  AV1_COMMON *const cm = &pbi->common;
  aom_free(pbi->tile_data);
  CHECK_MEM_ERROR(cm, pbi->tile_data,
                  aom_memalign(32, n_tiles * sizeof(*pbi->tile_data)));
  pbi->allocated_tiles = n_tiles;
  for (int i = 0; i < n_tiles; i++) {
    TileDataDec *const tile_data = pbi->tile_data + i;
    av1_zero(tile_data->dec_row_mt_sync);
  }
  pbi->allocated_row_mt_sync_rows = 0;
}

// Set up nsync by width.
static INLINE int get_sync_range(int width) {
// nsync numbers are picked by testing.
#if 0
  if (width < 640)
    return 1;
  else if (width <= 1280)
    return 2;
  else if (width <= 4096)
    return 4;
  else
    return 8;
#else
  (void)width;
#endif
  return 1;
}

// Allocate memory for decoder row synchronization
static AOM_INLINE void dec_row_mt_alloc(AV1DecRowMTSync *dec_row_mt_sync,
                                        AV1_COMMON *cm, int rows) {
  dec_row_mt_sync->allocated_sb_rows = rows;
#if CONFIG_MULTITHREAD
  {
    int i;

    CHECK_MEM_ERROR(cm, dec_row_mt_sync->mutex_,
                    aom_malloc(sizeof(*(dec_row_mt_sync->mutex_)) * rows));
    if (dec_row_mt_sync->mutex_) {
      for (i = 0; i < rows; ++i) {
        pthread_mutex_init(&dec_row_mt_sync->mutex_[i], NULL);
      }
    }

    CHECK_MEM_ERROR(cm, dec_row_mt_sync->cond_,
                    aom_malloc(sizeof(*(dec_row_mt_sync->cond_)) * rows));
    if (dec_row_mt_sync->cond_) {
      for (i = 0; i < rows; ++i) {
        pthread_cond_init(&dec_row_mt_sync->cond_[i], NULL);
      }
    }
  }
#endif  // CONFIG_MULTITHREAD

  CHECK_MEM_ERROR(cm, dec_row_mt_sync->cur_sb_col,
                  aom_malloc(sizeof(*(dec_row_mt_sync->cur_sb_col)) * rows));

  // Set up nsync.
  dec_row_mt_sync->sync_range = get_sync_range(cm->width);
}

// Deallocate decoder row synchronization related mutex and data
void av1_dec_row_mt_dealloc(AV1DecRowMTSync *dec_row_mt_sync) {
  if (dec_row_mt_sync != NULL) {
#if CONFIG_MULTITHREAD
    int i;
    if (dec_row_mt_sync->mutex_ != NULL) {
      for (i = 0; i < dec_row_mt_sync->allocated_sb_rows; ++i) {
        pthread_mutex_destroy(&dec_row_mt_sync->mutex_[i]);
      }
      aom_free(dec_row_mt_sync->mutex_);
    }
    if (dec_row_mt_sync->cond_ != NULL) {
      for (i = 0; i < dec_row_mt_sync->allocated_sb_rows; ++i) {
        pthread_cond_destroy(&dec_row_mt_sync->cond_[i]);
      }
      aom_free(dec_row_mt_sync->cond_);
    }
#endif  // CONFIG_MULTITHREAD
    aom_free(dec_row_mt_sync->cur_sb_col);

    // clear the structure as the source of this call may be a resize in which
    // case this call will be followed by an _alloc() which may fail.
    av1_zero(*dec_row_mt_sync);
  }
}

static INLINE void sync_read(AV1DecRowMTSync *const dec_row_mt_sync, int r,
                             int c) {
#if CONFIG_MULTITHREAD
  const int nsync = dec_row_mt_sync->sync_range;

  if (r && !(c & (nsync - 1))) {
    pthread_mutex_t *const mutex = &dec_row_mt_sync->mutex_[r - 1];
    pthread_mutex_lock(mutex);

    while (c > dec_row_mt_sync->cur_sb_col[r - 1] - nsync) {
      pthread_cond_wait(&dec_row_mt_sync->cond_[r - 1], mutex);
    }
    pthread_mutex_unlock(mutex);
  }
#else
  (void)dec_row_mt_sync;
  (void)r;
  (void)c;
#endif  // CONFIG_MULTITHREAD
}

static INLINE void sync_write(AV1DecRowMTSync *const dec_row_mt_sync, int r,
                              int c, const int sb_cols) {
#if CONFIG_MULTITHREAD
  const int nsync = dec_row_mt_sync->sync_range;
  int cur;
  int sig = 1;

  if (c < sb_cols - 1) {
    cur = c;
    if (c % nsync) sig = 0;
  } else {
    cur = sb_cols + nsync;
  }

  if (sig) {
    pthread_mutex_lock(&dec_row_mt_sync->mutex_[r]);

    dec_row_mt_sync->cur_sb_col[r] = cur;

    pthread_cond_signal(&dec_row_mt_sync->cond_[r]);
    pthread_mutex_unlock(&dec_row_mt_sync->mutex_[r]);
  }
#else
  (void)dec_row_mt_sync;
  (void)r;
  (void)c;
  (void)sb_cols;
#endif  // CONFIG_MULTITHREAD
}

static AOM_INLINE void decode_tile_sb_row(AV1Decoder *pbi, ThreadData *const td,
                                          TileInfo tile_info,
                                          const int mi_row) {
  AV1_COMMON *const cm = &pbi->common;
  const int num_planes = av1_num_planes(cm);
  TileDataDec *const tile_data =
      pbi->tile_data + tile_info.tile_row * cm->tiles.cols + tile_info.tile_col;
  const int sb_cols_in_tile = av1_get_sb_cols_in_tile(cm, tile_info);
  const int sb_row_in_tile =
      (mi_row - tile_info.mi_row_start) >> cm->seq_params.mib_size_log2;
  int sb_col_in_tile = 0;

  for (int mi_col = tile_info.mi_col_start; mi_col < tile_info.mi_col_end;
       mi_col += cm->seq_params.mib_size, sb_col_in_tile++) {
    set_cb_buffer(pbi, &td->xd, pbi->cb_buffer_base, num_planes, mi_row,
                  mi_col);

    sync_read(&tile_data->dec_row_mt_sync, sb_row_in_tile, sb_col_in_tile);

    // Decoding of the super-block
    decode_partition(pbi, td, mi_row, mi_col, td->bit_reader,
                     cm->seq_params.sb_size, 0x2);

    sync_write(&tile_data->dec_row_mt_sync, sb_row_in_tile, sb_col_in_tile,
               sb_cols_in_tile);
  }
}

static int check_trailing_bits_after_symbol_coder(aom_reader *r) {
  if (aom_reader_has_overflowed(r)) return -1;

  uint32_t nb_bits = aom_reader_tell(r);
  uint32_t nb_bytes = (nb_bits + 7) >> 3;
  const uint8_t *p = aom_reader_find_begin(r) + nb_bytes;

  // aom_reader_tell() returns 1 for a newly initialized decoder, and the
  // return value only increases as values are decoded. So nb_bits > 0, and
  // thus p > p_begin. Therefore accessing p[-1] is safe.
  uint8_t last_byte = p[-1];
  uint8_t pattern = 128 >> ((nb_bits - 1) & 7);
  if ((last_byte & (2 * pattern - 1)) != pattern) return -1;

  // Make sure that all padding bytes are zero as required by the spec.
  const uint8_t *p_end = aom_reader_find_end(r);
  while (p < p_end) {
    if (*p != 0) return -1;
    p++;
  }
  return 0;
}

static AOM_INLINE void set_decode_func_pointers(ThreadData *td,
                                                int parse_decode_flag) {
  td->read_coeffs_tx_intra_block_visit = decode_block_void;
  td->predict_and_recon_intra_block_visit = decode_block_void;
  td->read_coeffs_tx_inter_block_visit = decode_block_void;
  td->inverse_tx_inter_block_visit = decode_block_void;
  td->predict_inter_block_visit = predict_inter_block_void;
  td->cfl_store_inter_block_visit = cfl_store_inter_block_void;

  if (parse_decode_flag & 0x1) {
    td->read_coeffs_tx_intra_block_visit = read_coeffs_tx_intra_block;
    td->read_coeffs_tx_inter_block_visit = av1_read_coeffs_txb_facade;
  }
  if (parse_decode_flag & 0x2) {
    td->predict_and_recon_intra_block_visit =
        predict_and_reconstruct_intra_block;
    td->inverse_tx_inter_block_visit = inverse_transform_inter_block;
    td->predict_inter_block_visit = predict_inter_block;
    td->cfl_store_inter_block_visit = cfl_store_inter_block;
  }
}

static AOM_INLINE void decode_tile(AV1Decoder *pbi, ThreadData *const td,
                                   int tile_row, int tile_col) {
  TileInfo tile_info;

  AV1_COMMON *const cm = &pbi->common;
  const int num_planes = av1_num_planes(cm);

  av1_tile_set_row(&tile_info, cm, tile_row);
  av1_tile_set_col(&tile_info, cm, tile_col);
  av1_zero_above_context(cm, &td->xd, tile_info.mi_col_start,
                         tile_info.mi_col_end, tile_row);
  av1_reset_loop_filter_delta(&td->xd, num_planes);
  av1_reset_loop_restoration(&td->xd, num_planes);

  for (int mi_row = tile_info.mi_row_start; mi_row < tile_info.mi_row_end;
       mi_row += cm->seq_params.mib_size) {
    av1_zero_left_context(&td->xd);

    for (int mi_col = tile_info.mi_col_start; mi_col < tile_info.mi_col_end;
         mi_col += cm->seq_params.mib_size) {
      set_cb_buffer(pbi, &td->xd, &td->cb_buffer_base, num_planes, 0, 0);

      // Bit-stream parsing and decoding of the superblock
      decode_partition(pbi, td, mi_row, mi_col, td->bit_reader,
                       cm->seq_params.sb_size, 0x3);

      if (aom_reader_has_overflowed(td->bit_reader)) {
        aom_merge_corrupted_flag(&td->xd.corrupted, 1);
        return;
      }
    }
  }

  int corrupted =
      (check_trailing_bits_after_symbol_coder(td->bit_reader)) ? 1 : 0;
  aom_merge_corrupted_flag(&td->xd.corrupted, corrupted);
}

static const uint8_t *decode_tiles(AV1Decoder *pbi, const uint8_t *data,
                                   const uint8_t *data_end, int start_tile,
                                   int end_tile) {
  AV1_COMMON *const cm = &pbi->common;
  ThreadData *const td = &pbi->td;
  CommonTileParams *const tiles = &cm->tiles;
  const int tile_cols = tiles->cols;
  const int tile_rows = tiles->rows;
  const int n_tiles = tile_cols * tile_rows;
  TileBufferDec(*const tile_buffers)[MAX_TILE_COLS] = pbi->tile_buffers;
  const int dec_tile_row = AOMMIN(pbi->dec_tile_row, tile_rows);
  const int single_row = pbi->dec_tile_row >= 0;
  const int dec_tile_col = AOMMIN(pbi->dec_tile_col, tile_cols);
  const int single_col = pbi->dec_tile_col >= 0;
  int tile_rows_start;
  int tile_rows_end;
  int tile_cols_start;
  int tile_cols_end;
  int inv_col_order;
  int inv_row_order;
  int tile_row, tile_col;
  uint8_t allow_update_cdf;
  const uint8_t *raw_data_end = NULL;

  if (tiles->large_scale) {
    tile_rows_start = single_row ? dec_tile_row : 0;
    tile_rows_end = single_row ? dec_tile_row + 1 : tile_rows;
    tile_cols_start = single_col ? dec_tile_col : 0;
    tile_cols_end = single_col ? tile_cols_start + 1 : tile_cols;
    inv_col_order = pbi->inv_tile_order && !single_col;
    inv_row_order = pbi->inv_tile_order && !single_row;
    allow_update_cdf = 0;
  } else {
    tile_rows_start = 0;
    tile_rows_end = tile_rows;
    tile_cols_start = 0;
    tile_cols_end = tile_cols;
    inv_col_order = pbi->inv_tile_order;
    inv_row_order = pbi->inv_tile_order;
    allow_update_cdf = 1;
  }

  // No tiles to decode.
  if (tile_rows_end <= tile_rows_start || tile_cols_end <= tile_cols_start ||
      // First tile is larger than end_tile.
      tile_rows_start * tiles->cols + tile_cols_start > end_tile ||
      // Last tile is smaller than start_tile.
      (tile_rows_end - 1) * tiles->cols + tile_cols_end - 1 < start_tile)
    return data;

  allow_update_cdf = allow_update_cdf && !cm->features.disable_cdf_update;

  assert(tile_rows <= MAX_TILE_ROWS);
  assert(tile_cols <= MAX_TILE_COLS);

#if EXT_TILE_DEBUG
  if (tiles->large_scale && !pbi->ext_tile_debug)
    raw_data_end = get_ls_single_tile_buffer(pbi, data, tile_buffers);
  else if (tiles->large_scale && pbi->ext_tile_debug)
    raw_data_end = get_ls_tile_buffers(pbi, data, data_end, tile_buffers);
  else
#endif  // EXT_TILE_DEBUG
    get_tile_buffers(pbi, data, data_end, tile_buffers, start_tile, end_tile);

  if (pbi->tile_data == NULL || n_tiles != pbi->allocated_tiles) {
    decoder_alloc_tile_data(pbi, n_tiles);
  }
#if CONFIG_ACCOUNTING
  if (pbi->acct_enabled) {
    aom_accounting_reset(&pbi->accounting);
  }
#endif

  set_decode_func_pointers(&pbi->td, 0x3);

  // Load all tile information into thread_data.
  td->xd = pbi->mb;
  td->xd.corrupted = 0;
  td->xd.mc_buf[0] = td->mc_buf[0];
  td->xd.mc_buf[1] = td->mc_buf[1];
  td->xd.tmp_conv_dst = td->tmp_conv_dst;
  for (int j = 0; j < 2; ++j) {
    td->xd.tmp_obmc_bufs[j] = td->tmp_obmc_bufs[j];
  }

  for (tile_row = tile_rows_start; tile_row < tile_rows_end; ++tile_row) {
    const int row = inv_row_order ? tile_rows - 1 - tile_row : tile_row;

    for (tile_col = tile_cols_start; tile_col < tile_cols_end; ++tile_col) {
      const int col = inv_col_order ? tile_cols - 1 - tile_col : tile_col;
      TileDataDec *const tile_data = pbi->tile_data + row * tiles->cols + col;
      const TileBufferDec *const tile_bs_buf = &tile_buffers[row][col];

      if (row * tiles->cols + col < start_tile ||
          row * tiles->cols + col > end_tile)
        continue;

      td->bit_reader = &tile_data->bit_reader;
      av1_zero(td->cb_buffer_base.dqcoeff);
      av1_tile_init(&td->xd.tile, cm, row, col);
      td->xd.current_qindex = cm->quant_params.base_qindex;
      setup_bool_decoder(tile_bs_buf->data, data_end, tile_bs_buf->size,
                         &cm->error, td->bit_reader, allow_update_cdf);
#if CONFIG_ACCOUNTING
      if (pbi->acct_enabled) {
        td->bit_reader->accounting = &pbi->accounting;
        td->bit_reader->accounting->last_tell_frac =
            aom_reader_tell_frac(td->bit_reader);
      } else {
        td->bit_reader->accounting = NULL;
      }
#endif
      av1_init_macroblockd(cm, &td->xd, NULL);
      av1_init_above_context(&cm->above_contexts, av1_num_planes(cm), row,
                             &td->xd);

      // Initialise the tile context from the frame context
      tile_data->tctx = *cm->fc;
      td->xd.tile_ctx = &tile_data->tctx;

      // decode tile
      decode_tile(pbi, td, row, col);
      aom_merge_corrupted_flag(&pbi->mb.corrupted, td->xd.corrupted);
      if (pbi->mb.corrupted)
        aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME,
                           "Failed to decode tile data");
    }
  }

  if (tiles->large_scale) {
    if (n_tiles == 1) {
      // Find the end of the single tile buffer
      return aom_reader_find_end(&pbi->tile_data->bit_reader);
    }
    // Return the end of the last tile buffer
    return raw_data_end;
  }
  TileDataDec *const tile_data = pbi->tile_data + end_tile;

  return aom_reader_find_end(&tile_data->bit_reader);
}

static TileJobsDec *get_dec_job_info(AV1DecTileMT *tile_mt_info) {
  TileJobsDec *cur_job_info = NULL;
#if CONFIG_MULTITHREAD
  pthread_mutex_lock(tile_mt_info->job_mutex);

  if (tile_mt_info->jobs_dequeued < tile_mt_info->jobs_enqueued) {
    cur_job_info = tile_mt_info->job_queue + tile_mt_info->jobs_dequeued;
    tile_mt_info->jobs_dequeued++;
  }

  pthread_mutex_unlock(tile_mt_info->job_mutex);
#else
  (void)tile_mt_info;
#endif
  return cur_job_info;
}

static AOM_INLINE void tile_worker_hook_init(
    AV1Decoder *const pbi, DecWorkerData *const thread_data,
    const TileBufferDec *const tile_buffer, TileDataDec *const tile_data,
    uint8_t allow_update_cdf) {
  AV1_COMMON *cm = &pbi->common;
  ThreadData *const td = thread_data->td;
  int tile_row = tile_data->tile_info.tile_row;
  int tile_col = tile_data->tile_info.tile_col;

  td->bit_reader = &tile_data->bit_reader;
  av1_zero(td->cb_buffer_base.dqcoeff);
  av1_tile_init(&td->xd.tile, cm, tile_row, tile_col);
  td->xd.current_qindex = cm->quant_params.base_qindex;
  setup_bool_decoder(tile_buffer->data, thread_data->data_end,
                     tile_buffer->size, &thread_data->error_info,
                     td->bit_reader, allow_update_cdf);
#if CONFIG_ACCOUNTING
  if (pbi->acct_enabled) {
    td->bit_reader->accounting = &pbi->accounting;
    td->bit_reader->accounting->last_tell_frac =
        aom_reader_tell_frac(td->bit_reader);
  } else {
    td->bit_reader->accounting = NULL;
  }
#endif
  av1_init_macroblockd(cm, &td->xd, NULL);
  td->xd.error_info = &thread_data->error_info;
  av1_init_above_context(&cm->above_contexts, av1_num_planes(cm), tile_row,
                         &td->xd);

  // Initialise the tile context from the frame context
  tile_data->tctx = *cm->fc;
  td->xd.tile_ctx = &tile_data->tctx;
#if CONFIG_ACCOUNTING
  if (pbi->acct_enabled) {
    tile_data->bit_reader.accounting->last_tell_frac =
        aom_reader_tell_frac(&tile_data->bit_reader);
  }
#endif
}

static int tile_worker_hook(void *arg1, void *arg2) {
  DecWorkerData *const thread_data = (DecWorkerData *)arg1;
  AV1Decoder *const pbi = (AV1Decoder *)arg2;
  AV1_COMMON *cm = &pbi->common;
  ThreadData *const td = thread_data->td;
  uint8_t allow_update_cdf;

  // The jmp_buf is valid only for the duration of the function that calls
  // setjmp(). Therefore, this function must reset the 'setjmp' field to 0
  // before it returns.
  if (setjmp(thread_data->error_info.jmp)) {
    thread_data->error_info.setjmp = 0;
    thread_data->td->xd.corrupted = 1;
    return 0;
  }
  thread_data->error_info.setjmp = 1;

  allow_update_cdf = cm->tiles.large_scale ? 0 : 1;
  allow_update_cdf = allow_update_cdf && !cm->features.disable_cdf_update;

  set_decode_func_pointers(td, 0x3);

  assert(cm->tiles.cols > 0);
  while (!td->xd.corrupted) {
    TileJobsDec *cur_job_info = get_dec_job_info(&pbi->tile_mt_info);

    if (cur_job_info != NULL) {
      const TileBufferDec *const tile_buffer = cur_job_info->tile_buffer;
      TileDataDec *const tile_data = cur_job_info->tile_data;
      tile_worker_hook_init(pbi, thread_data, tile_buffer, tile_data,
                            allow_update_cdf);
      // decode tile
      int tile_row = tile_data->tile_info.tile_row;
      int tile_col = tile_data->tile_info.tile_col;
      decode_tile(pbi, td, tile_row, tile_col);
    } else {
      break;
    }
  }
  thread_data->error_info.setjmp = 0;
  return !td->xd.corrupted;
}

static INLINE int get_max_row_mt_workers_per_tile(AV1_COMMON *cm,
                                                  TileInfo tile) {
  // NOTE: Currently value of max workers is calculated based
  // on the parse and decode time. As per the theoretical estimate
  // when percentage of parse time is equal to percentage of decode
  // time, number of workers needed to parse + decode a tile can not
  // exceed more than 2.
  // TODO(any): Modify this value if parsing is optimized in future.
  int sb_rows = av1_get_sb_rows_in_tile(cm, tile);
  int max_workers =
      sb_rows == 1 ? AOM_MIN_THREADS_PER_TILE : AOM_MAX_THREADS_PER_TILE;
  return max_workers;
}

// The caller must hold pbi->row_mt_mutex_ when calling this function.
// Returns 1 if either the next job is stored in *next_job_info or 1 is stored
// in *end_of_frame.
// NOTE: The caller waits on pbi->row_mt_cond_ if this function returns 0.
// The return value of this function depends on the following variables:
// - frame_row_mt_info->mi_rows_parse_done
// - frame_row_mt_info->mi_rows_decode_started
// - frame_row_mt_info->row_mt_exit
// Therefore we may need to signal or broadcast pbi->row_mt_cond_ if any of
// these variables is modified.
static int get_next_job_info(AV1Decoder *const pbi,
                             AV1DecRowMTJobInfo *next_job_info,
                             int *end_of_frame) {
  AV1_COMMON *cm = &pbi->common;
  TileDataDec *tile_data;
  AV1DecRowMTSync *dec_row_mt_sync;
  AV1DecRowMTInfo *frame_row_mt_info = &pbi->frame_row_mt_info;
  TileInfo tile_info;
  const int tile_rows_start = frame_row_mt_info->tile_rows_start;
  const int tile_rows_end = frame_row_mt_info->tile_rows_end;
  const int tile_cols_start = frame_row_mt_info->tile_cols_start;
  const int tile_cols_end = frame_row_mt_info->tile_cols_end;
  const int start_tile = frame_row_mt_info->start_tile;
  const int end_tile = frame_row_mt_info->end_tile;
  const int sb_mi_size = mi_size_wide[cm->seq_params.sb_size];
  int num_mis_to_decode, num_threads_working;
  int num_mis_waiting_for_decode;
  int min_threads_working = INT_MAX;
  int max_mis_to_decode = 0;
  int tile_row_idx, tile_col_idx;
  int tile_row = -1;
  int tile_col = -1;

  memset(next_job_info, 0, sizeof(*next_job_info));

  // Frame decode is completed or error is encountered.
  *end_of_frame = (frame_row_mt_info->mi_rows_decode_started ==
                   frame_row_mt_info->mi_rows_to_decode) ||
                  (frame_row_mt_info->row_mt_exit == 1);
  if (*end_of_frame) {
    return 1;
  }

  // Decoding cannot start as bit-stream parsing is not complete.
  assert(frame_row_mt_info->mi_rows_parse_done >=
         frame_row_mt_info->mi_rows_decode_started);
  if (frame_row_mt_info->mi_rows_parse_done ==
      frame_row_mt_info->mi_rows_decode_started)
    return 0;

  // Choose the tile to decode.
  for (tile_row_idx = tile_rows_start; tile_row_idx < tile_rows_end;
       ++tile_row_idx) {
    for (tile_col_idx = tile_cols_start; tile_col_idx < tile_cols_end;
         ++tile_col_idx) {
      if (tile_row_idx * cm->tiles.cols + tile_col_idx < start_tile ||
          tile_row_idx * cm->tiles.cols + tile_col_idx > end_tile)
        continue;

      tile_data = pbi->tile_data + tile_row_idx * cm->tiles.cols + tile_col_idx;
      dec_row_mt_sync = &tile_data->dec_row_mt_sync;

      num_threads_working = dec_row_mt_sync->num_threads_working;
      num_mis_waiting_for_decode = (dec_row_mt_sync->mi_rows_parse_done -
                                    dec_row_mt_sync->mi_rows_decode_started) *
                                   dec_row_mt_sync->mi_cols;
      num_mis_to_decode =
          (dec_row_mt_sync->mi_rows - dec_row_mt_sync->mi_rows_decode_started) *
          dec_row_mt_sync->mi_cols;

      assert(num_mis_to_decode >= num_mis_waiting_for_decode);

      // Pick the tile which has minimum number of threads working on it.
      if (num_mis_waiting_for_decode > 0) {
        if (num_threads_working < min_threads_working) {
          min_threads_working = num_threads_working;
          max_mis_to_decode = 0;
        }
        if (num_threads_working == min_threads_working &&
            num_mis_to_decode > max_mis_to_decode &&
            num_threads_working <
                get_max_row_mt_workers_per_tile(cm, tile_data->tile_info)) {
          max_mis_to_decode = num_mis_to_decode;
          tile_row = tile_row_idx;
          tile_col = tile_col_idx;
        }
      }
    }
  }
  // No job found to process
  if (tile_row == -1 || tile_col == -1) return 0;

  tile_data = pbi->tile_data + tile_row * cm->tiles.cols + tile_col;
  tile_info = tile_data->tile_info;
  dec_row_mt_sync = &tile_data->dec_row_mt_sync;

  next_job_info->tile_row = tile_row;
  next_job_info->tile_col = tile_col;
  next_job_info->mi_row =
      dec_row_mt_sync->mi_rows_decode_started + tile_info.mi_row_start;

  dec_row_mt_sync->num_threads_working++;
  dec_row_mt_sync->mi_rows_decode_started += sb_mi_size;
  frame_row_mt_info->mi_rows_decode_started += sb_mi_size;
  assert(frame_row_mt_info->mi_rows_parse_done >=
         frame_row_mt_info->mi_rows_decode_started);
#if CONFIG_MULTITHREAD
  if (frame_row_mt_info->mi_rows_decode_started ==
      frame_row_mt_info->mi_rows_to_decode) {
    pthread_cond_broadcast(pbi->row_mt_cond_);
  }
#endif

  return 1;
}

static INLINE void signal_parse_sb_row_done(AV1Decoder *const pbi,
                                            TileDataDec *const tile_data,
                                            const int sb_mi_size) {
  AV1DecRowMTInfo *frame_row_mt_info = &pbi->frame_row_mt_info;
#if CONFIG_MULTITHREAD
  pthread_mutex_lock(pbi->row_mt_mutex_);
#endif
  assert(frame_row_mt_info->mi_rows_parse_done >=
         frame_row_mt_info->mi_rows_decode_started);
  tile_data->dec_row_mt_sync.mi_rows_parse_done += sb_mi_size;
  frame_row_mt_info->mi_rows_parse_done += sb_mi_size;
#if CONFIG_MULTITHREAD
  // A new decode job is available. Wake up one worker thread to handle the
  // new decode job.
  // NOTE: This assumes we bump mi_rows_parse_done and mi_rows_decode_started
  // by the same increment (sb_mi_size).
  pthread_cond_signal(pbi->row_mt_cond_);
  pthread_mutex_unlock(pbi->row_mt_mutex_);
#endif
}

// This function is very similar to decode_tile(). It would be good to figure
// out how to share code.
static AOM_INLINE void parse_tile_row_mt(AV1Decoder *pbi, ThreadData *const td,
                                         TileDataDec *const tile_data) {
  AV1_COMMON *const cm = &pbi->common;
  const int sb_mi_size = mi_size_wide[cm->seq_params.sb_size];
  const int num_planes = av1_num_planes(cm);
  TileInfo tile_info = tile_data->tile_info;
  int tile_row = tile_info.tile_row;

  av1_zero_above_context(cm, &td->xd, tile_info.mi_col_start,
                         tile_info.mi_col_end, tile_row);
  av1_reset_loop_filter_delta(&td->xd, num_planes);
  av1_reset_loop_restoration(&td->xd, num_planes);

  for (int mi_row = tile_info.mi_row_start; mi_row < tile_info.mi_row_end;
       mi_row += cm->seq_params.mib_size) {
    av1_zero_left_context(&td->xd);

    for (int mi_col = tile_info.mi_col_start; mi_col < tile_info.mi_col_end;
         mi_col += cm->seq_params.mib_size) {
      set_cb_buffer(pbi, &td->xd, pbi->cb_buffer_base, num_planes, mi_row,
                    mi_col);

      // Bit-stream parsing of the superblock
      decode_partition(pbi, td, mi_row, mi_col, td->bit_reader,
                       cm->seq_params.sb_size, 0x1);

      if (aom_reader_has_overflowed(td->bit_reader)) {
        aom_merge_corrupted_flag(&td->xd.corrupted, 1);
        return;
      }
    }
    signal_parse_sb_row_done(pbi, tile_data, sb_mi_size);
  }

  int corrupted =
      (check_trailing_bits_after_symbol_coder(td->bit_reader)) ? 1 : 0;
  aom_merge_corrupted_flag(&td->xd.corrupted, corrupted);
}

static int row_mt_worker_hook(void *arg1, void *arg2) {
  DecWorkerData *const thread_data = (DecWorkerData *)arg1;
  AV1Decoder *const pbi = (AV1Decoder *)arg2;
  AV1_COMMON *cm = &pbi->common;
  ThreadData *const td = thread_data->td;
  uint8_t allow_update_cdf;
  AV1DecRowMTInfo *frame_row_mt_info = &pbi->frame_row_mt_info;
  td->xd.corrupted = 0;

  // The jmp_buf is valid only for the duration of the function that calls
  // setjmp(). Therefore, this function must reset the 'setjmp' field to 0
  // before it returns.
  if (setjmp(thread_data->error_info.jmp)) {
    thread_data->error_info.setjmp = 0;
    thread_data->td->xd.corrupted = 1;
#if CONFIG_MULTITHREAD
    pthread_mutex_lock(pbi->row_mt_mutex_);
#endif
    frame_row_mt_info->row_mt_exit = 1;
#if CONFIG_MULTITHREAD
    pthread_cond_broadcast(pbi->row_mt_cond_);
    pthread_mutex_unlock(pbi->row_mt_mutex_);
#endif
    return 0;
  }
  thread_data->error_info.setjmp = 1;

  allow_update_cdf = cm->tiles.large_scale ? 0 : 1;
  allow_update_cdf = allow_update_cdf && !cm->features.disable_cdf_update;

  set_decode_func_pointers(td, 0x1);

  assert(cm->tiles.cols > 0);
  while (!td->xd.corrupted) {
    TileJobsDec *cur_job_info = get_dec_job_info(&pbi->tile_mt_info);

    if (cur_job_info != NULL) {
      const TileBufferDec *const tile_buffer = cur_job_info->tile_buffer;
      TileDataDec *const tile_data = cur_job_info->tile_data;
      tile_worker_hook_init(pbi, thread_data, tile_buffer, tile_data,
                            allow_update_cdf);
#if CONFIG_MULTITHREAD
      pthread_mutex_lock(pbi->row_mt_mutex_);
#endif
      tile_data->dec_row_mt_sync.num_threads_working++;
#if CONFIG_MULTITHREAD
      pthread_mutex_unlock(pbi->row_mt_mutex_);
#endif
      // decode tile
      parse_tile_row_mt(pbi, td, tile_data);
#if CONFIG_MULTITHREAD
      pthread_mutex_lock(pbi->row_mt_mutex_);
#endif
      tile_data->dec_row_mt_sync.num_threads_working--;
#if CONFIG_MULTITHREAD
      pthread_mutex_unlock(pbi->row_mt_mutex_);
#endif
    } else {
      break;
    }
  }

  if (td->xd.corrupted) {
    thread_data->error_info.setjmp = 0;
#if CONFIG_MULTITHREAD
    pthread_mutex_lock(pbi->row_mt_mutex_);
#endif
    frame_row_mt_info->row_mt_exit = 1;
#if CONFIG_MULTITHREAD
    pthread_cond_broadcast(pbi->row_mt_cond_);
    pthread_mutex_unlock(pbi->row_mt_mutex_);
#endif
    return 0;
  }

  set_decode_func_pointers(td, 0x2);

  while (1) {
    AV1DecRowMTJobInfo next_job_info;
    int end_of_frame = 0;

#if CONFIG_MULTITHREAD
    pthread_mutex_lock(pbi->row_mt_mutex_);
#endif
    while (!get_next_job_info(pbi, &next_job_info, &end_of_frame)) {
#if CONFIG_MULTITHREAD
      pthread_cond_wait(pbi->row_mt_cond_, pbi->row_mt_mutex_);
#endif
    }
#if CONFIG_MULTITHREAD
    pthread_mutex_unlock(pbi->row_mt_mutex_);
#endif

    if (end_of_frame) break;

    int tile_row = next_job_info.tile_row;
    int tile_col = next_job_info.tile_col;
    int mi_row = next_job_info.mi_row;

    TileDataDec *tile_data =
        pbi->tile_data + tile_row * cm->tiles.cols + tile_col;
    AV1DecRowMTSync *dec_row_mt_sync = &tile_data->dec_row_mt_sync;
    TileInfo tile_info = tile_data->tile_info;

    av1_tile_init(&td->xd.tile, cm, tile_row, tile_col);
    av1_init_macroblockd(cm, &td->xd, NULL);
    td->xd.error_info = &thread_data->error_info;

    decode_tile_sb_row(pbi, td, tile_info, mi_row);

#if CONFIG_MULTITHREAD
    pthread_mutex_lock(pbi->row_mt_mutex_);
#endif
    dec_row_mt_sync->num_threads_working--;
#if CONFIG_MULTITHREAD
    pthread_mutex_unlock(pbi->row_mt_mutex_);
#endif
  }
  thread_data->error_info.setjmp = 0;
  return !td->xd.corrupted;
}

// sorts in descending order
static int compare_tile_buffers(const void *a, const void *b) {
  const TileJobsDec *const buf1 = (const TileJobsDec *)a;
  const TileJobsDec *const buf2 = (const TileJobsDec *)b;
  return (((int)buf2->tile_buffer->size) - ((int)buf1->tile_buffer->size));
}

static AOM_INLINE void enqueue_tile_jobs(AV1Decoder *pbi, AV1_COMMON *cm,
                                         int tile_rows_start, int tile_rows_end,
                                         int tile_cols_start, int tile_cols_end,
                                         int start_tile, int end_tile) {
  AV1DecTileMT *tile_mt_info = &pbi->tile_mt_info;
  TileJobsDec *tile_job_queue = tile_mt_info->job_queue;
  tile_mt_info->jobs_enqueued = 0;
  tile_mt_info->jobs_dequeued = 0;

  for (int row = tile_rows_start; row < tile_rows_end; row++) {
    for (int col = tile_cols_start; col < tile_cols_end; col++) {
      if (row * cm->tiles.cols + col < start_tile ||
          row * cm->tiles.cols + col > end_tile)
        continue;
      tile_job_queue->tile_buffer = &pbi->tile_buffers[row][col];
      tile_job_queue->tile_data = pbi->tile_data + row * cm->tiles.cols + col;
      tile_job_queue++;
      tile_mt_info->jobs_enqueued++;
    }
  }
}

static AOM_INLINE void alloc_dec_jobs(AV1DecTileMT *tile_mt_info,
                                      AV1_COMMON *cm, int tile_rows,
                                      int tile_cols) {
  tile_mt_info->alloc_tile_rows = tile_rows;
  tile_mt_info->alloc_tile_cols = tile_cols;
  int num_tiles = tile_rows * tile_cols;
#if CONFIG_MULTITHREAD
  {
    CHECK_MEM_ERROR(cm, tile_mt_info->job_mutex,
                    aom_malloc(sizeof(*tile_mt_info->job_mutex) * num_tiles));

    for (int i = 0; i < num_tiles; i++) {
      pthread_mutex_init(&tile_mt_info->job_mutex[i], NULL);
    }
  }
#endif
  CHECK_MEM_ERROR(cm, tile_mt_info->job_queue,
                  aom_malloc(sizeof(*tile_mt_info->job_queue) * num_tiles));
}

void av1_free_mc_tmp_buf(ThreadData *thread_data) {
  int ref;
  for (ref = 0; ref < 2; ref++) {
    if (thread_data->mc_buf_use_highbd)
      aom_free(CONVERT_TO_SHORTPTR(thread_data->mc_buf[ref]));
    else
      aom_free(thread_data->mc_buf[ref]);
    thread_data->mc_buf[ref] = NULL;
  }
  thread_data->mc_buf_size = 0;
  thread_data->mc_buf_use_highbd = 0;

  aom_free(thread_data->tmp_conv_dst);
  thread_data->tmp_conv_dst = NULL;
  for (int i = 0; i < 2; ++i) {
    aom_free(thread_data->tmp_obmc_bufs[i]);
    thread_data->tmp_obmc_bufs[i] = NULL;
  }
}

static AOM_INLINE void allocate_mc_tmp_buf(AV1_COMMON *const cm,
                                           ThreadData *thread_data,
                                           int buf_size, int use_highbd) {
  for (int ref = 0; ref < 2; ref++) {
    if (use_highbd) {
      uint16_t *hbd_mc_buf;
      CHECK_MEM_ERROR(cm, hbd_mc_buf, (uint16_t *)aom_memalign(16, buf_size));
      thread_data->mc_buf[ref] = CONVERT_TO_BYTEPTR(hbd_mc_buf);
    } else {
      CHECK_MEM_ERROR(cm, thread_data->mc_buf[ref],
                      (uint8_t *)aom_memalign(16, buf_size));
    }
  }
  thread_data->mc_buf_size = buf_size;
  thread_data->mc_buf_use_highbd = use_highbd;

  CHECK_MEM_ERROR(cm, thread_data->tmp_conv_dst,
                  aom_memalign(32, MAX_SB_SIZE * MAX_SB_SIZE *
                                       sizeof(*thread_data->tmp_conv_dst)));
  for (int i = 0; i < 2; ++i) {
    CHECK_MEM_ERROR(
        cm, thread_data->tmp_obmc_bufs[i],
        aom_memalign(16, 2 * MAX_MB_PLANE * MAX_SB_SQUARE *
                             sizeof(*thread_data->tmp_obmc_bufs[i])));
  }
}

static AOM_INLINE void reset_dec_workers(AV1Decoder *pbi,
                                         AVxWorkerHook worker_hook,
                                         int num_workers) {
  const AVxWorkerInterface *const winterface = aom_get_worker_interface();

  // Reset tile decoding hook
  for (int worker_idx = 0; worker_idx < num_workers; ++worker_idx) {
    AVxWorker *const worker = &pbi->tile_workers[worker_idx];
    DecWorkerData *const thread_data = pbi->thread_data + worker_idx;
    thread_data->td->xd = pbi->mb;
    thread_data->td->xd.corrupted = 0;
    thread_data->td->xd.mc_buf[0] = thread_data->td->mc_buf[0];
    thread_data->td->xd.mc_buf[1] = thread_data->td->mc_buf[1];
    thread_data->td->xd.tmp_conv_dst = thread_data->td->tmp_conv_dst;
    for (int j = 0; j < 2; ++j) {
      thread_data->td->xd.tmp_obmc_bufs[j] = thread_data->td->tmp_obmc_bufs[j];
    }
    winterface->sync(worker);

    worker->hook = worker_hook;
    worker->data1 = thread_data;
    worker->data2 = pbi;
  }
#if CONFIG_ACCOUNTING
  if (pbi->acct_enabled) {
    aom_accounting_reset(&pbi->accounting);
  }
#endif
}

static AOM_INLINE void launch_dec_workers(AV1Decoder *pbi,
                                          const uint8_t *data_end,
                                          int num_workers) {
  const AVxWorkerInterface *const winterface = aom_get_worker_interface();

  for (int worker_idx = 0; worker_idx < num_workers; ++worker_idx) {
    AVxWorker *const worker = &pbi->tile_workers[worker_idx];
    DecWorkerData *const thread_data = (DecWorkerData *)worker->data1;

    thread_data->data_end = data_end;

    worker->had_error = 0;
    if (worker_idx == num_workers - 1) {
      winterface->execute(worker);
    } else {
      winterface->launch(worker);
    }
  }
}

static AOM_INLINE void sync_dec_workers(AV1Decoder *pbi, int num_workers) {
  const AVxWorkerInterface *const winterface = aom_get_worker_interface();
  int corrupted = 0;

  for (int worker_idx = num_workers; worker_idx > 0; --worker_idx) {
    AVxWorker *const worker = &pbi->tile_workers[worker_idx - 1];
    aom_merge_corrupted_flag(&corrupted, !winterface->sync(worker));
  }

  pbi->mb.corrupted = corrupted;
}

static AOM_INLINE void decode_mt_init(AV1Decoder *pbi) {
  AV1_COMMON *const cm = &pbi->common;
  const AVxWorkerInterface *const winterface = aom_get_worker_interface();
  int worker_idx;

  // Create workers and thread_data
  if (pbi->num_workers == 0) {
    const int num_threads = pbi->max_threads;
    CHECK_MEM_ERROR(cm, pbi->tile_workers,
                    aom_malloc(num_threads * sizeof(*pbi->tile_workers)));
    CHECK_MEM_ERROR(cm, pbi->thread_data,
                    aom_malloc(num_threads * sizeof(*pbi->thread_data)));

    for (worker_idx = 0; worker_idx < num_threads; ++worker_idx) {
      AVxWorker *const worker = &pbi->tile_workers[worker_idx];
      DecWorkerData *const thread_data = pbi->thread_data + worker_idx;
      ++pbi->num_workers;

      winterface->init(worker);
      worker->thread_name = "aom tile worker";
      if (worker_idx < num_threads - 1 && !winterface->reset(worker)) {
        aom_internal_error(&cm->error, AOM_CODEC_ERROR,
                           "Tile decoder thread creation failed");
      }

      if (worker_idx < num_threads - 1) {
        // Allocate thread data.
        CHECK_MEM_ERROR(cm, thread_data->td,
                        aom_memalign(32, sizeof(*thread_data->td)));
        av1_zero(*thread_data->td);
      } else {
        // Main thread acts as a worker and uses the thread data in pbi
        thread_data->td = &pbi->td;
      }
      thread_data->error_info.error_code = AOM_CODEC_OK;
      thread_data->error_info.setjmp = 0;
    }
  }
  const int use_highbd = cm->seq_params.use_highbitdepth;
  const int buf_size = MC_TEMP_BUF_PELS << use_highbd;
  for (worker_idx = 0; worker_idx < pbi->max_threads - 1; ++worker_idx) {
    DecWorkerData *const thread_data = pbi->thread_data + worker_idx;
    if (thread_data->td->mc_buf_size != buf_size) {
      av1_free_mc_tmp_buf(thread_data->td);
      allocate_mc_tmp_buf(cm, thread_data->td, buf_size, use_highbd);
    }
  }
}

static AOM_INLINE void tile_mt_queue(AV1Decoder *pbi, int tile_cols,
                                     int tile_rows, int tile_rows_start,
                                     int tile_rows_end, int tile_cols_start,
                                     int tile_cols_end, int start_tile,
                                     int end_tile) {
  AV1_COMMON *const cm = &pbi->common;
  if (pbi->tile_mt_info.alloc_tile_cols != tile_cols ||
      pbi->tile_mt_info.alloc_tile_rows != tile_rows) {
    av1_dealloc_dec_jobs(&pbi->tile_mt_info);
    alloc_dec_jobs(&pbi->tile_mt_info, cm, tile_rows, tile_cols);
  }
  enqueue_tile_jobs(pbi, cm, tile_rows_start, tile_rows_end, tile_cols_start,
                    tile_cols_end, start_tile, end_tile);
  qsort(pbi->tile_mt_info.job_queue, pbi->tile_mt_info.jobs_enqueued,
        sizeof(pbi->tile_mt_info.job_queue[0]), compare_tile_buffers);
}

static const uint8_t *decode_tiles_mt(AV1Decoder *pbi, const uint8_t *data,
                                      const uint8_t *data_end, int start_tile,
                                      int end_tile) {
  AV1_COMMON *const cm = &pbi->common;
  CommonTileParams *const tiles = &cm->tiles;
  const int tile_cols = tiles->cols;
  const int tile_rows = tiles->rows;
  const int n_tiles = tile_cols * tile_rows;
  TileBufferDec(*const tile_buffers)[MAX_TILE_COLS] = pbi->tile_buffers;
  const int dec_tile_row = AOMMIN(pbi->dec_tile_row, tile_rows);
  const int single_row = pbi->dec_tile_row >= 0;
  const int dec_tile_col = AOMMIN(pbi->dec_tile_col, tile_cols);
  const int single_col = pbi->dec_tile_col >= 0;
  int tile_rows_start;
  int tile_rows_end;
  int tile_cols_start;
  int tile_cols_end;
  int tile_count_tg;
  int num_workers;
  const uint8_t *raw_data_end = NULL;

  if (tiles->large_scale) {
    tile_rows_start = single_row ? dec_tile_row : 0;
    tile_rows_end = single_row ? dec_tile_row + 1 : tile_rows;
    tile_cols_start = single_col ? dec_tile_col : 0;
    tile_cols_end = single_col ? tile_cols_start + 1 : tile_cols;
  } else {
    tile_rows_start = 0;
    tile_rows_end = tile_rows;
    tile_cols_start = 0;
    tile_cols_end = tile_cols;
  }
  tile_count_tg = end_tile - start_tile + 1;
  num_workers = AOMMIN(pbi->max_threads, tile_count_tg);

  // No tiles to decode.
  if (tile_rows_end <= tile_rows_start || tile_cols_end <= tile_cols_start ||
      // First tile is larger than end_tile.
      tile_rows_start * tile_cols + tile_cols_start > end_tile ||
      // Last tile is smaller than start_tile.
      (tile_rows_end - 1) * tile_cols + tile_cols_end - 1 < start_tile)
    return data;

  assert(tile_rows <= MAX_TILE_ROWS);
  assert(tile_cols <= MAX_TILE_COLS);
  assert(tile_count_tg > 0);
  assert(num_workers > 0);
  assert(start_tile <= end_tile);
  assert(start_tile >= 0 && end_tile < n_tiles);

  decode_mt_init(pbi);

  // get tile size in tile group
#if EXT_TILE_DEBUG
  if (tiles->large_scale) assert(pbi->ext_tile_debug == 1);
  if (tiles->large_scale)
    raw_data_end = get_ls_tile_buffers(pbi, data, data_end, tile_buffers);
  else
#endif  // EXT_TILE_DEBUG
    get_tile_buffers(pbi, data, data_end, tile_buffers, start_tile, end_tile);

  if (pbi->tile_data == NULL || n_tiles != pbi->allocated_tiles) {
    decoder_alloc_tile_data(pbi, n_tiles);
  }

  for (int row = 0; row < tile_rows; row++) {
    for (int col = 0; col < tile_cols; col++) {
      TileDataDec *tile_data = pbi->tile_data + row * tiles->cols + col;
      av1_tile_init(&tile_data->tile_info, cm, row, col);
    }
  }

  tile_mt_queue(pbi, tile_cols, tile_rows, tile_rows_start, tile_rows_end,
                tile_cols_start, tile_cols_end, start_tile, end_tile);

  reset_dec_workers(pbi, tile_worker_hook, num_workers);
  launch_dec_workers(pbi, data_end, num_workers);
  sync_dec_workers(pbi, num_workers);

  if (pbi->mb.corrupted)
    aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME,
                       "Failed to decode tile data");

  if (tiles->large_scale) {
    if (n_tiles == 1) {
      // Find the end of the single tile buffer
      return aom_reader_find_end(&pbi->tile_data->bit_reader);
    }
    // Return the end of the last tile buffer
    return raw_data_end;
  }
  TileDataDec *const tile_data = pbi->tile_data + end_tile;

  return aom_reader_find_end(&tile_data->bit_reader);
}

static AOM_INLINE void dec_alloc_cb_buf(AV1Decoder *pbi) {
  AV1_COMMON *const cm = &pbi->common;
  int size = ((cm->mi_params.mi_rows >> cm->seq_params.mib_size_log2) + 1) *
             ((cm->mi_params.mi_cols >> cm->seq_params.mib_size_log2) + 1);

  if (pbi->cb_buffer_alloc_size < size) {
    av1_dec_free_cb_buf(pbi);
    CHECK_MEM_ERROR(cm, pbi->cb_buffer_base,
                    aom_memalign(32, sizeof(*pbi->cb_buffer_base) * size));
    memset(pbi->cb_buffer_base, 0, sizeof(*pbi->cb_buffer_base) * size);
    pbi->cb_buffer_alloc_size = size;
  }
}

static AOM_INLINE void row_mt_frame_init(AV1Decoder *pbi, int tile_rows_start,
                                         int tile_rows_end, int tile_cols_start,
                                         int tile_cols_end, int start_tile,
                                         int end_tile, int max_sb_rows) {
  AV1_COMMON *const cm = &pbi->common;
  AV1DecRowMTInfo *frame_row_mt_info = &pbi->frame_row_mt_info;

  frame_row_mt_info->tile_rows_start = tile_rows_start;
  frame_row_mt_info->tile_rows_end = tile_rows_end;
  frame_row_mt_info->tile_cols_start = tile_cols_start;
  frame_row_mt_info->tile_cols_end = tile_cols_end;
  frame_row_mt_info->start_tile = start_tile;
  frame_row_mt_info->end_tile = end_tile;
  frame_row_mt_info->mi_rows_to_decode = 0;
  frame_row_mt_info->mi_rows_parse_done = 0;
  frame_row_mt_info->mi_rows_decode_started = 0;
  frame_row_mt_info->row_mt_exit = 0;

  for (int tile_row = tile_rows_start; tile_row < tile_rows_end; ++tile_row) {
    for (int tile_col = tile_cols_start; tile_col < tile_cols_end; ++tile_col) {
      if (tile_row * cm->tiles.cols + tile_col < start_tile ||
          tile_row * cm->tiles.cols + tile_col > end_tile)
        continue;

      TileDataDec *const tile_data =
          pbi->tile_data + tile_row * cm->tiles.cols + tile_col;
      TileInfo tile_info = tile_data->tile_info;

      tile_data->dec_row_mt_sync.mi_rows_parse_done = 0;
      tile_data->dec_row_mt_sync.mi_rows_decode_started = 0;
      tile_data->dec_row_mt_sync.num_threads_working = 0;
      tile_data->dec_row_mt_sync.mi_rows =
          ALIGN_POWER_OF_TWO(tile_info.mi_row_end - tile_info.mi_row_start,
                             cm->seq_params.mib_size_log2);
      tile_data->dec_row_mt_sync.mi_cols =
          ALIGN_POWER_OF_TWO(tile_info.mi_col_end - tile_info.mi_col_start,
                             cm->seq_params.mib_size_log2);

      frame_row_mt_info->mi_rows_to_decode +=
          tile_data->dec_row_mt_sync.mi_rows;

      // Initialize cur_sb_col to -1 for all SB rows.
      memset(tile_data->dec_row_mt_sync.cur_sb_col, -1,
             sizeof(*tile_data->dec_row_mt_sync.cur_sb_col) * max_sb_rows);
    }
  }

#if CONFIG_MULTITHREAD
  if (pbi->row_mt_mutex_ == NULL) {
    CHECK_MEM_ERROR(cm, pbi->row_mt_mutex_,
                    aom_malloc(sizeof(*(pbi->row_mt_mutex_))));
    if (pbi->row_mt_mutex_) {
      pthread_mutex_init(pbi->row_mt_mutex_, NULL);
    }
  }

  if (pbi->row_mt_cond_ == NULL) {
    CHECK_MEM_ERROR(cm, pbi->row_mt_cond_,
                    aom_malloc(sizeof(*(pbi->row_mt_cond_))));
    if (pbi->row_mt_cond_) {
      pthread_cond_init(pbi->row_mt_cond_, NULL);
    }
  }
#endif
}

static const uint8_t *decode_tiles_row_mt(AV1Decoder *pbi, const uint8_t *data,
                                          const uint8_t *data_end,
                                          int start_tile, int end_tile) {
  AV1_COMMON *const cm = &pbi->common;
  CommonTileParams *const tiles = &cm->tiles;
  const int tile_cols = tiles->cols;
  const int tile_rows = tiles->rows;
  const int n_tiles = tile_cols * tile_rows;
  TileBufferDec(*const tile_buffers)[MAX_TILE_COLS] = pbi->tile_buffers;
  const int dec_tile_row = AOMMIN(pbi->dec_tile_row, tile_rows);
  const int single_row = pbi->dec_tile_row >= 0;
  const int dec_tile_col = AOMMIN(pbi->dec_tile_col, tile_cols);
  const int single_col = pbi->dec_tile_col >= 0;
  int tile_rows_start;
  int tile_rows_end;
  int tile_cols_start;
  int tile_cols_end;
  int tile_count_tg;
  int num_workers = 0;
  int max_threads;
  const uint8_t *raw_data_end = NULL;
  int max_sb_rows = 0;

  if (tiles->large_scale) {
    tile_rows_start = single_row ? dec_tile_row : 0;
    tile_rows_end = single_row ? dec_tile_row + 1 : tile_rows;
    tile_cols_start = single_col ? dec_tile_col : 0;
    tile_cols_end = single_col ? tile_cols_start + 1 : tile_cols;
  } else {
    tile_rows_start = 0;
    tile_rows_end = tile_rows;
    tile_cols_start = 0;
    tile_cols_end = tile_cols;
  }
  tile_count_tg = end_tile - start_tile + 1;
  max_threads = pbi->max_threads;

  // No tiles to decode.
  if (tile_rows_end <= tile_rows_start || tile_cols_end <= tile_cols_start ||
      // First tile is larger than end_tile.
      tile_rows_start * tile_cols + tile_cols_start > end_tile ||
      // Last tile is smaller than start_tile.
      (tile_rows_end - 1) * tile_cols + tile_cols_end - 1 < start_tile)
    return data;

  assert(tile_rows <= MAX_TILE_ROWS);
  assert(tile_cols <= MAX_TILE_COLS);
  assert(tile_count_tg > 0);
  assert(max_threads > 0);
  assert(start_tile <= end_tile);
  assert(start_tile >= 0 && end_tile < n_tiles);

  (void)tile_count_tg;

  decode_mt_init(pbi);

  // get tile size in tile group
#if EXT_TILE_DEBUG
  if (tiles->large_scale) assert(pbi->ext_tile_debug == 1);
  if (tiles->large_scale)
    raw_data_end = get_ls_tile_buffers(pbi, data, data_end, tile_buffers);
  else
#endif  // EXT_TILE_DEBUG
    get_tile_buffers(pbi, data, data_end, tile_buffers, start_tile, end_tile);

  if (pbi->tile_data == NULL || n_tiles != pbi->allocated_tiles) {
    if (pbi->tile_data != NULL) {
      for (int i = 0; i < pbi->allocated_tiles; i++) {
        TileDataDec *const tile_data = pbi->tile_data + i;
        av1_dec_row_mt_dealloc(&tile_data->dec_row_mt_sync);
      }
    }
    decoder_alloc_tile_data(pbi, n_tiles);
  }

  for (int row = 0; row < tile_rows; row++) {
    for (int col = 0; col < tile_cols; col++) {
      TileDataDec *tile_data = pbi->tile_data + row * tiles->cols + col;
      av1_tile_init(&tile_data->tile_info, cm, row, col);

      max_sb_rows = AOMMAX(max_sb_rows,
                           av1_get_sb_rows_in_tile(cm, tile_data->tile_info));
      num_workers += get_max_row_mt_workers_per_tile(cm, tile_data->tile_info);
    }
  }
  num_workers = AOMMIN(num_workers, max_threads);

  if (pbi->allocated_row_mt_sync_rows != max_sb_rows) {
    for (int i = 0; i < n_tiles; ++i) {
      TileDataDec *const tile_data = pbi->tile_data + i;
      av1_dec_row_mt_dealloc(&tile_data->dec_row_mt_sync);
      dec_row_mt_alloc(&tile_data->dec_row_mt_sync, cm, max_sb_rows);
    }
    pbi->allocated_row_mt_sync_rows = max_sb_rows;
  }

  tile_mt_queue(pbi, tile_cols, tile_rows, tile_rows_start, tile_rows_end,
                tile_cols_start, tile_cols_end, start_tile, end_tile);

  dec_alloc_cb_buf(pbi);

  row_mt_frame_init(pbi, tile_rows_start, tile_rows_end, tile_cols_start,
                    tile_cols_end, start_tile, end_tile, max_sb_rows);

  reset_dec_workers(pbi, row_mt_worker_hook, num_workers);
  launch_dec_workers(pbi, data_end, num_workers);
  sync_dec_workers(pbi, num_workers);

  if (pbi->mb.corrupted)
    aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME,
                       "Failed to decode tile data");

  if (tiles->large_scale) {
    if (n_tiles == 1) {
      // Find the end of the single tile buffer
      return aom_reader_find_end(&pbi->tile_data->bit_reader);
    }
    // Return the end of the last tile buffer
    return raw_data_end;
  }
  TileDataDec *const tile_data = pbi->tile_data + end_tile;

  return aom_reader_find_end(&tile_data->bit_reader);
}

static AOM_INLINE void error_handler(void *data) {
  AV1_COMMON *const cm = (AV1_COMMON *)data;
  aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, "Truncated packet");
}

// Reads the high_bitdepth and twelve_bit fields in color_config() and sets
// seq_params->bit_depth based on the values of those fields and
// seq_params->profile. Reports errors by calling rb->error_handler() or
// aom_internal_error().
static AOM_INLINE void read_bitdepth(
    struct aom_read_bit_buffer *rb, SequenceHeader *seq_params,
    struct aom_internal_error_info *error_info) {
  const int high_bitdepth = aom_rb_read_bit(rb);
  if (seq_params->profile == PROFILE_2 && high_bitdepth) {
    const int twelve_bit = aom_rb_read_bit(rb);
    seq_params->bit_depth = twelve_bit ? AOM_BITS_12 : AOM_BITS_10;
  } else if (seq_params->profile <= PROFILE_2) {
    seq_params->bit_depth = high_bitdepth ? AOM_BITS_10 : AOM_BITS_8;
  } else {
    aom_internal_error(error_info, AOM_CODEC_UNSUP_BITSTREAM,
                       "Unsupported profile/bit-depth combination");
  }
#if !CONFIG_AV1_HIGHBITDEPTH
  if (seq_params->bit_depth > AOM_BITS_8) {
    aom_internal_error(error_info, AOM_CODEC_UNSUP_BITSTREAM,
                       "Bit-depth %d not supported", seq_params->bit_depth);
  }
#endif
}

void av1_read_film_grain_params(AV1_COMMON *cm,
                                struct aom_read_bit_buffer *rb) {
  aom_film_grain_t *pars = &cm->film_grain_params;
  const SequenceHeader *const seq_params = &cm->seq_params;

  pars->apply_grain = aom_rb_read_bit(rb);
  if (!pars->apply_grain) {
    memset(pars, 0, sizeof(*pars));
    return;
  }

  pars->random_seed = aom_rb_read_literal(rb, 16);
  if (cm->current_frame.frame_type == INTER_FRAME)
    pars->update_parameters = aom_rb_read_bit(rb);
  else
    pars->update_parameters = 1;

  pars->bit_depth = seq_params->bit_depth;

  if (!pars->update_parameters) {
    // inherit parameters from a previous reference frame
    int film_grain_params_ref_idx = aom_rb_read_literal(rb, 3);
    // Section 6.8.20: It is a requirement of bitstream conformance that
    // film_grain_params_ref_idx is equal to ref_frame_idx[ j ] for some value
    // of j in the range 0 to REFS_PER_FRAME - 1.
    int found = 0;
    for (int i = 0; i < INTER_REFS_PER_FRAME; ++i) {
      if (film_grain_params_ref_idx == cm->remapped_ref_idx[i]) {
        found = 1;
        break;
      }
    }
    if (!found) {
      aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM,
                         "Invalid film grain reference idx %d. ref_frame_idx = "
                         "{%d, %d, %d, %d, %d, %d, %d}",
                         film_grain_params_ref_idx, cm->remapped_ref_idx[0],
                         cm->remapped_ref_idx[1], cm->remapped_ref_idx[2],
                         cm->remapped_ref_idx[3], cm->remapped_ref_idx[4],
                         cm->remapped_ref_idx[5], cm->remapped_ref_idx[6]);
    }
    RefCntBuffer *const buf = cm->ref_frame_map[film_grain_params_ref_idx];
    if (buf == NULL) {
      aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM,
                         "Invalid Film grain reference idx");
    }
    if (!buf->film_grain_params_present) {
      aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM,
                         "Film grain reference parameters not available");
    }
    uint16_t random_seed = pars->random_seed;
    *pars = buf->film_grain_params;   // inherit paramaters
    pars->random_seed = random_seed;  // with new random seed
    return;
  }

  // Scaling functions parameters
  pars->num_y_points = aom_rb_read_literal(rb, 4);  // max 14
  if (pars->num_y_points > 14)
    aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM,
                       "Number of points for film grain luma scaling function "
                       "exceeds the maximum value.");
  for (int i = 0; i < pars->num_y_points; i++) {
    pars->scaling_points_y[i][0] = aom_rb_read_literal(rb, 8);
    if (i && pars->scaling_points_y[i - 1][0] >= pars->scaling_points_y[i][0])
      aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM,
                         "First coordinate of the scaling function points "
                         "shall be increasing.");
    pars->scaling_points_y[i][1] = aom_rb_read_literal(rb, 8);
  }

  if (!seq_params->monochrome)
    pars->chroma_scaling_from_luma = aom_rb_read_bit(rb);
  else
    pars->chroma_scaling_from_luma = 0;

  if (seq_params->monochrome || pars->chroma_scaling_from_luma ||
      ((seq_params->subsampling_x == 1) && (seq_params->subsampling_y == 1) &&
       (pars->num_y_points == 0))) {
    pars->num_cb_points = 0;
    pars->num_cr_points = 0;
  } else {
    pars->num_cb_points = aom_rb_read_literal(rb, 4);  // max 10
    if (pars->num_cb_points > 10)
      aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM,
                         "Number of points for film grain cb scaling function "
                         "exceeds the maximum value.");
    for (int i = 0; i < pars->num_cb_points; i++) {
      pars->scaling_points_cb[i][0] = aom_rb_read_literal(rb, 8);
      if (i &&
          pars->scaling_points_cb[i - 1][0] >= pars->scaling_points_cb[i][0])
        aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM,
                           "First coordinate of the scaling function points "
                           "shall be increasing.");
      pars->scaling_points_cb[i][1] = aom_rb_read_literal(rb, 8);
    }

    pars->num_cr_points = aom_rb_read_literal(rb, 4);  // max 10
    if (pars->num_cr_points > 10)
      aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM,
                         "Number of points for film grain cr scaling function "
                         "exceeds the maximum value.");
    for (int i = 0; i < pars->num_cr_points; i++) {
      pars->scaling_points_cr[i][0] = aom_rb_read_literal(rb, 8);
      if (i &&
          pars->scaling_points_cr[i - 1][0] >= pars->scaling_points_cr[i][0])
        aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM,
                           "First coordinate of the scaling function points "
                           "shall be increasing.");
      pars->scaling_points_cr[i][1] = aom_rb_read_literal(rb, 8);
    }

    if ((seq_params->subsampling_x == 1) && (seq_params->subsampling_y == 1) &&
        (((pars->num_cb_points == 0) && (pars->num_cr_points != 0)) ||
         ((pars->num_cb_points != 0) && (pars->num_cr_points == 0))))
      aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM,
                         "In YCbCr 4:2:0, film grain shall be applied "
                         "to both chroma components or neither.");
  }

  pars->scaling_shift = aom_rb_read_literal(rb, 2) + 8;  // 8 + value

  // AR coefficients
  // Only sent if the corresponsing scaling function has
  // more than 0 points

  pars->ar_coeff_lag = aom_rb_read_literal(rb, 2);

  int num_pos_luma = 2 * pars->ar_coeff_lag * (pars->ar_coeff_lag + 1);
  int num_pos_chroma = num_pos_luma;
  if (pars->num_y_points > 0) ++num_pos_chroma;

  if (pars->num_y_points)
    for (int i = 0; i < num_pos_luma; i++)
      pars->ar_coeffs_y[i] = aom_rb_read_literal(rb, 8) - 128;

  if (pars->num_cb_points || pars->chroma_scaling_from_luma)
    for (int i = 0; i < num_pos_chroma; i++)
      pars->ar_coeffs_cb[i] = aom_rb_read_literal(rb, 8) - 128;

  if (pars->num_cr_points || pars->chroma_scaling_from_luma)
    for (int i = 0; i < num_pos_chroma; i++)
      pars->ar_coeffs_cr[i] = aom_rb_read_literal(rb, 8) - 128;

  pars->ar_coeff_shift = aom_rb_read_literal(rb, 2) + 6;  // 6 + value

  pars->grain_scale_shift = aom_rb_read_literal(rb, 2);

  if (pars->num_cb_points) {
    pars->cb_mult = aom_rb_read_literal(rb, 8);
    pars->cb_luma_mult = aom_rb_read_literal(rb, 8);
    pars->cb_offset = aom_rb_read_literal(rb, 9);
  }

  if (pars->num_cr_points) {
    pars->cr_mult = aom_rb_read_literal(rb, 8);
    pars->cr_luma_mult = aom_rb_read_literal(rb, 8);
    pars->cr_offset = aom_rb_read_literal(rb, 9);
  }

  pars->overlap_flag = aom_rb_read_bit(rb);

  pars->clip_to_restricted_range = aom_rb_read_bit(rb);
}

static AOM_INLINE void read_film_grain(AV1_COMMON *cm,
                                       struct aom_read_bit_buffer *rb) {
  if (cm->seq_params.film_grain_params_present &&
      (cm->show_frame || cm->showable_frame)) {
    av1_read_film_grain_params(cm, rb);
  } else {
    memset(&cm->film_grain_params, 0, sizeof(cm->film_grain_params));
  }
  cm->film_grain_params.bit_depth = cm->seq_params.bit_depth;
  memcpy(&cm->cur_frame->film_grain_params, &cm->film_grain_params,
         sizeof(aom_film_grain_t));
}

void av1_read_color_config(struct aom_read_bit_buffer *rb,
                           int allow_lowbitdepth, SequenceHeader *seq_params,
                           struct aom_internal_error_info *error_info) {
  read_bitdepth(rb, seq_params, error_info);

  seq_params->use_highbitdepth =
      seq_params->bit_depth > AOM_BITS_8 || !allow_lowbitdepth;
  // monochrome bit (not needed for PROFILE_1)
  const int is_monochrome =
      seq_params->profile != PROFILE_1 ? aom_rb_read_bit(rb) : 0;
  seq_params->monochrome = is_monochrome;
  int color_description_present_flag = aom_rb_read_bit(rb);
  if (color_description_present_flag) {
    seq_params->color_primaries = aom_rb_read_literal(rb, 8);
    seq_params->transfer_characteristics = aom_rb_read_literal(rb, 8);
    seq_params->matrix_coefficients = aom_rb_read_literal(rb, 8);
  } else {
    seq_params->color_primaries = AOM_CICP_CP_UNSPECIFIED;
    seq_params->transfer_characteristics = AOM_CICP_TC_UNSPECIFIED;
    seq_params->matrix_coefficients = AOM_CICP_MC_UNSPECIFIED;
  }
  if (is_monochrome) {
    // [16,235] (including xvycc) vs [0,255] range
    seq_params->color_range = aom_rb_read_bit(rb);
    seq_params->subsampling_y = seq_params->subsampling_x = 1;
    seq_params->chroma_sample_position = AOM_CSP_UNKNOWN;
    seq_params->separate_uv_delta_q = 0;
    return;
  }
  if (seq_params->color_primaries == AOM_CICP_CP_BT_709 &&
      seq_params->transfer_characteristics == AOM_CICP_TC_SRGB &&
      seq_params->matrix_coefficients == AOM_CICP_MC_IDENTITY) {
    seq_params->subsampling_y = seq_params->subsampling_x = 0;
    seq_params->color_range = 1;  // assume full color-range
    if (!(seq_params->profile == PROFILE_1 ||
          (seq_params->profile == PROFILE_2 &&
           seq_params->bit_depth == AOM_BITS_12))) {
      aom_internal_error(
          error_info, AOM_CODEC_UNSUP_BITSTREAM,
          "sRGB colorspace not compatible with specified profile");
    }
  } else {
    // [16,235] (including xvycc) vs [0,255] range
    seq_params->color_range = aom_rb_read_bit(rb);
    if (seq_params->profile == PROFILE_0) {
      // 420 only
      seq_params->subsampling_x = seq_params->subsampling_y = 1;
    } else if (seq_params->profile == PROFILE_1) {
      // 444 only
      seq_params->subsampling_x = seq_params->subsampling_y = 0;
    } else {
      assert(seq_params->profile == PROFILE_2);
      if (seq_params->bit_depth == AOM_BITS_12) {
        seq_params->subsampling_x = aom_rb_read_bit(rb);
        if (seq_params->subsampling_x)
          seq_params->subsampling_y = aom_rb_read_bit(rb);  // 422 or 420
        else
          seq_params->subsampling_y = 0;  // 444
      } else {
        // 422
        seq_params->subsampling_x = 1;
        seq_params->subsampling_y = 0;
      }
    }
    if (seq_params->matrix_coefficients == AOM_CICP_MC_IDENTITY &&
        (seq_params->subsampling_x || seq_params->subsampling_y)) {
      aom_internal_error(
          error_info, AOM_CODEC_UNSUP_BITSTREAM,
          "Identity CICP Matrix incompatible with non 4:4:4 color sampling");
    }
    if (seq_params->subsampling_x && seq_params->subsampling_y) {
      seq_params->chroma_sample_position = aom_rb_read_literal(rb, 2);
    }
  }
  seq_params->separate_uv_delta_q = aom_rb_read_bit(rb);
}

void av1_read_timing_info_header(aom_timing_info_t *timing_info,
                                 struct aom_internal_error_info *error,
                                 struct aom_read_bit_buffer *rb) {
  timing_info->num_units_in_display_tick =
      aom_rb_read_unsigned_literal(rb,
                                   32);  // Number of units in a display tick
  timing_info->time_scale = aom_rb_read_unsigned_literal(rb, 32);  // Time scale
  if (timing_info->num_units_in_display_tick == 0 ||
      timing_info->time_scale == 0) {
    aom_internal_error(
        error, AOM_CODEC_UNSUP_BITSTREAM,
        "num_units_in_display_tick and time_scale must be greater than 0.");
  }
  timing_info->equal_picture_interval =
      aom_rb_read_bit(rb);  // Equal picture interval bit
  if (timing_info->equal_picture_interval) {
    const uint32_t num_ticks_per_picture_minus_1 = aom_rb_read_uvlc(rb);
    if (num_ticks_per_picture_minus_1 == UINT32_MAX) {
      aom_internal_error(
          error, AOM_CODEC_UNSUP_BITSTREAM,
          "num_ticks_per_picture_minus_1 cannot be (1 << 32) − 1.");
    }
    timing_info->num_ticks_per_picture = num_ticks_per_picture_minus_1 + 1;
  }
}

void av1_read_decoder_model_info(aom_dec_model_info_t *decoder_model_info,
                                 struct aom_read_bit_buffer *rb) {
  decoder_model_info->encoder_decoder_buffer_delay_length =
      aom_rb_read_literal(rb, 5) + 1;
  decoder_model_info->num_units_in_decoding_tick =
      aom_rb_read_unsigned_literal(rb,
                                   32);  // Number of units in a decoding tick
  decoder_model_info->buffer_removal_time_length =
      aom_rb_read_literal(rb, 5) + 1;
  decoder_model_info->frame_presentation_time_length =
      aom_rb_read_literal(rb, 5) + 1;
}

void av1_read_op_parameters_info(aom_dec_model_op_parameters_t *op_params,
                                 int buffer_delay_length,
                                 struct aom_read_bit_buffer *rb) {
  op_params->decoder_buffer_delay =
      aom_rb_read_unsigned_literal(rb, buffer_delay_length);
  op_params->encoder_buffer_delay =
      aom_rb_read_unsigned_literal(rb, buffer_delay_length);
  op_params->low_delay_mode_flag = aom_rb_read_bit(rb);
}

static AOM_INLINE void read_temporal_point_info(
    AV1_COMMON *const cm, struct aom_read_bit_buffer *rb) {
  cm->frame_presentation_time = aom_rb_read_unsigned_literal(
      rb, cm->seq_params.decoder_model_info.frame_presentation_time_length);
}

void av1_read_sequence_header(AV1_COMMON *cm, struct aom_read_bit_buffer *rb,
                              SequenceHeader *seq_params) {
  const int num_bits_width = aom_rb_read_literal(rb, 4) + 1;
  const int num_bits_height = aom_rb_read_literal(rb, 4) + 1;
  const int max_frame_width = aom_rb_read_literal(rb, num_bits_width) + 1;
  const int max_frame_height = aom_rb_read_literal(rb, num_bits_height) + 1;

  seq_params->num_bits_width = num_bits_width;
  seq_params->num_bits_height = num_bits_height;
  seq_params->max_frame_width = max_frame_width;
  seq_params->max_frame_height = max_frame_height;

  if (seq_params->reduced_still_picture_hdr) {
    seq_params->frame_id_numbers_present_flag = 0;
  } else {
    seq_params->frame_id_numbers_present_flag = aom_rb_read_bit(rb);
  }
  if (seq_params->frame_id_numbers_present_flag) {
    // We must always have delta_frame_id_length < frame_id_length,
    // in order for a frame to be referenced with a unique delta.
    // Avoid wasting bits by using a coding that enforces this restriction.
    seq_params->delta_frame_id_length = aom_rb_read_literal(rb, 4) + 2;
    seq_params->frame_id_length =
        aom_rb_read_literal(rb, 3) + seq_params->delta_frame_id_length + 1;
    if (seq_params->frame_id_length > 16)
      aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME,
                         "Invalid frame_id_length");
  }

  setup_sb_size(seq_params, rb);

  seq_params->enable_filter_intra = aom_rb_read_bit(rb);
  seq_params->enable_intra_edge_filter = aom_rb_read_bit(rb);

  if (seq_params->reduced_still_picture_hdr) {
    seq_params->enable_interintra_compound = 0;
    seq_params->enable_masked_compound = 0;
    seq_params->enable_warped_motion = 0;
    seq_params->enable_dual_filter = 0;
    seq_params->order_hint_info.enable_order_hint = 0;
    seq_params->order_hint_info.enable_dist_wtd_comp = 0;
    seq_params->order_hint_info.enable_ref_frame_mvs = 0;
    seq_params->force_screen_content_tools = 2;  // SELECT_SCREEN_CONTENT_TOOLS
    seq_params->force_integer_mv = 2;            // SELECT_INTEGER_MV
    seq_params->order_hint_info.order_hint_bits_minus_1 = -1;
  } else {
    seq_params->enable_interintra_compound = aom_rb_read_bit(rb);
    seq_params->enable_masked_compound = aom_rb_read_bit(rb);
    seq_params->enable_warped_motion = aom_rb_read_bit(rb);
    seq_params->enable_dual_filter = aom_rb_read_bit(rb);

    seq_params->order_hint_info.enable_order_hint = aom_rb_read_bit(rb);
    seq_params->order_hint_info.enable_dist_wtd_comp =
        seq_params->order_hint_info.enable_order_hint ? aom_rb_read_bit(rb) : 0;
    seq_params->order_hint_info.enable_ref_frame_mvs =
        seq_params->order_hint_info.enable_order_hint ? aom_rb_read_bit(rb) : 0;

    if (aom_rb_read_bit(rb)) {
      seq_params->force_screen_content_tools =
          2;  // SELECT_SCREEN_CONTENT_TOOLS
    } else {
      seq_params->force_screen_content_tools = aom_rb_read_bit(rb);
    }

    if (seq_params->force_screen_content_tools > 0) {
      if (aom_rb_read_bit(rb)) {
        seq_params->force_integer_mv = 2;  // SELECT_INTEGER_MV
      } else {
        seq_params->force_integer_mv = aom_rb_read_bit(rb);
      }
    } else {
      seq_params->force_integer_mv = 2;  // SELECT_INTEGER_MV
    }
    seq_params->order_hint_info.order_hint_bits_minus_1 =
        seq_params->order_hint_info.enable_order_hint
            ? aom_rb_read_literal(rb, 3)
            : -1;
  }

  seq_params->enable_superres = aom_rb_read_bit(rb);
  seq_params->enable_cdef = aom_rb_read_bit(rb);
  seq_params->enable_restoration = aom_rb_read_bit(rb);
}

static int read_global_motion_params(WarpedMotionParams *params,
                                     const WarpedMotionParams *ref_params,
                                     struct aom_read_bit_buffer *rb,
                                     int allow_hp) {
  TransformationType type = aom_rb_read_bit(rb);
  if (type != IDENTITY) {
    if (aom_rb_read_bit(rb))
      type = ROTZOOM;
    else
      type = aom_rb_read_bit(rb) ? TRANSLATION : AFFINE;
  }

  *params = default_warp_params;
  params->wmtype = type;

  if (type >= ROTZOOM) {
    params->wmmat[2] = aom_rb_read_signed_primitive_refsubexpfin(
                           rb, GM_ALPHA_MAX + 1, SUBEXPFIN_K,
                           (ref_params->wmmat[2] >> GM_ALPHA_PREC_DIFF) -
                               (1 << GM_ALPHA_PREC_BITS)) *
                           GM_ALPHA_DECODE_FACTOR +
                       (1 << WARPEDMODEL_PREC_BITS);
    params->wmmat[3] = aom_rb_read_signed_primitive_refsubexpfin(
                           rb, GM_ALPHA_MAX + 1, SUBEXPFIN_K,
                           (ref_params->wmmat[3] >> GM_ALPHA_PREC_DIFF)) *
                       GM_ALPHA_DECODE_FACTOR;
  }

  if (type >= AFFINE) {
    params->wmmat[4] = aom_rb_read_signed_primitive_refsubexpfin(
                           rb, GM_ALPHA_MAX + 1, SUBEXPFIN_K,
                           (ref_params->wmmat[4] >> GM_ALPHA_PREC_DIFF)) *
                       GM_ALPHA_DECODE_FACTOR;
    params->wmmat[5] = aom_rb_read_signed_primitive_refsubexpfin(
                           rb, GM_ALPHA_MAX + 1, SUBEXPFIN_K,
                           (ref_params->wmmat[5] >> GM_ALPHA_PREC_DIFF) -
                               (1 << GM_ALPHA_PREC_BITS)) *
                           GM_ALPHA_DECODE_FACTOR +
                       (1 << WARPEDMODEL_PREC_BITS);
  } else {
    params->wmmat[4] = -params->wmmat[3];
    params->wmmat[5] = params->wmmat[2];
  }

  if (type >= TRANSLATION) {
    const int trans_bits = (type == TRANSLATION)
                               ? GM_ABS_TRANS_ONLY_BITS - !allow_hp
                               : GM_ABS_TRANS_BITS;
    const int trans_dec_factor =
        (type == TRANSLATION) ? GM_TRANS_ONLY_DECODE_FACTOR * (1 << !allow_hp)
                              : GM_TRANS_DECODE_FACTOR;
    const int trans_prec_diff = (type == TRANSLATION)
                                    ? GM_TRANS_ONLY_PREC_DIFF + !allow_hp
                                    : GM_TRANS_PREC_DIFF;
    params->wmmat[0] = aom_rb_read_signed_primitive_refsubexpfin(
                           rb, (1 << trans_bits) + 1, SUBEXPFIN_K,
                           (ref_params->wmmat[0] >> trans_prec_diff)) *
                       trans_dec_factor;
    params->wmmat[1] = aom_rb_read_signed_primitive_refsubexpfin(
                           rb, (1 << trans_bits) + 1, SUBEXPFIN_K,
                           (ref_params->wmmat[1] >> trans_prec_diff)) *
                       trans_dec_factor;
  }

  if (params->wmtype <= AFFINE) {
    int good_shear_params = av1_get_shear_params(params);
    if (!good_shear_params) return 0;
  }

  return 1;
}

static AOM_INLINE void read_global_motion(AV1_COMMON *cm,
                                          struct aom_read_bit_buffer *rb) {
  for (int frame = LAST_FRAME; frame <= ALTREF_FRAME; ++frame) {
    const WarpedMotionParams *ref_params =
        cm->prev_frame ? &cm->prev_frame->global_motion[frame]
                       : &default_warp_params;
    int good_params =
        read_global_motion_params(&cm->global_motion[frame], ref_params, rb,
                                  cm->features.allow_high_precision_mv);
    if (!good_params) {
#if WARPED_MOTION_DEBUG
      printf("Warning: unexpected global motion shear params from aomenc\n");
#endif
      cm->global_motion[frame].invalid = 1;
    }

    // TODO(sarahparker, debargha): The logic in the commented out code below
    // does not work currently and causes mismatches when resize is on. Fix it
    // before turning the optimization back on.
    /*
    YV12_BUFFER_CONFIG *ref_buf = get_ref_frame(cm, frame);
    if (cm->width == ref_buf->y_crop_width &&
        cm->height == ref_buf->y_crop_height) {
      read_global_motion_params(&cm->global_motion[frame],
                                &cm->prev_frame->global_motion[frame], rb,
                                cm->features.allow_high_precision_mv);
    } else {
      cm->global_motion[frame] = default_warp_params;
    }
    */
    /*
    printf("Dec Ref %d [%d/%d]: %d %d %d %d\n",
           frame, cm->current_frame.frame_number, cm->show_frame,
           cm->global_motion[frame].wmmat[0],
           cm->global_motion[frame].wmmat[1],
           cm->global_motion[frame].wmmat[2],
           cm->global_motion[frame].wmmat[3]);
           */
  }
  memcpy(cm->cur_frame->global_motion, cm->global_motion,
         REF_FRAMES * sizeof(WarpedMotionParams));
}

// Release the references to the frame buffers in cm->ref_frame_map and reset
// all elements of cm->ref_frame_map to NULL.
static AOM_INLINE void reset_ref_frame_map(AV1_COMMON *const cm) {
  BufferPool *const pool = cm->buffer_pool;

  for (int i = 0; i < REF_FRAMES; i++) {
    decrease_ref_count(cm->ref_frame_map[i], pool);
    cm->ref_frame_map[i] = NULL;
  }
}

// If the refresh_frame_flags bitmask is set, update reference frame id values
// and mark frames as valid for reference.
static AOM_INLINE void update_ref_frame_id(AV1Decoder *const pbi) {
  AV1_COMMON *const cm = &pbi->common;
  int refresh_frame_flags = cm->current_frame.refresh_frame_flags;
  for (int i = 0; i < REF_FRAMES; i++) {
    if ((refresh_frame_flags >> i) & 1) {
      cm->ref_frame_id[i] = cm->current_frame_id;
      pbi->valid_for_referencing[i] = 1;
    }
  }
}

static AOM_INLINE void show_existing_frame_reset(AV1Decoder *const pbi,
                                                 int existing_frame_idx) {
  AV1_COMMON *const cm = &pbi->common;

  assert(cm->show_existing_frame);

  cm->current_frame.frame_type = KEY_FRAME;

  cm->current_frame.refresh_frame_flags = (1 << REF_FRAMES) - 1;

  for (int i = 0; i < INTER_REFS_PER_FRAME; ++i) {
    cm->remapped_ref_idx[i] = INVALID_IDX;
  }

  if (pbi->need_resync) {
    reset_ref_frame_map(cm);
    pbi->need_resync = 0;
  }

  // Note that the displayed frame must be valid for referencing in order to
  // have been selected.
  cm->current_frame_id = cm->ref_frame_id[existing_frame_idx];
  update_ref_frame_id(pbi);

  cm->features.refresh_frame_context = REFRESH_FRAME_CONTEXT_DISABLED;
}

static INLINE void reset_frame_buffers(AV1_COMMON *cm) {
  RefCntBuffer *const frame_bufs = cm->buffer_pool->frame_bufs;
  int i;

  lock_buffer_pool(cm->buffer_pool);
  reset_ref_frame_map(cm);
  assert(cm->cur_frame->ref_count == 1);
  for (i = 0; i < FRAME_BUFFERS; ++i) {
    // Reset all unreferenced frame buffers. We can also reset cm->cur_frame
    // because we are the sole owner of cm->cur_frame.
    if (frame_bufs[i].ref_count > 0 && &frame_bufs[i] != cm->cur_frame) {
      continue;
    }
    frame_bufs[i].order_hint = 0;
    av1_zero(frame_bufs[i].ref_order_hints);
  }
  av1_zero_unused_internal_frame_buffers(&cm->buffer_pool->int_frame_buffers);
  unlock_buffer_pool(cm->buffer_pool);
}

// On success, returns 0. On failure, calls aom_internal_error and does not
// return.
static int read_uncompressed_header(AV1Decoder *pbi,
                                    struct aom_read_bit_buffer *rb) {
  AV1_COMMON *const cm = &pbi->common;
  const SequenceHeader *const seq_params = &cm->seq_params;
  CurrentFrame *const current_frame = &cm->current_frame;
  FeatureFlags *const features = &cm->features;
  MACROBLOCKD *const xd = &pbi->mb;
  BufferPool *const pool = cm->buffer_pool;
  RefCntBuffer *const frame_bufs = pool->frame_bufs;

  if (!pbi->sequence_header_ready) {
    aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME,
                       "No sequence header");
  }

  if (seq_params->reduced_still_picture_hdr) {
    cm->show_existing_frame = 0;
    cm->show_frame = 1;
    current_frame->frame_type = KEY_FRAME;
    if (pbi->sequence_header_changed) {
      // This is the start of a new coded video sequence.
      pbi->sequence_header_changed = 0;
      pbi->decoding_first_frame = 1;
      reset_frame_buffers(cm);
    }
    features->error_resilient_mode = 1;
  } else {
    cm->show_existing_frame = aom_rb_read_bit(rb);
    pbi->reset_decoder_state = 0;

    if (cm->show_existing_frame) {
      if (pbi->sequence_header_changed) {
        aom_internal_error(
            &cm->error, AOM_CODEC_CORRUPT_FRAME,
            "New sequence header starts with a show_existing_frame.");
      }
      // Show an existing frame directly.
      const int existing_frame_idx = aom_rb_read_literal(rb, 3);
      RefCntBuffer *const frame_to_show = cm->ref_frame_map[existing_frame_idx];
      if (frame_to_show == NULL) {
        aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM,
                           "Buffer does not contain a decoded frame");
      }
      if (seq_params->decoder_model_info_present_flag &&
          seq_params->timing_info.equal_picture_interval == 0) {
        read_temporal_point_info(cm, rb);
      }
      if (seq_params->frame_id_numbers_present_flag) {
        int frame_id_length = seq_params->frame_id_length;
        int display_frame_id = aom_rb_read_literal(rb, frame_id_length);
        /* Compare display_frame_id with ref_frame_id and check valid for
         * referencing */
        if (display_frame_id != cm->ref_frame_id[existing_frame_idx] ||
            pbi->valid_for_referencing[existing_frame_idx] == 0)
          aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME,
                             "Reference buffer frame ID mismatch");
      }
      lock_buffer_pool(pool);
      assert(frame_to_show->ref_count > 0);
      // cm->cur_frame should be the buffer referenced by the return value
      // of the get_free_fb() call in assign_cur_frame_new_fb() (called by
      // av1_receive_compressed_data()), so the ref_count should be 1.
      assert(cm->cur_frame->ref_count == 1);
      // assign_frame_buffer_p() decrements ref_count directly rather than
      // call decrease_ref_count(). If cm->cur_frame->raw_frame_buffer has
      // already been allocated, it will not be released by
      // assign_frame_buffer_p()!
      assert(!cm->cur_frame->raw_frame_buffer.data);
      assign_frame_buffer_p(&cm->cur_frame, frame_to_show);
      pbi->reset_decoder_state = frame_to_show->frame_type == KEY_FRAME;
      unlock_buffer_pool(pool);

      cm->lf.filter_level[0] = 0;
      cm->lf.filter_level[1] = 0;
      cm->show_frame = 1;

      // Section 6.8.2: It is a requirement of bitstream conformance that when
      // show_existing_frame is used to show a previous frame, that the value
      // of showable_frame for the previous frame was equal to 1.
      if (!frame_to_show->showable_frame) {
        aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM,
                           "Buffer does not contain a showable frame");
      }
      // Section 6.8.2: It is a requirement of bitstream conformance that when
      // show_existing_frame is used to show a previous frame with
      // RefFrameType[ frame_to_show_map_idx ] equal to KEY_FRAME, that the
      // frame is output via the show_existing_frame mechanism at most once.
      if (pbi->reset_decoder_state) frame_to_show->showable_frame = 0;

      cm->film_grain_params = frame_to_show->film_grain_params;

      if (pbi->reset_decoder_state) {
        show_existing_frame_reset(pbi, existing_frame_idx);
      } else {
        current_frame->refresh_frame_flags = 0;
      }

      return 0;
    }

    current_frame->frame_type = (FRAME_TYPE)aom_rb_read_literal(rb, 2);
    if (pbi->sequence_header_changed) {
      if (current_frame->frame_type == KEY_FRAME) {
        // This is the start of a new coded video sequence.
        pbi->sequence_header_changed = 0;
        pbi->decoding_first_frame = 1;
        reset_frame_buffers(cm);
      } else {
        aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME,
                           "Sequence header has changed without a keyframe.");
      }
    }

    cm->show_frame = aom_rb_read_bit(rb);
    if (seq_params->still_picture &&
        (current_frame->frame_type != KEY_FRAME || !cm->show_frame)) {
      aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME,
                         "Still pictures must be coded as shown keyframes");
    }
    cm->showable_frame = current_frame->frame_type != KEY_FRAME;
    if (cm->show_frame) {
      if (seq_params->decoder_model_info_present_flag &&
          seq_params->timing_info.equal_picture_interval == 0)
        read_temporal_point_info(cm, rb);
    } else {
      // See if this frame can be used as show_existing_frame in future
      cm->showable_frame = aom_rb_read_bit(rb);
    }
    cm->cur_frame->showable_frame = cm->showable_frame;
    features->error_resilient_mode =
        frame_is_sframe(cm) ||
                (current_frame->frame_type == KEY_FRAME && cm->show_frame)
            ? 1
            : aom_rb_read_bit(rb);
  }

  if (current_frame->frame_type == KEY_FRAME && cm->show_frame) {
    /* All frames need to be marked as not valid for referencing */
    for (int i = 0; i < REF_FRAMES; i++) {
      pbi->valid_for_referencing[i] = 0;
    }
  }
  features->disable_cdf_update = aom_rb_read_bit(rb);
  if (seq_params->force_screen_content_tools == 2) {
    features->allow_screen_content_tools = aom_rb_read_bit(rb);
  } else {
    features->allow_screen_content_tools =
        seq_params->force_screen_content_tools;
  }

  if (features->allow_screen_content_tools) {
    if (seq_params->force_integer_mv == 2) {
      features->cur_frame_force_integer_mv = aom_rb_read_bit(rb);
    } else {
      features->cur_frame_force_integer_mv = seq_params->force_integer_mv;
    }
  } else {
    features->cur_frame_force_integer_mv = 0;
  }

  int frame_size_override_flag = 0;
  features->allow_intrabc = 0;
  features->primary_ref_frame = PRIMARY_REF_NONE;

  if (!seq_params->reduced_still_picture_hdr) {
    if (seq_params->frame_id_numbers_present_flag) {
      int frame_id_length = seq_params->frame_id_length;
      int diff_len = seq_params->delta_frame_id_length;
      int prev_frame_id = 0;
      int have_prev_frame_id =
          !pbi->decoding_first_frame &&
          !(current_frame->frame_type == KEY_FRAME && cm->show_frame);
      if (have_prev_frame_id) {
        prev_frame_id = cm->current_frame_id;
      }
      cm->current_frame_id = aom_rb_read_literal(rb, frame_id_length);

      if (have_prev_frame_id) {
        int diff_frame_id;
        if (cm->current_frame_id > prev_frame_id) {
          diff_frame_id = cm->current_frame_id - prev_frame_id;
        } else {
          diff_frame_id =
              (1 << frame_id_length) + cm->current_frame_id - prev_frame_id;
        }
        /* Check current_frame_id for conformance */
        if (prev_frame_id == cm->current_frame_id ||
            diff_frame_id >= (1 << (frame_id_length - 1))) {
          aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME,
                             "Invalid value of current_frame_id");
        }
      }
      /* Check if some frames need to be marked as not valid for referencing */
      for (int i = 0; i < REF_FRAMES; i++) {
        if (cm->current_frame_id - (1 << diff_len) > 0) {
          if (cm->ref_frame_id[i] > cm->current_frame_id ||
              cm->ref_frame_id[i] < cm->current_frame_id - (1 << diff_len))
            pbi->valid_for_referencing[i] = 0;
        } else {
          if (cm->ref_frame_id[i] > cm->current_frame_id &&
              cm->ref_frame_id[i] < (1 << frame_id_length) +
                                        cm->current_frame_id - (1 << diff_len))
            pbi->valid_for_referencing[i] = 0;
        }
      }
    }

    frame_size_override_flag = frame_is_sframe(cm) ? 1 : aom_rb_read_bit(rb);

    current_frame->order_hint = aom_rb_read_literal(
        rb, seq_params->order_hint_info.order_hint_bits_minus_1 + 1);
    current_frame->frame_number = current_frame->order_hint;

    if (!features->error_resilient_mode && !frame_is_intra_only(cm)) {
      features->primary_ref_frame = aom_rb_read_literal(rb, PRIMARY_REF_BITS);
    }
  }

  if (seq_params->decoder_model_info_present_flag) {
    cm->buffer_removal_time_present = aom_rb_read_bit(rb);
    if (cm->buffer_removal_time_present) {
      for (int op_num = 0;
           op_num < seq_params->operating_points_cnt_minus_1 + 1; op_num++) {
        if (seq_params->op_params[op_num].decoder_model_param_present_flag) {
          if ((((seq_params->operating_point_idc[op_num] >>
                 cm->temporal_layer_id) &
                0x1) &&
               ((seq_params->operating_point_idc[op_num] >>
                 (cm->spatial_layer_id + 8)) &
                0x1)) ||
              seq_params->operating_point_idc[op_num] == 0) {
            cm->buffer_removal_times[op_num] = aom_rb_read_unsigned_literal(
                rb, seq_params->decoder_model_info.buffer_removal_time_length);
          } else {
            cm->buffer_removal_times[op_num] = 0;
          }
        } else {
          cm->buffer_removal_times[op_num] = 0;
        }
      }
    }
  }
  if (current_frame->frame_type == KEY_FRAME) {
    if (!cm->show_frame) {  // unshown keyframe (forward keyframe)
      current_frame->refresh_frame_flags = aom_rb_read_literal(rb, REF_FRAMES);
    } else {  // shown keyframe
      current_frame->refresh_frame_flags = (1 << REF_FRAMES) - 1;
    }

    for (int i = 0; i < INTER_REFS_PER_FRAME; ++i) {
      cm->remapped_ref_idx[i] = INVALID_IDX;
    }
    if (pbi->need_resync) {
      reset_ref_frame_map(cm);
      pbi->need_resync = 0;
    }
  } else {
    if (current_frame->frame_type == INTRA_ONLY_FRAME) {
      current_frame->refresh_frame_flags = aom_rb_read_literal(rb, REF_FRAMES);
      if (current_frame->refresh_frame_flags == 0xFF) {
        aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM,
                           "Intra only frames cannot have refresh flags 0xFF");
      }
      if (pbi->need_resync) {
        reset_ref_frame_map(cm);
        pbi->need_resync = 0;
      }
    } else if (pbi->need_resync != 1) { /* Skip if need resync */
      current_frame->refresh_frame_flags =
          frame_is_sframe(cm) ? 0xFF : aom_rb_read_literal(rb, REF_FRAMES);
    }
  }

  if (!frame_is_intra_only(cm) || current_frame->refresh_frame_flags != 0xFF) {
    // Read all ref frame order hints if error_resilient_mode == 1
    if (features->error_resilient_mode &&
        seq_params->order_hint_info.enable_order_hint) {
      for (int ref_idx = 0; ref_idx < REF_FRAMES; ref_idx++) {
        // Read order hint from bit stream
        unsigned int order_hint = aom_rb_read_literal(
            rb, seq_params->order_hint_info.order_hint_bits_minus_1 + 1);
        // Get buffer
        RefCntBuffer *buf = cm->ref_frame_map[ref_idx];
        if (buf == NULL || order_hint != buf->order_hint) {
          if (buf != NULL) {
            lock_buffer_pool(pool);
            decrease_ref_count(buf, pool);
            unlock_buffer_pool(pool);
            cm->ref_frame_map[ref_idx] = NULL;
          }
          // If no corresponding buffer exists, allocate a new buffer with all
          // pixels set to neutral grey.
          int buf_idx = get_free_fb(cm);
          if (buf_idx == INVALID_IDX) {
            aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR,
                               "Unable to find free frame buffer");
          }
          buf = &frame_bufs[buf_idx];
          lock_buffer_pool(pool);
          if (aom_realloc_frame_buffer(
                  &buf->buf, seq_params->max_frame_width,
                  seq_params->max_frame_height, seq_params->subsampling_x,
                  seq_params->subsampling_y, seq_params->use_highbitdepth,
                  AOM_BORDER_IN_PIXELS, features->byte_alignment,
                  &buf->raw_frame_buffer, pool->get_fb_cb, pool->cb_priv)) {
            decrease_ref_count(buf, pool);
            unlock_buffer_pool(pool);
            aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR,
                               "Failed to allocate frame buffer");
          }
          unlock_buffer_pool(pool);
          // According to the specification, valid bitstreams are required to
          // never use missing reference frames so the filling process for
          // missing frames is not normatively defined and RefValid for missing
          // frames is set to 0.

          // To make libaom more robust when the bitstream has been corrupted
          // by the loss of some frames of data, this code adds a neutral grey
          // buffer in place of missing frames, i.e.
          //
          set_planes_to_neutral_grey(seq_params, &buf->buf, 0);
          //
          // and allows the frames to be used for referencing, i.e.
          //
          pbi->valid_for_referencing[ref_idx] = 1;
          //
          // Please note such behavior is not normative and other decoders may
          // use a different approach.
          cm->ref_frame_map[ref_idx] = buf;
          buf->order_hint = order_hint;
        }
      }
    }
  }

  if (current_frame->frame_type == KEY_FRAME) {
    setup_frame_size(cm, frame_size_override_flag, rb);

    if (features->allow_screen_content_tools && !av1_superres_scaled(cm))
      features->allow_intrabc = aom_rb_read_bit(rb);
    features->allow_ref_frame_mvs = 0;
    cm->prev_frame = NULL;
  } else {
    features->allow_ref_frame_mvs = 0;

    if (current_frame->frame_type == INTRA_ONLY_FRAME) {
      cm->cur_frame->film_grain_params_present =
          seq_params->film_grain_params_present;
      setup_frame_size(cm, frame_size_override_flag, rb);
      if (features->allow_screen_content_tools && !av1_superres_scaled(cm))
        features->allow_intrabc = aom_rb_read_bit(rb);

    } else if (pbi->need_resync != 1) { /* Skip if need resync */
      int frame_refs_short_signaling = 0;
      // Frame refs short signaling is off when error resilient mode is on.
      if (seq_params->order_hint_info.enable_order_hint)
        frame_refs_short_signaling = aom_rb_read_bit(rb);

      if (frame_refs_short_signaling) {
        // == LAST_FRAME ==
        const int lst_ref = aom_rb_read_literal(rb, REF_FRAMES_LOG2);
        const RefCntBuffer *const lst_buf = cm->ref_frame_map[lst_ref];

        // == GOLDEN_FRAME ==
        const int gld_ref = aom_rb_read_literal(rb, REF_FRAMES_LOG2);
        const RefCntBuffer *const gld_buf = cm->ref_frame_map[gld_ref];

        // Most of the time, streams start with a keyframe. In that case,
        // ref_frame_map will have been filled in at that point and will not
        // contain any NULLs. However, streams are explicitly allowed to start
        // with an intra-only frame, so long as they don't then signal a
        // reference to a slot that hasn't been set yet. That's what we are
        // checking here.
        if (lst_buf == NULL)
          aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME,
                             "Inter frame requests nonexistent reference");
        if (gld_buf == NULL)
          aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME,
                             "Inter frame requests nonexistent reference");

        av1_set_frame_refs(cm, cm->remapped_ref_idx, lst_ref, gld_ref);
      }

      for (int i = 0; i < INTER_REFS_PER_FRAME; ++i) {
        int ref = 0;
        if (!frame_refs_short_signaling) {
          ref = aom_rb_read_literal(rb, REF_FRAMES_LOG2);

          // Most of the time, streams start with a keyframe. In that case,
          // ref_frame_map will have been filled in at that point and will not
          // contain any NULLs. However, streams are explicitly allowed to start
          // with an intra-only frame, so long as they don't then signal a
          // reference to a slot that hasn't been set yet. That's what we are
          // checking here.
          if (cm->ref_frame_map[ref] == NULL)
            aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME,
                               "Inter frame requests nonexistent reference");
          cm->remapped_ref_idx[i] = ref;
        } else {
          ref = cm->remapped_ref_idx[i];
        }
        // Check valid for referencing
        if (pbi->valid_for_referencing[ref] == 0)
          aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME,
                             "Reference frame not valid for referencing");

        cm->ref_frame_sign_bias[LAST_FRAME + i] = 0;

        if (seq_params->frame_id_numbers_present_flag) {
          int frame_id_length = seq_params->frame_id_length;
          int diff_len = seq_params->delta_frame_id_length;
          int delta_frame_id_minus_1 = aom_rb_read_literal(rb, diff_len);
          int ref_frame_id =
              ((cm->current_frame_id - (delta_frame_id_minus_1 + 1) +
                (1 << frame_id_length)) %
               (1 << frame_id_length));
          // Compare values derived from delta_frame_id_minus_1 and
          // refresh_frame_flags.
          if (ref_frame_id != cm->ref_frame_id[ref])
            aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME,
                               "Reference buffer frame ID mismatch");
        }
      }

      if (!features->error_resilient_mode && frame_size_override_flag) {
        setup_frame_size_with_refs(cm, rb);
      } else {
        setup_frame_size(cm, frame_size_override_flag, rb);
      }

      if (features->cur_frame_force_integer_mv) {
        features->allow_high_precision_mv = 0;
      } else {
        features->allow_high_precision_mv = aom_rb_read_bit(rb);
      }
      features->interp_filter = read_frame_interp_filter(rb);
      features->switchable_motion_mode = aom_rb_read_bit(rb);
    }

    cm->prev_frame = get_primary_ref_frame_buf(cm);
    if (features->primary_ref_frame != PRIMARY_REF_NONE &&
        get_primary_ref_frame_buf(cm) == NULL) {
      aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME,
                         "Reference frame containing this frame's initial "
                         "frame context is unavailable.");
    }

    if (!(current_frame->frame_type == INTRA_ONLY_FRAME) &&
        pbi->need_resync != 1) {
      if (frame_might_allow_ref_frame_mvs(cm))
        features->allow_ref_frame_mvs = aom_rb_read_bit(rb);
      else
        features->allow_ref_frame_mvs = 0;

      for (int i = LAST_FRAME; i <= ALTREF_FRAME; ++i) {
        const RefCntBuffer *const ref_buf = get_ref_frame_buf(cm, i);
        struct scale_factors *const ref_scale_factors =
            get_ref_scale_factors(cm, i);
        av1_setup_scale_factors_for_frame(
            ref_scale_factors, ref_buf->buf.y_crop_width,
            ref_buf->buf.y_crop_height, cm->width, cm->height);
        if ((!av1_is_valid_scale(ref_scale_factors)))
          aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM,
                             "Reference frame has invalid dimensions");
      }
    }
  }

  av1_setup_frame_buf_refs(cm);

  av1_setup_frame_sign_bias(cm);

  cm->cur_frame->frame_type = current_frame->frame_type;

  update_ref_frame_id(pbi);

  const int might_bwd_adapt = !(seq_params->reduced_still_picture_hdr) &&
                              !(features->disable_cdf_update);
  if (might_bwd_adapt) {
    features->refresh_frame_context = aom_rb_read_bit(rb)
                                          ? REFRESH_FRAME_CONTEXT_DISABLED
                                          : REFRESH_FRAME_CONTEXT_BACKWARD;
  } else {
    features->refresh_frame_context = REFRESH_FRAME_CONTEXT_DISABLED;
  }

  cm->cur_frame->buf.bit_depth = seq_params->bit_depth;
  cm->cur_frame->buf.color_primaries = seq_params->color_primaries;
  cm->cur_frame->buf.transfer_characteristics =
      seq_params->transfer_characteristics;
  cm->cur_frame->buf.matrix_coefficients = seq_params->matrix_coefficients;
  cm->cur_frame->buf.monochrome = seq_params->monochrome;
  cm->cur_frame->buf.chroma_sample_position =
      seq_params->chroma_sample_position;
  cm->cur_frame->buf.color_range = seq_params->color_range;
  cm->cur_frame->buf.render_width = cm->render_width;
  cm->cur_frame->buf.render_height = cm->render_height;

  if (pbi->need_resync) {
    aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME,
                       "Keyframe / intra-only frame required to reset decoder"
                       " state");
  }

  if (features->allow_intrabc) {
    // Set parameters corresponding to no filtering.
    struct loopfilter *lf = &cm->lf;
    lf->filter_level[0] = 0;
    lf->filter_level[1] = 0;
    cm->cdef_info.cdef_bits = 0;
    cm->cdef_info.cdef_strengths[0] = 0;
    cm->cdef_info.nb_cdef_strengths = 1;
    cm->cdef_info.cdef_uv_strengths[0] = 0;
    cm->rst_info[0].frame_restoration_type = RESTORE_NONE;
    cm->rst_info[1].frame_restoration_type = RESTORE_NONE;
    cm->rst_info[2].frame_restoration_type = RESTORE_NONE;
  }

  read_tile_info(pbi, rb);
  if (!av1_is_min_tile_width_satisfied(cm)) {
    aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME,
                       "Minimum tile width requirement not satisfied");
  }

  CommonQuantParams *const quant_params = &cm->quant_params;
  setup_quantization(quant_params, av1_num_planes(cm),
                     cm->seq_params.separate_uv_delta_q, rb);
  xd->bd = (int)seq_params->bit_depth;

  CommonContexts *const above_contexts = &cm->above_contexts;
  if (above_contexts->num_planes < av1_num_planes(cm) ||
      above_contexts->num_mi_cols < cm->mi_params.mi_cols ||
      above_contexts->num_tile_rows < cm->tiles.rows) {
    av1_free_above_context_buffers(above_contexts);
    if (av1_alloc_above_context_buffers(above_contexts, cm->tiles.rows,
                                        cm->mi_params.mi_cols,
                                        av1_num_planes(cm))) {
      aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR,
                         "Failed to allocate context buffers");
    }
  }

  if (features->primary_ref_frame == PRIMARY_REF_NONE) {
    av1_setup_past_independence(cm);
  }

  setup_segmentation(cm, rb);

  cm->delta_q_info.delta_q_res = 1;
  cm->delta_q_info.delta_lf_res = 1;
  cm->delta_q_info.delta_lf_present_flag = 0;
  cm->delta_q_info.delta_lf_multi = 0;
  cm->delta_q_info.delta_q_present_flag =
      quant_params->base_qindex > 0 ? aom_rb_read_bit(rb) : 0;
  if (cm->delta_q_info.delta_q_present_flag) {
    xd->current_qindex = quant_params->base_qindex;
    cm->delta_q_info.delta_q_res = 1 << aom_rb_read_literal(rb, 2);
    if (!features->allow_intrabc)
      cm->delta_q_info.delta_lf_present_flag = aom_rb_read_bit(rb);
    if (cm->delta_q_info.delta_lf_present_flag) {
      cm->delta_q_info.delta_lf_res = 1 << aom_rb_read_literal(rb, 2);
      cm->delta_q_info.delta_lf_multi = aom_rb_read_bit(rb);
      av1_reset_loop_filter_delta(xd, av1_num_planes(cm));
    }
  }

  xd->cur_frame_force_integer_mv = features->cur_frame_force_integer_mv;

  for (int i = 0; i < MAX_SEGMENTS; ++i) {
    const int qindex = av1_get_qindex(&cm->seg, i, quant_params->base_qindex);
    xd->lossless[i] =
        qindex == 0 && quant_params->y_dc_delta_q == 0 &&
        quant_params->u_dc_delta_q == 0 && quant_params->u_ac_delta_q == 0 &&
        quant_params->v_dc_delta_q == 0 && quant_params->v_ac_delta_q == 0;
    xd->qindex[i] = qindex;
  }
  features->coded_lossless = is_coded_lossless(cm, xd);
  features->all_lossless = features->coded_lossless && !av1_superres_scaled(cm);
  setup_segmentation_dequant(cm, xd);
  if (features->coded_lossless) {
    cm->lf.filter_level[0] = 0;
    cm->lf.filter_level[1] = 0;
  }
  if (features->coded_lossless || !seq_params->enable_cdef) {
    cm->cdef_info.cdef_bits = 0;
    cm->cdef_info.cdef_strengths[0] = 0;
    cm->cdef_info.cdef_uv_strengths[0] = 0;
  }
  if (features->all_lossless || !seq_params->enable_restoration) {
    cm->rst_info[0].frame_restoration_type = RESTORE_NONE;
    cm->rst_info[1].frame_restoration_type = RESTORE_NONE;
    cm->rst_info[2].frame_restoration_type = RESTORE_NONE;
  }
  setup_loopfilter(cm, rb);

  if (!features->coded_lossless && seq_params->enable_cdef) {
    setup_cdef(cm, rb);
  }
  if (!features->all_lossless && seq_params->enable_restoration) {
    decode_restoration_mode(cm, rb);
  }

  features->tx_mode = read_tx_mode(rb, features->coded_lossless);
  current_frame->reference_mode = read_frame_reference_mode(cm, rb);

  av1_setup_skip_mode_allowed(cm);
  current_frame->skip_mode_info.skip_mode_flag =
      current_frame->skip_mode_info.skip_mode_allowed ? aom_rb_read_bit(rb) : 0;

  if (frame_might_allow_warped_motion(cm))
    features->allow_warped_motion = aom_rb_read_bit(rb);
  else
    features->allow_warped_motion = 0;

  features->reduced_tx_set_used = aom_rb_read_bit(rb);

  if (features->allow_ref_frame_mvs && !frame_might_allow_ref_frame_mvs(cm)) {
    aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME,
                       "Frame wrongly requests reference frame MVs");
  }

  if (!frame_is_intra_only(cm)) read_global_motion(cm, rb);

  cm->cur_frame->film_grain_params_present =
      seq_params->film_grain_params_present;
  read_film_grain(cm, rb);

#if EXT_TILE_DEBUG
  if (pbi->ext_tile_debug && cm->tiles.large_scale) {
    read_ext_tile_info(pbi, rb);
    av1_set_single_tile_decoding_mode(cm);
  }
#endif  // EXT_TILE_DEBUG
  return 0;
}

struct aom_read_bit_buffer *av1_init_read_bit_buffer(
    AV1Decoder *pbi, struct aom_read_bit_buffer *rb, const uint8_t *data,
    const uint8_t *data_end) {
  rb->bit_offset = 0;
  rb->error_handler = error_handler;
  rb->error_handler_data = &pbi->common;
  rb->bit_buffer = data;
  rb->bit_buffer_end = data_end;
  return rb;
}

void av1_read_frame_size(struct aom_read_bit_buffer *rb, int num_bits_width,
                         int num_bits_height, int *width, int *height) {
  *width = aom_rb_read_literal(rb, num_bits_width) + 1;
  *height = aom_rb_read_literal(rb, num_bits_height) + 1;
}

BITSTREAM_PROFILE av1_read_profile(struct aom_read_bit_buffer *rb) {
  int profile = aom_rb_read_literal(rb, PROFILE_BITS);
  return (BITSTREAM_PROFILE)profile;
}

static AOM_INLINE void superres_post_decode(AV1Decoder *pbi) {
  AV1_COMMON *const cm = &pbi->common;
  BufferPool *const pool = cm->buffer_pool;

  if (!av1_superres_scaled(cm)) return;
  assert(!cm->features.all_lossless);

  av1_superres_upscale(cm, pool);
}

uint32_t av1_decode_frame_headers_and_setup(AV1Decoder *pbi,
                                            struct aom_read_bit_buffer *rb,
                                            const uint8_t *data,
                                            const uint8_t **p_data_end,
                                            int trailing_bits_present) {
  AV1_COMMON *const cm = &pbi->common;
  const int num_planes = av1_num_planes(cm);
  MACROBLOCKD *const xd = &pbi->mb;

#if CONFIG_BITSTREAM_DEBUG
  aom_bitstream_queue_set_frame_read(cm->current_frame.frame_number * 2 +
                                     cm->show_frame);
#endif
#if CONFIG_MISMATCH_DEBUG
  mismatch_move_frame_idx_r();
#endif

  for (int i = LAST_FRAME; i <= ALTREF_FRAME; ++i) {
    cm->global_motion[i] = default_warp_params;
    cm->cur_frame->global_motion[i] = default_warp_params;
  }
  xd->global_motion = cm->global_motion;

  read_uncompressed_header(pbi, rb);

  if (trailing_bits_present) av1_check_trailing_bits(pbi, rb);

  if (!cm->tiles.single_tile_decoding &&
      (pbi->dec_tile_row >= 0 || pbi->dec_tile_col >= 0)) {
    pbi->dec_tile_row = -1;
    pbi->dec_tile_col = -1;
  }

  const uint32_t uncomp_hdr_size =
      (uint32_t)aom_rb_bytes_read(rb);  // Size of the uncompressed header
  YV12_BUFFER_CONFIG *new_fb = &cm->cur_frame->buf;
  xd->cur_buf = new_fb;
  if (av1_allow_intrabc(cm)) {
    av1_setup_scale_factors_for_frame(
        &cm->sf_identity, xd->cur_buf->y_crop_width, xd->cur_buf->y_crop_height,
        xd->cur_buf->y_crop_width, xd->cur_buf->y_crop_height);
  }

  if (cm->show_existing_frame) {
    // showing a frame directly
    *p_data_end = data + uncomp_hdr_size;
    if (pbi->reset_decoder_state) {
      // Use the default frame context values.
      *cm->fc = *cm->default_frame_context;
      if (!cm->fc->initialized)
        aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME,
                           "Uninitialized entropy context.");
    }
    return uncomp_hdr_size;
  }

  cm->mi_params.setup_mi(&cm->mi_params);

  av1_setup_motion_field(cm);

  av1_setup_block_planes(xd, cm->seq_params.subsampling_x,
                         cm->seq_params.subsampling_y, num_planes);
  if (cm->features.primary_ref_frame == PRIMARY_REF_NONE) {
    // use the default frame context values
    *cm->fc = *cm->default_frame_context;
  } else {
    *cm->fc = get_primary_ref_frame_buf(cm)->frame_context;
  }
  if (!cm->fc->initialized)
    aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME,
                       "Uninitialized entropy context.");

  xd->corrupted = 0;
  return uncomp_hdr_size;
}

// Once-per-frame initialization
static AOM_INLINE void setup_frame_info(AV1Decoder *pbi) {
  AV1_COMMON *const cm = &pbi->common;

  if (cm->rst_info[0].frame_restoration_type != RESTORE_NONE ||
      cm->rst_info[1].frame_restoration_type != RESTORE_NONE ||
      cm->rst_info[2].frame_restoration_type != RESTORE_NONE) {
    av1_alloc_restoration_buffers(cm);
  }
  const int use_highbd = cm->seq_params.use_highbitdepth;
  const int buf_size = MC_TEMP_BUF_PELS << use_highbd;
  if (pbi->td.mc_buf_size != buf_size) {
    av1_free_mc_tmp_buf(&pbi->td);
    allocate_mc_tmp_buf(cm, &pbi->td, buf_size, use_highbd);
  }
}

void av1_decode_tg_tiles_and_wrapup(AV1Decoder *pbi, const uint8_t *data,
                                    const uint8_t *data_end,
                                    const uint8_t **p_data_end, int start_tile,
                                    int end_tile, int initialize_flag) {
  AV1_COMMON *const cm = &pbi->common;
  CommonTileParams *const tiles = &cm->tiles;
  MACROBLOCKD *const xd = &pbi->mb;
  const int tile_count_tg = end_tile - start_tile + 1;

  if (initialize_flag) setup_frame_info(pbi);
  const int num_planes = av1_num_planes(cm);
#if CONFIG_LPF_MASK
  av1_loop_filter_frame_init(cm, 0, num_planes);
#endif

  if (pbi->max_threads > 1 && !(tiles->large_scale && !pbi->ext_tile_debug) &&
      pbi->row_mt)
    *p_data_end =
        decode_tiles_row_mt(pbi, data, data_end, start_tile, end_tile);
  else if (pbi->max_threads > 1 && tile_count_tg > 1 &&
           !(tiles->large_scale && !pbi->ext_tile_debug))
    *p_data_end = decode_tiles_mt(pbi, data, data_end, start_tile, end_tile);
  else
    *p_data_end = decode_tiles(pbi, data, data_end, start_tile, end_tile);

  // If the bit stream is monochrome, set the U and V buffers to a constant.
  if (num_planes < 3) {
    set_planes_to_neutral_grey(&cm->seq_params, xd->cur_buf, 1);
  }

  if (end_tile != tiles->rows * tiles->cols - 1) {
    return;
  }

  if (!cm->features.allow_intrabc && !tiles->single_tile_decoding) {
    if (cm->lf.filter_level[0] || cm->lf.filter_level[1]) {
      if (pbi->num_workers > 1) {
        av1_loop_filter_frame_mt(
            &cm->cur_frame->buf, cm, &pbi->mb, 0, num_planes, 0,
#if CONFIG_LPF_MASK
            1,
#endif
            pbi->tile_workers, pbi->num_workers, &pbi->lf_row_sync);
      } else {
        av1_loop_filter_frame(&cm->cur_frame->buf, cm, &pbi->mb,
#if CONFIG_LPF_MASK
                              1,
#endif
                              0, num_planes, 0);
      }
    }

    const int do_loop_restoration =
        cm->rst_info[0].frame_restoration_type != RESTORE_NONE ||
        cm->rst_info[1].frame_restoration_type != RESTORE_NONE ||
        cm->rst_info[2].frame_restoration_type != RESTORE_NONE;
    const int do_cdef =
        !pbi->skip_loop_filter && !cm->features.coded_lossless &&
        (cm->cdef_info.cdef_bits || cm->cdef_info.cdef_strengths[0] ||
         cm->cdef_info.cdef_uv_strengths[0]);
    const int do_superres = av1_superres_scaled(cm);
    const int optimized_loop_restoration = !do_cdef && !do_superres;

    if (!optimized_loop_restoration) {
      if (do_loop_restoration)
        av1_loop_restoration_save_boundary_lines(&pbi->common.cur_frame->buf,
                                                 cm, 0);

      if (do_cdef) av1_cdef_frame(&pbi->common.cur_frame->buf, cm, &pbi->mb);

      superres_post_decode(pbi);

      if (do_loop_restoration) {
        av1_loop_restoration_save_boundary_lines(&pbi->common.cur_frame->buf,
                                                 cm, 1);
        if (pbi->num_workers > 1) {
          av1_loop_restoration_filter_frame_mt(
              (YV12_BUFFER_CONFIG *)xd->cur_buf, cm, optimized_loop_restoration,
              pbi->tile_workers, pbi->num_workers, &pbi->lr_row_sync,
              &pbi->lr_ctxt);
        } else {
          av1_loop_restoration_filter_frame((YV12_BUFFER_CONFIG *)xd->cur_buf,
                                            cm, optimized_loop_restoration,
                                            &pbi->lr_ctxt);
        }
      }
    } else {
      // In no cdef and no superres case. Provide an optimized version of
      // loop_restoration_filter.
      if (do_loop_restoration) {
        if (pbi->num_workers > 1) {
          av1_loop_restoration_filter_frame_mt(
              (YV12_BUFFER_CONFIG *)xd->cur_buf, cm, optimized_loop_restoration,
              pbi->tile_workers, pbi->num_workers, &pbi->lr_row_sync,
              &pbi->lr_ctxt);
        } else {
          av1_loop_restoration_filter_frame((YV12_BUFFER_CONFIG *)xd->cur_buf,
                                            cm, optimized_loop_restoration,
                                            &pbi->lr_ctxt);
        }
      }
    }
  }
#if CONFIG_LPF_MASK
  av1_zero_array(cm->lf.lfm, cm->lf.lfm_num);
#endif

  if (!xd->corrupted) {
    if (cm->features.refresh_frame_context == REFRESH_FRAME_CONTEXT_BACKWARD) {
      assert(pbi->context_update_tile_id < pbi->allocated_tiles);
      *cm->fc = pbi->tile_data[pbi->context_update_tile_id].tctx;
      av1_reset_cdf_symbol_counters(cm->fc);
    }
  } else {
    aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME,
                       "Decode failed. Frame data is corrupted.");
  }

#if CONFIG_INSPECTION
  if (pbi->inspect_cb != NULL) {
    (*pbi->inspect_cb)(pbi, pbi->inspect_ctx);
  }
#endif

  // Non frame parallel update frame context here.
  if (!tiles->large_scale) {
    cm->cur_frame->frame_context = *cm->fc;
  }
}