summaryrefslogtreecommitdiff
path: root/libs/libaom/src/av1/encoder/lookahead.c
blob: 0f7c819893d080b38b5f255d589417f8af50c144 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
/*
 * Copyright (c) 2016, Alliance for Open Media. All rights reserved
 *
 * This source code is subject to the terms of the BSD 2 Clause License and
 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
 * was not distributed with this source code in the LICENSE file, you can
 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
 * Media Patent License 1.0 was not distributed with this source code in the
 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
 */
#include <assert.h>
#include <stdlib.h>

#include "config/aom_config.h"

#include "aom_scale/yv12config.h"
#include "av1/common/common.h"
#include "av1/encoder/encoder.h"
#include "av1/encoder/extend.h"
#include "av1/encoder/lookahead.h"

/* Return the buffer at the given absolute index and increment the index */
static struct lookahead_entry *pop(struct lookahead_ctx *ctx, int *idx) {
  int index = *idx;
  struct lookahead_entry *buf = ctx->buf + index;

  assert(index < ctx->max_sz);
  if (++index >= ctx->max_sz) index -= ctx->max_sz;
  *idx = index;
  return buf;
}

void av1_lookahead_destroy(struct lookahead_ctx *ctx) {
  if (ctx) {
    if (ctx->buf) {
      int i;

      for (i = 0; i < ctx->max_sz; i++) aom_free_frame_buffer(&ctx->buf[i].img);
      free(ctx->buf);
    }
    free(ctx);
  }
}

struct lookahead_ctx *av1_lookahead_init(
    unsigned int width, unsigned int height, unsigned int subsampling_x,
    unsigned int subsampling_y, int use_highbitdepth, unsigned int depth,
    const int border_in_pixels, int byte_alignment, int num_lap_buffers) {
  struct lookahead_ctx *ctx = NULL;
  int lag_in_frames = AOMMAX(1, depth);

  // Add the lags to depth and clamp
  depth += num_lap_buffers;
  depth = clamp(depth, 1, MAX_TOTAL_BUFFERS);

  // Allocate memory to keep previous source frames available.
  depth += MAX_PRE_FRAMES;

  // Allocate the lookahead structures
  ctx = calloc(1, sizeof(*ctx));
  if (ctx) {
    unsigned int i;
    ctx->max_sz = depth;
    ctx->read_ctxs[ENCODE_STAGE].pop_sz = ctx->max_sz - MAX_PRE_FRAMES;
    ctx->read_ctxs[ENCODE_STAGE].valid = 1;
    if (num_lap_buffers) {
      ctx->read_ctxs[LAP_STAGE].pop_sz = lag_in_frames;
      ctx->read_ctxs[LAP_STAGE].valid = 1;
    }
    ctx->buf = calloc(depth, sizeof(*ctx->buf));
    if (!ctx->buf) goto fail;
    for (i = 0; i < depth; i++) {
      aom_free_frame_buffer(&ctx->buf[i].img);
      if (aom_realloc_frame_buffer(&ctx->buf[i].img, width, height,
                                   subsampling_x, subsampling_y,
                                   use_highbitdepth, border_in_pixels,
                                   byte_alignment, NULL, NULL, NULL))
        goto fail;
    }
  }
  return ctx;
fail:
  av1_lookahead_destroy(ctx);
  return NULL;
}

int av1_lookahead_push(struct lookahead_ctx *ctx, YV12_BUFFER_CONFIG *src,
                       int64_t ts_start, int64_t ts_end, int use_highbitdepth,
                       aom_enc_frame_flags_t flags) {
  struct lookahead_entry *buf;
  int width = src->y_crop_width;
  int height = src->y_crop_height;
  int uv_width = src->uv_crop_width;
  int uv_height = src->uv_crop_height;
  int subsampling_x = src->subsampling_x;
  int subsampling_y = src->subsampling_y;
  int larger_dimensions, new_dimensions;

  assert(ctx->read_ctxs[ENCODE_STAGE].valid == 1);
  if (ctx->read_ctxs[ENCODE_STAGE].sz + 1 + MAX_PRE_FRAMES > ctx->max_sz)
    return 1;
  ctx->read_ctxs[ENCODE_STAGE].sz++;
  if (ctx->read_ctxs[LAP_STAGE].valid) {
    ctx->read_ctxs[LAP_STAGE].sz++;
  }
  buf = pop(ctx, &ctx->write_idx);

  new_dimensions = width != buf->img.y_crop_width ||
                   height != buf->img.y_crop_height ||
                   uv_width != buf->img.uv_crop_width ||
                   uv_height != buf->img.uv_crop_height;
  larger_dimensions = width > buf->img.y_width || height > buf->img.y_height ||
                      uv_width > buf->img.uv_width ||
                      uv_height > buf->img.uv_height;
  assert(!larger_dimensions || new_dimensions);

  if (larger_dimensions) {
    YV12_BUFFER_CONFIG new_img;
    memset(&new_img, 0, sizeof(new_img));
    if (aom_alloc_frame_buffer(&new_img, width, height, subsampling_x,
                               subsampling_y, use_highbitdepth,
                               AOM_BORDER_IN_PIXELS, 0))
      return 1;
    aom_free_frame_buffer(&buf->img);
    buf->img = new_img;
  } else if (new_dimensions) {
    buf->img.y_crop_width = src->y_crop_width;
    buf->img.y_crop_height = src->y_crop_height;
    buf->img.uv_crop_width = src->uv_crop_width;
    buf->img.uv_crop_height = src->uv_crop_height;
    buf->img.subsampling_x = src->subsampling_x;
    buf->img.subsampling_y = src->subsampling_y;
  }
  // Partial copy not implemented yet
  av1_copy_and_extend_frame(src, &buf->img);

  buf->ts_start = ts_start;
  buf->ts_end = ts_end;
  buf->flags = flags;
  aom_remove_metadata_from_frame_buffer(&buf->img);
  aom_copy_metadata_to_frame_buffer(&buf->img, src->metadata);
  return 0;
}

struct lookahead_entry *av1_lookahead_pop(struct lookahead_ctx *ctx, int drain,
                                          COMPRESSOR_STAGE stage) {
  struct lookahead_entry *buf = NULL;
  if (ctx) {
    struct read_ctx *read_ctx = &ctx->read_ctxs[stage];
    assert(read_ctx->valid == 1);
    if (read_ctx->sz && (drain || read_ctx->sz == read_ctx->pop_sz)) {
      buf = pop(ctx, &read_ctx->read_idx);
      read_ctx->sz--;
    }
  }
  return buf;
}

struct lookahead_entry *av1_lookahead_peek(struct lookahead_ctx *ctx, int index,
                                           COMPRESSOR_STAGE stage) {
  struct lookahead_entry *buf = NULL;
  struct read_ctx *read_ctx = NULL;
  if (ctx == NULL) {
    return buf;
  }

  read_ctx = &ctx->read_ctxs[stage];
  assert(read_ctx->valid == 1);
  if (index >= 0) {
    // Forward peek
    if (index < read_ctx->sz) {
      index += read_ctx->read_idx;
      if (index >= ctx->max_sz) index -= ctx->max_sz;
      buf = ctx->buf + index;
    }
  } else if (index < 0) {
    // Backward peek
    if (-index <= MAX_PRE_FRAMES) {
      index += (int)(read_ctx->read_idx);
      if (index < 0) index += (int)(ctx->max_sz);
      buf = ctx->buf + index;
    }
  }

  return buf;
}

unsigned int av1_lookahead_depth(struct lookahead_ctx *ctx,
                                 COMPRESSOR_STAGE stage) {
  struct read_ctx *read_ctx = NULL;
  assert(ctx != NULL);

  read_ctx = &ctx->read_ctxs[stage];
  assert(read_ctx->valid == 1);
  return read_ctx->sz;
}

int av1_lookahead_pop_sz(struct lookahead_ctx *ctx, COMPRESSOR_STAGE stage) {
  struct read_ctx *read_ctx = NULL;
  assert(ctx != NULL);

  read_ctx = &ctx->read_ctxs[stage];
  assert(read_ctx->valid == 1);
  return read_ctx->pop_sz;
}