1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
|
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#ifndef gc_FindSCCs_h
#define gc_FindSCCs_h
#include "mozilla/Move.h"
#include "jsfriendapi.h"
#include "jsutil.h"
namespace js {
namespace gc {
template<class Node>
struct GraphNodeBase
{
Node* gcNextGraphNode;
Node* gcNextGraphComponent;
unsigned gcDiscoveryTime;
unsigned gcLowLink;
GraphNodeBase()
: gcNextGraphNode(nullptr),
gcNextGraphComponent(nullptr),
gcDiscoveryTime(0),
gcLowLink(0) {}
~GraphNodeBase() {}
Node* nextNodeInGroup() const {
if (gcNextGraphNode && gcNextGraphNode->gcNextGraphComponent == gcNextGraphComponent)
return gcNextGraphNode;
return nullptr;
}
Node* nextGroup() const {
return gcNextGraphComponent;
}
};
/*
* Find the strongly connected components of a graph using Tarjan's algorithm,
* and return them in topological order.
*
* Nodes derive from GraphNodeBase and implement findGraphEdges, which calls
* finder.addEdgeTo to describe the outgoing edges from that node:
*
* struct MyComponentFinder;
*
* struct MyGraphNode : public GraphNodeBase
* {
* void findOutgoingEdges(MyComponentFinder& finder)
* {
* for edge in my_outgoing_edges:
* if is_relevant(edge):
* finder.addEdgeTo(edge.destination)
* }
* }
*
* struct MyComponentFinder : public ComponentFinder<MyGraphNode, MyComponentFinder>
* {
* ...
* };
*
* MyComponentFinder finder;
* finder.addNode(v);
*/
template <typename Node, typename Derived>
class ComponentFinder
{
public:
explicit ComponentFinder(uintptr_t sl)
: clock(1),
stack(nullptr),
firstComponent(nullptr),
cur(nullptr),
stackLimit(sl),
stackFull(false)
{}
~ComponentFinder() {
MOZ_ASSERT(!stack);
MOZ_ASSERT(!firstComponent);
}
/* Forces all nodes to be added to a single component. */
void useOneComponent() { stackFull = true; }
void addNode(Node* v) {
if (v->gcDiscoveryTime == Undefined) {
MOZ_ASSERT(v->gcLowLink == Undefined);
processNode(v);
}
}
Node* getResultsList() {
if (stackFull) {
/*
* All nodes after the stack overflow are in |stack|. Put them all in
* one big component of their own.
*/
Node* firstGoodComponent = firstComponent;
for (Node* v = stack; v; v = stack) {
stack = v->gcNextGraphNode;
v->gcNextGraphComponent = firstGoodComponent;
v->gcNextGraphNode = firstComponent;
firstComponent = v;
}
stackFull = false;
}
MOZ_ASSERT(!stack);
Node* result = firstComponent;
firstComponent = nullptr;
for (Node* v = result; v; v = v->gcNextGraphNode) {
v->gcDiscoveryTime = Undefined;
v->gcLowLink = Undefined;
}
return result;
}
static void mergeGroups(Node* first) {
for (Node* v = first; v; v = v->gcNextGraphNode)
v->gcNextGraphComponent = nullptr;
}
public:
/* Call from implementation of GraphNodeBase::findOutgoingEdges(). */
void addEdgeTo(Node* w) {
if (w->gcDiscoveryTime == Undefined) {
processNode(w);
cur->gcLowLink = Min(cur->gcLowLink, w->gcLowLink);
} else if (w->gcDiscoveryTime != Finished) {
cur->gcLowLink = Min(cur->gcLowLink, w->gcDiscoveryTime);
}
}
private:
/* Constant used to indicate an unprocessed vertex. */
static const unsigned Undefined = 0;
/* Constant used to indicate an processed vertex that is no longer on the stack. */
static const unsigned Finished = (unsigned)-1;
void processNode(Node* v) {
v->gcDiscoveryTime = clock;
v->gcLowLink = clock;
++clock;
v->gcNextGraphNode = stack;
stack = v;
int stackDummy;
if (stackFull || !JS_CHECK_STACK_SIZE(stackLimit, &stackDummy)) {
stackFull = true;
return;
}
Node* old = cur;
cur = v;
cur->findOutgoingEdges(*static_cast<Derived*>(this));
cur = old;
if (stackFull)
return;
if (v->gcLowLink == v->gcDiscoveryTime) {
Node* nextComponent = firstComponent;
Node* w;
do {
MOZ_ASSERT(stack);
w = stack;
stack = w->gcNextGraphNode;
/*
* Record that the element is no longer on the stack by setting the
* discovery time to a special value that's not Undefined.
*/
w->gcDiscoveryTime = Finished;
/* Figure out which group we're in. */
w->gcNextGraphComponent = nextComponent;
/*
* Prepend the component to the beginning of the output list to
* reverse the list and achieve the desired order.
*/
w->gcNextGraphNode = firstComponent;
firstComponent = w;
} while (w != v);
}
}
private:
unsigned clock;
Node* stack;
Node* firstComponent;
Node* cur;
uintptr_t stackLimit;
bool stackFull;
};
} /* namespace gc */
} /* namespace js */
#endif /* gc_FindSCCs_h */
|