/* * Copyright (c) 2019, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include "av1/encoder/tune_vmaf.h" #include "aom_dsp/psnr.h" #include "aom_dsp/vmaf.h" #include "aom_ports/system_state.h" #include "av1/encoder/extend.h" #include "av1/encoder/rdopt.h" static const double kBaselineVmaf = 97.42773; // TODO(sdeng): Add the SIMD implementation. static AOM_INLINE void highbd_unsharp_rect(const uint16_t *source, int source_stride, const uint16_t *blurred, int blurred_stride, uint16_t *dst, int dst_stride, int w, int h, double amount, int bit_depth) { const int max_value = (1 << bit_depth) - 1; for (int i = 0; i < h; ++i) { for (int j = 0; j < w; ++j) { const double val = (double)source[j] + amount * ((double)source[j] - (double)blurred[j]); dst[j] = (uint16_t)clamp((int)(val + 0.5), 0, max_value); } source += source_stride; blurred += blurred_stride; dst += dst_stride; } } static AOM_INLINE void unsharp_rect(const uint8_t *source, int source_stride, const uint8_t *blurred, int blurred_stride, uint8_t *dst, int dst_stride, int w, int h, double amount) { for (int i = 0; i < h; ++i) { for (int j = 0; j < w; ++j) { const double val = (double)source[j] + amount * ((double)source[j] - (double)blurred[j]); dst[j] = (uint8_t)clamp((int)(val + 0.5), 0, 255); } source += source_stride; blurred += blurred_stride; dst += dst_stride; } } static AOM_INLINE void unsharp(const AV1_COMP *const cpi, const YV12_BUFFER_CONFIG *source, const YV12_BUFFER_CONFIG *blurred, const YV12_BUFFER_CONFIG *dst, double amount) { const int bit_depth = cpi->td.mb.e_mbd.bd; if (bit_depth > 8) { highbd_unsharp_rect(CONVERT_TO_SHORTPTR(source->y_buffer), source->y_stride, CONVERT_TO_SHORTPTR(blurred->y_buffer), blurred->y_stride, CONVERT_TO_SHORTPTR(dst->y_buffer), dst->y_stride, source->y_width, source->y_height, amount, bit_depth); } else { unsharp_rect(source->y_buffer, source->y_stride, blurred->y_buffer, blurred->y_stride, dst->y_buffer, dst->y_stride, source->y_width, source->y_height, amount); } } // 8-tap Gaussian convolution filter with sigma = 1.0, sums to 128, // all co-efficients must be even. DECLARE_ALIGNED(16, static const int16_t, gauss_filter[8]) = { 0, 8, 30, 52, 30, 8, 0, 0 }; static AOM_INLINE void gaussian_blur(const int bit_depth, const YV12_BUFFER_CONFIG *source, const YV12_BUFFER_CONFIG *dst) { const int block_size = BLOCK_128X128; const int block_w = mi_size_wide[block_size] * 4; const int block_h = mi_size_high[block_size] * 4; const int num_cols = (source->y_width + block_w - 1) / block_w; const int num_rows = (source->y_height + block_h - 1) / block_h; int row, col; ConvolveParams conv_params = get_conv_params(0, 0, bit_depth); InterpFilterParams filter = { .filter_ptr = gauss_filter, .taps = 8, .subpel_shifts = 0, .interp_filter = EIGHTTAP_REGULAR }; for (row = 0; row < num_rows; ++row) { for (col = 0; col < num_cols; ++col) { const int row_offset_y = row * block_h; const int col_offset_y = col * block_w; uint8_t *src_buf = source->y_buffer + row_offset_y * source->y_stride + col_offset_y; uint8_t *dst_buf = dst->y_buffer + row_offset_y * dst->y_stride + col_offset_y; if (bit_depth > 8) { av1_highbd_convolve_2d_sr( CONVERT_TO_SHORTPTR(src_buf), source->y_stride, CONVERT_TO_SHORTPTR(dst_buf), dst->y_stride, block_w, block_h, &filter, &filter, 0, 0, &conv_params, bit_depth); } else { av1_convolve_2d_sr(src_buf, source->y_stride, dst_buf, dst->y_stride, block_w, block_h, &filter, &filter, 0, 0, &conv_params); } } } } static double frame_average_variance(const AV1_COMP *const cpi, const YV12_BUFFER_CONFIG *const frame) { const uint8_t *const y_buffer = frame->y_buffer; const int y_stride = frame->y_stride; const BLOCK_SIZE block_size = BLOCK_64X64; const int block_w = mi_size_wide[block_size] * 4; const int block_h = mi_size_high[block_size] * 4; int row, col; const int bit_depth = cpi->td.mb.e_mbd.bd; double var = 0.0, var_count = 0.0; // Loop through each block. for (row = 0; row < frame->y_height / block_h; ++row) { for (col = 0; col < frame->y_width / block_w; ++col) { struct buf_2d buf; const int row_offset_y = row * block_h; const int col_offset_y = col * block_w; buf.buf = (uint8_t *)y_buffer + row_offset_y * y_stride + col_offset_y; buf.stride = y_stride; if (bit_depth > 8) { var += av1_high_get_sby_perpixel_variance(cpi, &buf, block_size, bit_depth); } else { var += av1_get_sby_perpixel_variance(cpi, &buf, block_size); } var_count += 1.0; } } var /= var_count; return var; } static double cal_approx_vmaf(const AV1_COMP *const cpi, double source_variance, YV12_BUFFER_CONFIG *const source, YV12_BUFFER_CONFIG *const sharpened) { const int bit_depth = cpi->td.mb.e_mbd.bd; double new_vmaf; aom_calc_vmaf(cpi->oxcf.vmaf_model_path, source, sharpened, bit_depth, &new_vmaf); const double sharpened_var = frame_average_variance(cpi, sharpened); return source_variance / sharpened_var * (new_vmaf - kBaselineVmaf); } static double find_best_frame_unsharp_amount_loop( const AV1_COMP *const cpi, YV12_BUFFER_CONFIG *const source, YV12_BUFFER_CONFIG *const blurred, YV12_BUFFER_CONFIG *const sharpened, double best_vmaf, const double baseline_variance, const double unsharp_amount_start, const double step_size, const int max_loop_count, const double max_amount) { const double min_amount = 0.0; int loop_count = 0; double approx_vmaf = best_vmaf; double unsharp_amount = unsharp_amount_start; do { best_vmaf = approx_vmaf; unsharp_amount += step_size; if (unsharp_amount > max_amount || unsharp_amount < min_amount) break; unsharp(cpi, source, blurred, sharpened, unsharp_amount); approx_vmaf = cal_approx_vmaf(cpi, baseline_variance, source, sharpened); loop_count++; } while (approx_vmaf > best_vmaf && loop_count < max_loop_count); unsharp_amount = approx_vmaf > best_vmaf ? unsharp_amount : unsharp_amount - step_size; return AOMMIN(max_amount, AOMMAX(unsharp_amount, min_amount)); } static double find_best_frame_unsharp_amount(const AV1_COMP *const cpi, YV12_BUFFER_CONFIG *const source, YV12_BUFFER_CONFIG *const blurred, const double unsharp_amount_start, const double step_size, const int max_loop_count, const double max_filter_amount) { const AV1_COMMON *const cm = &cpi->common; const int width = source->y_width; const int height = source->y_height; YV12_BUFFER_CONFIG sharpened; memset(&sharpened, 0, sizeof(sharpened)); aom_alloc_frame_buffer( &sharpened, width, height, 1, 1, cm->seq_params.use_highbitdepth, cpi->oxcf.border_in_pixels, cm->features.byte_alignment); const double baseline_variance = frame_average_variance(cpi, source); double unsharp_amount; if (unsharp_amount_start <= step_size) { unsharp_amount = find_best_frame_unsharp_amount_loop( cpi, source, blurred, &sharpened, 0.0, baseline_variance, 0.0, step_size, max_loop_count, max_filter_amount); } else { double a0 = unsharp_amount_start - step_size, a1 = unsharp_amount_start; double v0, v1; unsharp(cpi, source, blurred, &sharpened, a0); v0 = cal_approx_vmaf(cpi, baseline_variance, source, &sharpened); unsharp(cpi, source, blurred, &sharpened, a1); v1 = cal_approx_vmaf(cpi, baseline_variance, source, &sharpened); if (fabs(v0 - v1) < 0.01) { unsharp_amount = a0; } else if (v0 > v1) { unsharp_amount = find_best_frame_unsharp_amount_loop( cpi, source, blurred, &sharpened, v0, baseline_variance, a0, -step_size, max_loop_count, max_filter_amount); } else { unsharp_amount = find_best_frame_unsharp_amount_loop( cpi, source, blurred, &sharpened, v1, baseline_variance, a1, step_size, max_loop_count, max_filter_amount); } } aom_free_frame_buffer(&sharpened); return unsharp_amount; } void av1_vmaf_frame_preprocessing(AV1_COMP *const cpi, YV12_BUFFER_CONFIG *const source) { aom_clear_system_state(); const AV1_COMMON *const cm = &cpi->common; const int bit_depth = cpi->td.mb.e_mbd.bd; const int width = source->y_width; const int height = source->y_height; YV12_BUFFER_CONFIG source_extended, blurred; memset(&source_extended, 0, sizeof(source_extended)); memset(&blurred, 0, sizeof(blurred)); aom_alloc_frame_buffer( &source_extended, width, height, 1, 1, cm->seq_params.use_highbitdepth, cpi->oxcf.border_in_pixels, cm->features.byte_alignment); aom_alloc_frame_buffer( &blurred, width, height, 1, 1, cm->seq_params.use_highbitdepth, cpi->oxcf.border_in_pixels, cm->features.byte_alignment); av1_copy_and_extend_frame(source, &source_extended); gaussian_blur(bit_depth, &source_extended, &blurred); aom_free_frame_buffer(&source_extended); const double best_frame_unsharp_amount = find_best_frame_unsharp_amount( cpi, source, &blurred, cpi->last_frame_unsharp_amount, 0.05, 20, 1.01); cpi->last_frame_unsharp_amount = best_frame_unsharp_amount; unsharp(cpi, source, &blurred, source, best_frame_unsharp_amount); aom_free_frame_buffer(&blurred); aom_clear_system_state(); } void av1_vmaf_blk_preprocessing(AV1_COMP *const cpi, YV12_BUFFER_CONFIG *const source) { aom_clear_system_state(); const AV1_COMMON *const cm = &cpi->common; const int width = source->y_width; const int height = source->y_height; const int bit_depth = cpi->td.mb.e_mbd.bd; YV12_BUFFER_CONFIG source_extended, blurred; memset(&blurred, 0, sizeof(blurred)); memset(&source_extended, 0, sizeof(source_extended)); aom_alloc_frame_buffer( &blurred, width, height, 1, 1, cm->seq_params.use_highbitdepth, cpi->oxcf.border_in_pixels, cm->features.byte_alignment); aom_alloc_frame_buffer( &source_extended, width, height, 1, 1, cm->seq_params.use_highbitdepth, cpi->oxcf.border_in_pixels, cm->features.byte_alignment); av1_copy_and_extend_frame(source, &source_extended); gaussian_blur(bit_depth, &source_extended, &blurred); aom_free_frame_buffer(&source_extended); const double best_frame_unsharp_amount = find_best_frame_unsharp_amount( cpi, source, &blurred, cpi->last_frame_unsharp_amount, 0.05, 20, 1.01); cpi->last_frame_unsharp_amount = best_frame_unsharp_amount; const int block_size = BLOCK_64X64; const int block_w = mi_size_wide[block_size] * 4; const int block_h = mi_size_high[block_size] * 4; const int num_cols = (source->y_width + block_w - 1) / block_w; const int num_rows = (source->y_height + block_h - 1) / block_h; double *best_unsharp_amounts = aom_malloc(sizeof(*best_unsharp_amounts) * num_cols * num_rows); memset(best_unsharp_amounts, 0, sizeof(*best_unsharp_amounts) * num_cols * num_rows); YV12_BUFFER_CONFIG source_block, blurred_block; memset(&source_block, 0, sizeof(source_block)); memset(&blurred_block, 0, sizeof(blurred_block)); aom_alloc_frame_buffer( &source_block, block_w, block_h, 1, 1, cm->seq_params.use_highbitdepth, cpi->oxcf.border_in_pixels, cm->features.byte_alignment); aom_alloc_frame_buffer( &blurred_block, block_w, block_h, 1, 1, cm->seq_params.use_highbitdepth, cpi->oxcf.border_in_pixels, cm->features.byte_alignment); for (int row = 0; row < num_rows; ++row) { for (int col = 0; col < num_cols; ++col) { const int row_offset_y = row * block_h; const int col_offset_y = col * block_w; const int block_width = AOMMIN(width - col_offset_y, block_w); const int block_height = AOMMIN(height - row_offset_y, block_h); const int index = col + row * num_cols; if (bit_depth > 8) { uint16_t *frame_src_buf = CONVERT_TO_SHORTPTR(source->y_buffer) + row_offset_y * source->y_stride + col_offset_y; uint16_t *frame_blurred_buf = CONVERT_TO_SHORTPTR(blurred.y_buffer) + row_offset_y * blurred.y_stride + col_offset_y; uint16_t *blurred_dst = CONVERT_TO_SHORTPTR(blurred_block.y_buffer); uint16_t *src_dst = CONVERT_TO_SHORTPTR(source_block.y_buffer); // Copy block from source frame. for (int i = 0; i < block_h; ++i) { for (int j = 0; j < block_w; ++j) { if (i >= block_height || j >= block_width) { src_dst[j] = 0; blurred_dst[j] = 0; } else { src_dst[j] = frame_src_buf[j]; blurred_dst[j] = frame_blurred_buf[j]; } } frame_src_buf += source->y_stride; frame_blurred_buf += blurred.y_stride; src_dst += source_block.y_stride; blurred_dst += blurred_block.y_stride; } } else { uint8_t *frame_src_buf = source->y_buffer + row_offset_y * source->y_stride + col_offset_y; uint8_t *frame_blurred_buf = blurred.y_buffer + row_offset_y * blurred.y_stride + col_offset_y; uint8_t *blurred_dst = blurred_block.y_buffer; uint8_t *src_dst = source_block.y_buffer; // Copy block from source frame. for (int i = 0; i < block_h; ++i) { for (int j = 0; j < block_w; ++j) { if (i >= block_height || j >= block_width) { src_dst[j] = 0; blurred_dst[j] = 0; } else { src_dst[j] = frame_src_buf[j]; blurred_dst[j] = frame_blurred_buf[j]; } } frame_src_buf += source->y_stride; frame_blurred_buf += blurred.y_stride; src_dst += source_block.y_stride; blurred_dst += blurred_block.y_stride; } } best_unsharp_amounts[index] = find_best_frame_unsharp_amount( cpi, &source_block, &blurred_block, best_frame_unsharp_amount, 0.1, 3, 1.5); } } // Apply best blur amounts for (int row = 0; row < num_rows; ++row) { for (int col = 0; col < num_cols; ++col) { const int row_offset_y = row * block_h; const int col_offset_y = col * block_w; const int block_width = AOMMIN(source->y_width - col_offset_y, block_w); const int block_height = AOMMIN(source->y_height - row_offset_y, block_h); const int index = col + row * num_cols; if (bit_depth > 8) { uint16_t *src_buf = CONVERT_TO_SHORTPTR(source->y_buffer) + row_offset_y * source->y_stride + col_offset_y; uint16_t *blurred_buf = CONVERT_TO_SHORTPTR(blurred.y_buffer) + row_offset_y * blurred.y_stride + col_offset_y; highbd_unsharp_rect(src_buf, source->y_stride, blurred_buf, blurred.y_stride, src_buf, source->y_stride, block_width, block_height, best_unsharp_amounts[index], bit_depth); } else { uint8_t *src_buf = source->y_buffer + row_offset_y * source->y_stride + col_offset_y; uint8_t *blurred_buf = blurred.y_buffer + row_offset_y * blurred.y_stride + col_offset_y; unsharp_rect(src_buf, source->y_stride, blurred_buf, blurred.y_stride, src_buf, source->y_stride, block_width, block_height, best_unsharp_amounts[index]); } } } aom_free_frame_buffer(&source_block); aom_free_frame_buffer(&blurred_block); aom_free_frame_buffer(&blurred); aom_free(best_unsharp_amounts); aom_clear_system_state(); } typedef struct FrameData { const YV12_BUFFER_CONFIG *source, *blurred; int block_w, block_h, num_rows, num_cols, row, col, bit_depth; } FrameData; // A callback function used to pass data to VMAF. // Returns 0 after reading a frame. // Returns 2 when there is no more frame to read. static int update_frame(float *ref_data, float *main_data, float *temp_data, int stride, void *user_data) { FrameData *frames = (FrameData *)user_data; const int width = frames->source->y_width; const int height = frames->source->y_height; const int row = frames->row; const int col = frames->col; const int num_rows = frames->num_rows; const int num_cols = frames->num_cols; const int block_w = frames->block_w; const int block_h = frames->block_h; const YV12_BUFFER_CONFIG *source = frames->source; const YV12_BUFFER_CONFIG *blurred = frames->blurred; const int bit_depth = frames->bit_depth; const float scale_factor = 1.0f / (float)(1 << (bit_depth - 8)); (void)temp_data; stride /= (int)sizeof(*ref_data); for (int i = 0; i < height; ++i) { float *ref, *main; ref = ref_data + i * stride; main = main_data + i * stride; if (bit_depth == 8) { uint8_t *src; src = source->y_buffer + i * source->y_stride; for (int j = 0; j < width; ++j) { ref[j] = main[j] = (float)src[j]; } } else { uint16_t *src; src = CONVERT_TO_SHORTPTR(source->y_buffer) + i * source->y_stride; for (int j = 0; j < width; ++j) { ref[j] = main[j] = scale_factor * (float)src[j]; } } } if (row < num_rows && col < num_cols) { // Set current block const int row_offset = row * block_h; const int col_offset = col * block_w; const int block_width = AOMMIN(width - col_offset, block_w); const int block_height = AOMMIN(height - row_offset, block_h); float *main_buf = main_data + col_offset + row_offset * stride; if (bit_depth == 8) { uint8_t *blurred_buf = blurred->y_buffer + row_offset * blurred->y_stride + col_offset; for (int i = 0; i < block_height; ++i) { for (int j = 0; j < block_width; ++j) { main_buf[j] = (float)blurred_buf[j]; } main_buf += stride; blurred_buf += blurred->y_stride; } } else { uint16_t *blurred_buf = CONVERT_TO_SHORTPTR(blurred->y_buffer) + row_offset * blurred->y_stride + col_offset; for (int i = 0; i < block_height; ++i) { for (int j = 0; j < block_width; ++j) { main_buf[j] = scale_factor * (float)blurred_buf[j]; } main_buf += stride; blurred_buf += blurred->y_stride; } } frames->col++; if (frames->col >= num_cols) { frames->col = 0; frames->row++; } return 0; } else { return 2; } } void av1_set_mb_vmaf_rdmult_scaling(AV1_COMP *cpi) { AV1_COMMON *cm = &cpi->common; const int y_width = cpi->source->y_width; const int y_height = cpi->source->y_height; const int resized_block_size = BLOCK_32X32; const int resize_factor = 2; const int bit_depth = cpi->td.mb.e_mbd.bd; aom_clear_system_state(); YV12_BUFFER_CONFIG resized_source; memset(&resized_source, 0, sizeof(resized_source)); aom_alloc_frame_buffer( &resized_source, y_width / resize_factor, y_height / resize_factor, 1, 1, cm->seq_params.use_highbitdepth, cpi->oxcf.border_in_pixels, cm->features.byte_alignment); av1_resize_and_extend_frame(cpi->source, &resized_source, bit_depth, av1_num_planes(cm)); const int resized_y_width = resized_source.y_width; const int resized_y_height = resized_source.y_height; const int resized_block_w = mi_size_wide[resized_block_size] * 4; const int resized_block_h = mi_size_high[resized_block_size] * 4; const int num_cols = (resized_y_width + resized_block_w - 1) / resized_block_w; const int num_rows = (resized_y_height + resized_block_h - 1) / resized_block_h; YV12_BUFFER_CONFIG blurred; memset(&blurred, 0, sizeof(blurred)); aom_alloc_frame_buffer(&blurred, resized_y_width, resized_y_height, 1, 1, cm->seq_params.use_highbitdepth, cpi->oxcf.border_in_pixels, cm->features.byte_alignment); gaussian_blur(bit_depth, &resized_source, &blurred); double *scores = aom_malloc(sizeof(*scores) * (num_rows * num_cols)); memset(scores, 0, sizeof(*scores) * (num_rows * num_cols)); FrameData frame_data; frame_data.source = &resized_source; frame_data.blurred = &blurred; frame_data.block_w = resized_block_w; frame_data.block_h = resized_block_h; frame_data.num_rows = num_rows; frame_data.num_cols = num_cols; frame_data.row = 0; frame_data.col = 0; frame_data.bit_depth = bit_depth; aom_calc_vmaf_multi_frame(&frame_data, cpi->oxcf.vmaf_model_path, update_frame, resized_y_width, resized_y_height, bit_depth, scores); // Loop through each 'block_size' block. for (int row = 0; row < num_rows; ++row) { for (int col = 0; col < num_cols; ++col) { const int index = row * num_cols + col; const int row_offset_y = row * resized_block_h; const int col_offset_y = col * resized_block_w; uint8_t *const orig_buf = resized_source.y_buffer + row_offset_y * resized_source.y_stride + col_offset_y; uint8_t *const blurred_buf = blurred.y_buffer + row_offset_y * blurred.y_stride + col_offset_y; const double vmaf = scores[index]; const double dvmaf = kBaselineVmaf - vmaf; unsigned int sse; cpi->fn_ptr[resized_block_size].vf(orig_buf, resized_source.y_stride, blurred_buf, blurred.y_stride, &sse); const double mse = (double)sse / (double)(resized_y_width * resized_y_height); double weight; const double eps = 0.01 / (num_rows * num_cols); if (dvmaf < eps || mse < eps) { weight = 1.0; } else { weight = mse / dvmaf; } // Normalize it with a data fitted model. weight = 6.0 * (1.0 - exp(-0.05 * weight)) + 0.8; cpi->vmaf_rdmult_scaling_factors[index] = weight; } } aom_free_frame_buffer(&resized_source); aom_free_frame_buffer(&blurred); aom_free(scores); aom_clear_system_state(); } void av1_set_vmaf_rdmult(const AV1_COMP *const cpi, MACROBLOCK *const x, const BLOCK_SIZE bsize, const int mi_row, const int mi_col, int *const rdmult) { const AV1_COMMON *const cm = &cpi->common; const int bsize_base = BLOCK_64X64; const int num_mi_w = mi_size_wide[bsize_base]; const int num_mi_h = mi_size_high[bsize_base]; const int num_cols = (cm->mi_params.mi_cols + num_mi_w - 1) / num_mi_w; const int num_rows = (cm->mi_params.mi_rows + num_mi_h - 1) / num_mi_h; const int num_bcols = (mi_size_wide[bsize] + num_mi_w - 1) / num_mi_w; const int num_brows = (mi_size_high[bsize] + num_mi_h - 1) / num_mi_h; int row, col; double num_of_mi = 0.0; double geom_mean_of_scale = 0.0; aom_clear_system_state(); for (row = mi_row / num_mi_w; row < num_rows && row < mi_row / num_mi_w + num_brows; ++row) { for (col = mi_col / num_mi_h; col < num_cols && col < mi_col / num_mi_h + num_bcols; ++col) { const int index = row * num_cols + col; geom_mean_of_scale += log(cpi->vmaf_rdmult_scaling_factors[index]); num_of_mi += 1.0; } } geom_mean_of_scale = exp(geom_mean_of_scale / num_of_mi); *rdmult = (int)((double)(*rdmult) * geom_mean_of_scale + 0.5); *rdmult = AOMMAX(*rdmult, 0); set_error_per_bit(x, *rdmult); aom_clear_system_state(); } // TODO(sdeng): replace them with the SIMD versions. static AOM_INLINE double highbd_image_sad_c(const uint16_t *src, int src_stride, const uint16_t *ref, int ref_stride, int w, int h) { double accum = 0.0; int i, j; for (i = 0; i < h; ++i) { for (j = 0; j < w; ++j) { double img1px = src[i * src_stride + j]; double img2px = ref[i * ref_stride + j]; accum += fabs(img1px - img2px); } } return accum / (double)(h * w); } static AOM_INLINE double image_sad_c(const uint8_t *src, int src_stride, const uint8_t *ref, int ref_stride, int w, int h) { double accum = 0.0; int i, j; for (i = 0; i < h; ++i) { for (j = 0; j < w; ++j) { double img1px = src[i * src_stride + j]; double img2px = ref[i * ref_stride + j]; accum += fabs(img1px - img2px); } } return accum / (double)(h * w); } static AOM_INLINE double calc_vmaf_motion_score( const AV1_COMP *const cpi, const AV1_COMMON *const cm, const YV12_BUFFER_CONFIG *const cur, const YV12_BUFFER_CONFIG *const last, const YV12_BUFFER_CONFIG *const next) { const int y_width = cur->y_width; const int y_height = cur->y_height; YV12_BUFFER_CONFIG blurred_cur, blurred_last, blurred_next; const int bit_depth = cpi->td.mb.e_mbd.bd; memset(&blurred_cur, 0, sizeof(blurred_cur)); memset(&blurred_last, 0, sizeof(blurred_last)); memset(&blurred_next, 0, sizeof(blurred_next)); aom_alloc_frame_buffer( &blurred_cur, y_width, y_height, 1, 1, cm->seq_params.use_highbitdepth, cpi->oxcf.border_in_pixels, cm->features.byte_alignment); aom_alloc_frame_buffer( &blurred_last, y_width, y_height, 1, 1, cm->seq_params.use_highbitdepth, cpi->oxcf.border_in_pixels, cm->features.byte_alignment); aom_alloc_frame_buffer( &blurred_next, y_width, y_height, 1, 1, cm->seq_params.use_highbitdepth, cpi->oxcf.border_in_pixels, cm->features.byte_alignment); gaussian_blur(bit_depth, cur, &blurred_cur); gaussian_blur(bit_depth, last, &blurred_last); if (next) gaussian_blur(bit_depth, next, &blurred_next); double motion1, motion2 = 65536.0; if (bit_depth > 8) { const float scale_factor = 1.0f / (float)(1 << (bit_depth - 8)); motion1 = highbd_image_sad_c(CONVERT_TO_SHORTPTR(blurred_cur.y_buffer), blurred_cur.y_stride, CONVERT_TO_SHORTPTR(blurred_last.y_buffer), blurred_last.y_stride, y_width, y_height) * scale_factor; if (next) { motion2 = highbd_image_sad_c(CONVERT_TO_SHORTPTR(blurred_cur.y_buffer), blurred_cur.y_stride, CONVERT_TO_SHORTPTR(blurred_next.y_buffer), blurred_next.y_stride, y_width, y_height) * scale_factor; } } else { motion1 = image_sad_c(blurred_cur.y_buffer, blurred_cur.y_stride, blurred_last.y_buffer, blurred_last.y_stride, y_width, y_height); if (next) { motion2 = image_sad_c(blurred_cur.y_buffer, blurred_cur.y_stride, blurred_next.y_buffer, blurred_next.y_stride, y_width, y_height); } } aom_free_frame_buffer(&blurred_cur); aom_free_frame_buffer(&blurred_last); aom_free_frame_buffer(&blurred_next); return AOMMIN(motion1, motion2); } // Calculates the new qindex from the VMAF motion score. This is based on the // observation: when the motion score becomes higher, the VMAF score of the // same source and distorted frames would become higher. int av1_get_vmaf_base_qindex(const AV1_COMP *const cpi, int current_qindex) { const AV1_COMMON *const cm = &cpi->common; if (cm->current_frame.frame_number == 0 || cpi->oxcf.pass == 1) { return current_qindex; } const int bit_depth = cpi->td.mb.e_mbd.bd; const double approx_sse = cpi->last_frame_ysse / (double)((1 << (bit_depth - 8)) * (1 << (bit_depth - 8))); const double approx_dvmaf = kBaselineVmaf - cpi->last_frame_vmaf; const double sse_threshold = 0.01 * cpi->source->y_width * cpi->source->y_height; const double vmaf_threshold = 0.01; if (approx_sse < sse_threshold || approx_dvmaf < vmaf_threshold) { return current_qindex; } aom_clear_system_state(); const GF_GROUP *gf_group = &cpi->gf_group; YV12_BUFFER_CONFIG *cur_buf = cpi->source; int src_index = 0; if (cm->show_frame == 0) { src_index = gf_group->arf_src_offset[gf_group->index]; struct lookahead_entry *cur_entry = av1_lookahead_peek(cpi->lookahead, src_index, cpi->compressor_stage); cur_buf = &cur_entry->img; } assert(cur_buf); const struct lookahead_entry *last_entry = av1_lookahead_peek(cpi->lookahead, src_index - 1, cpi->compressor_stage); const struct lookahead_entry *next_entry = av1_lookahead_peek(cpi->lookahead, src_index + 1, cpi->compressor_stage); const YV12_BUFFER_CONFIG *next_buf = &next_entry->img; const YV12_BUFFER_CONFIG *last_buf = cm->show_frame ? cpi->last_source : &last_entry->img; assert(last_buf); const double motion = calc_vmaf_motion_score(cpi, cm, cur_buf, last_buf, next_buf); // Get dVMAF through a data fitted model. const double dvmaf = 26.11 * (1.0 - exp(-0.06 * motion)); const double dsse = dvmaf * approx_sse / approx_dvmaf; const double beta = approx_sse / (dsse + approx_sse); const int offset = av1_get_deltaq_offset(cpi, current_qindex, beta); int qindex = current_qindex + offset; qindex = AOMMIN(qindex, MAXQ); qindex = AOMMAX(qindex, MINQ); aom_clear_system_state(); return qindex; } void av1_update_vmaf_curve(AV1_COMP *cpi, YV12_BUFFER_CONFIG *source, YV12_BUFFER_CONFIG *recon) { const int bit_depth = cpi->td.mb.e_mbd.bd; aom_calc_vmaf(cpi->oxcf.vmaf_model_path, source, recon, bit_depth, &cpi->last_frame_vmaf); if (bit_depth > 8) { cpi->last_frame_ysse = (double)aom_highbd_get_y_sse(source, recon); } else { cpi->last_frame_ysse = (double)aom_get_y_sse(source, recon); } }