/* * Copyright (c) 2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #ifndef AOM_AV1_ENCODER_RD_H_ #define AOM_AV1_ENCODER_RD_H_ #include #include "av1/common/blockd.h" #include "av1/encoder/block.h" #include "av1/encoder/context_tree.h" #include "av1/encoder/cost.h" #ifdef __cplusplus extern "C" { #endif #define RDDIV_BITS 7 #define RD_EPB_SHIFT 6 #define RDCOST(RM, R, D) \ (ROUND_POWER_OF_TWO(((int64_t)(R)) * (RM), AV1_PROB_COST_SHIFT) + \ ((D) * (1 << RDDIV_BITS))) #define RDCOST_NEG_R(RM, R, D) \ (((D) * (1 << RDDIV_BITS)) - \ ROUND_POWER_OF_TWO(((int64_t)(R)) * (RM), AV1_PROB_COST_SHIFT)) #define RDCOST_DBL(RM, R, D) \ (((((double)(R)) * (RM)) / (double)(1 << AV1_PROB_COST_SHIFT)) + \ ((double)(D) * (1 << RDDIV_BITS))) #define QIDX_SKIP_THRESH 115 #define MV_COST_WEIGHT 108 #define MV_COST_WEIGHT_SUB 120 // The fractional part of rd_thresh factor is stored with 5 bits. The maximum // factor that we allow is two, which is stored as 2 ** (5+1) = 64 #define RD_THRESH_FAC_FRAC_BITS (5) #define RD_THRESH_FAC_FRAC_VAL (1 << (RD_THRESH_FAC_FRAC_BITS)) #define RD_THRESH_MAX_FACT ((RD_THRESH_FAC_FRAC_VAL) << 1) #define RD_THRESH_LOG_DEC_FACTOR (4) #define RD_THRESH_INC (1) // Factor to weigh the rate for switchable interp filters. #define SWITCHABLE_INTERP_RATE_FACTOR 1 enum { // Default initialization when we are not using winner mode framework. e.g. // intrabc DEFAULT_EVAL = 0, // Initialization for selecting winner mode MODE_EVAL, // Initialization for winner mode evaluation WINNER_MODE_EVAL, // All mode evaluation types MODE_EVAL_TYPES, } UENUM1BYTE(MODE_EVAL_TYPE); typedef struct RD_OPT { // Thresh_mult is used to set a threshold for the rd score. A higher value // means that we will accept the best mode so far more often. This number // is used in combination with the current block size, and thresh_freq_fact // to pick a threshold. int thresh_mult[MAX_MODES]; int threshes[MAX_SEGMENTS][BLOCK_SIZES_ALL][MAX_MODES]; int RDMULT; double r0, arf_r0; double mc_saved_base, mc_count_base; } RD_OPT; typedef struct { // Cost of transmitting the actual motion vector. // mv_component[0][i] is the cost of motion vector with horizontal component // (mv_row) equal to i - MV_MAX. // mv_component[1][i] is the cost of motion vector with vertical component // (mv_col) equal to i - MV_MAX. int mv_component[2][MV_VALS]; // joint_mv[i] is the cost of transmitting joint mv(MV_JOINT_TYPE) of // type i. // TODO(huisu@google.com): we can update dv_joint_cost per SB. int joint_mv[MV_JOINTS]; } IntraBCMVCosts; static INLINE void av1_init_rd_stats(RD_STATS *rd_stats) { #if CONFIG_RD_DEBUG int plane; #endif rd_stats->rate = 0; rd_stats->dist = 0; rd_stats->rdcost = 0; rd_stats->sse = 0; rd_stats->skip = 1; rd_stats->zero_rate = 0; #if CONFIG_RD_DEBUG // This may run into problems when monochrome video is // encoded, as there will only be 1 plane for (plane = 0; plane < MAX_MB_PLANE; ++plane) { rd_stats->txb_coeff_cost[plane] = 0; { int r, c; for (r = 0; r < TXB_COEFF_COST_MAP_SIZE; ++r) for (c = 0; c < TXB_COEFF_COST_MAP_SIZE; ++c) rd_stats->txb_coeff_cost_map[plane][r][c] = 0; } } #endif } static INLINE void av1_invalid_rd_stats(RD_STATS *rd_stats) { #if CONFIG_RD_DEBUG int plane; #endif rd_stats->rate = INT_MAX; rd_stats->dist = INT64_MAX; rd_stats->rdcost = INT64_MAX; rd_stats->sse = INT64_MAX; rd_stats->skip = 0; rd_stats->zero_rate = 0; #if CONFIG_RD_DEBUG // This may run into problems when monochrome video is // encoded, as there will only be 1 plane for (plane = 0; plane < MAX_MB_PLANE; ++plane) { rd_stats->txb_coeff_cost[plane] = INT_MAX; { int r, c; for (r = 0; r < TXB_COEFF_COST_MAP_SIZE; ++r) for (c = 0; c < TXB_COEFF_COST_MAP_SIZE; ++c) rd_stats->txb_coeff_cost_map[plane][r][c] = INT16_MAX; } } #endif } static INLINE void av1_merge_rd_stats(RD_STATS *rd_stats_dst, const RD_STATS *rd_stats_src) { assert(rd_stats_dst->rate != INT_MAX && rd_stats_src->rate != INT_MAX); rd_stats_dst->rate = (int)AOMMIN( ((int64_t)rd_stats_dst->rate + (int64_t)rd_stats_src->rate), INT_MAX); if (!rd_stats_dst->zero_rate) rd_stats_dst->zero_rate = rd_stats_src->zero_rate; rd_stats_dst->dist += rd_stats_src->dist; rd_stats_dst->sse += rd_stats_src->sse; rd_stats_dst->skip &= rd_stats_src->skip; #if CONFIG_RD_DEBUG // This may run into problems when monochrome video is // encoded, as there will only be 1 plane for (int plane = 0; plane < MAX_MB_PLANE; ++plane) { rd_stats_dst->txb_coeff_cost[plane] += rd_stats_src->txb_coeff_cost[plane]; { // TODO(angiebird): optimize this part int r, c; int ref_txb_coeff_cost = 0; for (r = 0; r < TXB_COEFF_COST_MAP_SIZE; ++r) for (c = 0; c < TXB_COEFF_COST_MAP_SIZE; ++c) { rd_stats_dst->txb_coeff_cost_map[plane][r][c] += rd_stats_src->txb_coeff_cost_map[plane][r][c]; ref_txb_coeff_cost += rd_stats_dst->txb_coeff_cost_map[plane][r][c]; } assert(ref_txb_coeff_cost == rd_stats_dst->txb_coeff_cost[plane]); } } #endif } static INLINE void av1_accumulate_rd_stats(RD_STATS *rd_stats, int64_t dist, int rate, int skip, int64_t sse, int zero_rate) { assert(rd_stats->rate != INT_MAX && rate != INT_MAX); rd_stats->rate += rate; if (!rd_stats->zero_rate) rd_stats->zero_rate = zero_rate; rd_stats->dist += dist; rd_stats->skip &= skip; rd_stats->sse += sse; } static INLINE int64_t av1_calculate_rd_cost(int mult, int rate, int64_t dist) { assert(mult >= 0); if (rate >= 0) { return RDCOST(mult, rate, dist); } return RDCOST_NEG_R(mult, -rate, dist); } static INLINE void av1_rd_cost_update(int mult, RD_STATS *rd_cost) { if (rd_cost->rate < INT_MAX && rd_cost->dist < INT64_MAX && rd_cost->rdcost < INT64_MAX) { rd_cost->rdcost = av1_calculate_rd_cost(mult, rd_cost->rate, rd_cost->dist); } else { av1_invalid_rd_stats(rd_cost); } } static INLINE void av1_rd_stats_subtraction(int mult, const RD_STATS *const left, const RD_STATS *const right, RD_STATS *result) { if (left->rate == INT_MAX || right->rate == INT_MAX || left->dist == INT64_MAX || right->dist == INT64_MAX || left->rdcost == INT64_MAX || right->rdcost == INT64_MAX) { av1_invalid_rd_stats(result); } else { result->rate = left->rate - right->rate; result->dist = left->dist - right->dist; result->rdcost = av1_calculate_rd_cost(mult, result->rate, result->dist); } } struct TileInfo; struct TileDataEnc; struct AV1_COMP; struct macroblock; int av1_compute_rd_mult_based_on_qindex(const struct AV1_COMP *cpi, int qindex); int av1_compute_rd_mult(const struct AV1_COMP *cpi, int qindex); void av1_initialize_rd_consts(struct AV1_COMP *cpi); void av1_initialize_me_consts(const struct AV1_COMP *cpi, MACROBLOCK *x, int qindex); void av1_model_rd_from_var_lapndz(int64_t var, unsigned int n, unsigned int qstep, int *rate, int64_t *dist); void av1_model_rd_curvfit(BLOCK_SIZE bsize, double sse_norm, double xqr, double *rate_f, double *distbysse_f); void av1_model_rd_surffit(BLOCK_SIZE bsize, double sse_norm, double xm, double yl, double *rate_f, double *distbysse_f); int av1_get_switchable_rate(const MACROBLOCK *x, const MACROBLOCKD *xd, InterpFilter interp_filter); YV12_BUFFER_CONFIG *av1_get_scaled_ref_frame(const struct AV1_COMP *cpi, int ref_frame); void av1_init_me_luts(void); void av1_set_mvcost(MACROBLOCK *x, int ref, int ref_mv_idx); void av1_get_entropy_contexts(BLOCK_SIZE plane_bsize, const struct macroblockd_plane *pd, ENTROPY_CONTEXT t_above[MAX_MIB_SIZE], ENTROPY_CONTEXT t_left[MAX_MIB_SIZE]); void av1_set_rd_speed_thresholds(struct AV1_COMP *cpi); void av1_update_rd_thresh_fact(const AV1_COMMON *const cm, int (*fact)[MAX_MODES], int rd_thresh, BLOCK_SIZE bsize, THR_MODES best_mode_index); static INLINE void reset_thresh_freq_fact(MACROBLOCK *const x) { for (int i = 0; i < BLOCK_SIZES_ALL; ++i) { for (int j = 0; j < MAX_MODES; ++j) { x->thresh_freq_fact[i][j] = RD_THRESH_FAC_FRAC_VAL; } } } static INLINE int rd_less_than_thresh(int64_t best_rd, int thresh, int thresh_fact) { return best_rd < ((int64_t)thresh * thresh_fact >> 5) || thresh == INT_MAX; } void av1_mv_pred(const struct AV1_COMP *cpi, MACROBLOCK *x, uint8_t *ref_y_buffer, int ref_y_stride, int ref_frame, BLOCK_SIZE block_size); static INLINE void set_error_per_bit(MACROBLOCK *x, int rdmult) { x->errorperbit = rdmult >> RD_EPB_SHIFT; x->errorperbit += (x->errorperbit == 0); } // Get the threshold for R-D optimization of coefficients depending upon mode // decision/winner mode processing static INLINE uint32_t get_rd_opt_coeff_thresh( const uint32_t *const coeff_opt_dist_threshold, int enable_winner_mode_for_coeff_opt, int is_winner_mode) { // Default initialization of threshold uint32_t coeff_opt_thresh = coeff_opt_dist_threshold[DEFAULT_EVAL]; // TODO(any): Experiment with coeff_opt_dist_threshold values when // enable_winner_mode_for_coeff_opt is ON // TODO(any): Skip the winner mode processing for blocks with lower residual // energy as R-D optimization of coefficients would have been enabled during // mode decision if (enable_winner_mode_for_coeff_opt) { // Use conservative threshold during mode decision and perform R-D // optimization of coeffs always for winner modes if (is_winner_mode) coeff_opt_thresh = coeff_opt_dist_threshold[WINNER_MODE_EVAL]; else coeff_opt_thresh = coeff_opt_dist_threshold[MODE_EVAL]; } return coeff_opt_thresh; } // Used to reset the state of tx/mb rd hash information static INLINE void reset_hash_records(MACROBLOCK *const x, int use_inter_txb_hash) { int32_t record_idx; // Reset the state for use_inter_txb_hash if (use_inter_txb_hash) { for (record_idx = 0; record_idx < ((MAX_MIB_SIZE >> 1) * (MAX_MIB_SIZE >> 1)); record_idx++) x->txb_rd_record_8X8[record_idx].num = x->txb_rd_record_8X8[record_idx].index_start = 0; for (record_idx = 0; record_idx < ((MAX_MIB_SIZE >> 2) * (MAX_MIB_SIZE >> 2)); record_idx++) x->txb_rd_record_16X16[record_idx].num = x->txb_rd_record_16X16[record_idx].index_start = 0; for (record_idx = 0; record_idx < ((MAX_MIB_SIZE >> 3) * (MAX_MIB_SIZE >> 3)); record_idx++) x->txb_rd_record_32X32[record_idx].num = x->txb_rd_record_32X32[record_idx].index_start = 0; for (record_idx = 0; record_idx < ((MAX_MIB_SIZE >> 4) * (MAX_MIB_SIZE >> 4)); record_idx++) x->txb_rd_record_64X64[record_idx].num = x->txb_rd_record_64X64[record_idx].index_start = 0; } // Reset the state for use_intra_txb_hash x->txb_rd_record_intra.num = x->txb_rd_record_intra.index_start = 0; // Reset the state for use_mb_rd_hash x->mb_rd_record.num = x->mb_rd_record.index_start = 0; } void av1_setup_pred_block(const MACROBLOCKD *xd, struct buf_2d dst[MAX_MB_PLANE], const YV12_BUFFER_CONFIG *src, const struct scale_factors *scale, const struct scale_factors *scale_uv, const int num_planes); int av1_get_intra_cost_penalty(int qindex, int qdelta, aom_bit_depth_t bit_depth); void av1_fill_mode_rates(AV1_COMMON *const cm, MACROBLOCK *x, FRAME_CONTEXT *fc); void av1_fill_coeff_costs(MACROBLOCK *x, FRAME_CONTEXT *fc, const int num_planes); void av1_fill_mv_costs(const FRAME_CONTEXT *fc, int integer_mv, int usehp, MACROBLOCK *x); int av1_get_adaptive_rdmult(const struct AV1_COMP *cpi, double beta); int av1_get_deltaq_offset(const struct AV1_COMP *cpi, int qindex, double beta); #ifdef __cplusplus } // extern "C" #endif #endif // AOM_AV1_ENCODER_RD_H_