/* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #include "cairoint.h" #include "cairo-boxes-private.h" #include "cairo-error-private.h" #include "cairo-path-fixed-private.h" #include "cairo-region-private.h" typedef struct cairo_filler { double tolerance; cairo_polygon_t *polygon; } cairo_filler_t; static void _cairo_filler_init (cairo_filler_t *filler, double tolerance, cairo_polygon_t *polygon) { filler->tolerance = tolerance; filler->polygon = polygon; } static void _cairo_filler_fini (cairo_filler_t *filler) { } static cairo_status_t _cairo_filler_move_to (void *closure, const cairo_point_t *point) { cairo_filler_t *filler = closure; cairo_polygon_t *polygon = filler->polygon; return _cairo_polygon_close (polygon) || _cairo_polygon_move_to (polygon, point); } static cairo_status_t _cairo_filler_line_to (void *closure, const cairo_point_t *point) { cairo_filler_t *filler = closure; return _cairo_polygon_line_to (filler->polygon, point); } static cairo_status_t _cairo_filler_curve_to (void *closure, const cairo_point_t *b, const cairo_point_t *c, const cairo_point_t *d) { cairo_filler_t *filler = closure; cairo_spline_t spline; if (! _cairo_spline_init (&spline, _cairo_filler_line_to, filler, &filler->polygon->current_point, b, c, d)) { return _cairo_filler_line_to (closure, d); } return _cairo_spline_decompose (&spline, filler->tolerance); } static cairo_status_t _cairo_filler_close_path (void *closure) { cairo_filler_t *filler = closure; return _cairo_polygon_close (filler->polygon); } cairo_status_t _cairo_path_fixed_fill_to_polygon (const cairo_path_fixed_t *path, double tolerance, cairo_polygon_t *polygon) { cairo_filler_t filler; cairo_status_t status; _cairo_filler_init (&filler, tolerance, polygon); status = _cairo_path_fixed_interpret (path, CAIRO_DIRECTION_FORWARD, _cairo_filler_move_to, _cairo_filler_line_to, _cairo_filler_curve_to, _cairo_filler_close_path, &filler); if (unlikely (status)) return status; status = _cairo_polygon_close (polygon); _cairo_filler_fini (&filler); return status; } cairo_status_t _cairo_path_fixed_fill_to_traps (const cairo_path_fixed_t *path, cairo_fill_rule_t fill_rule, double tolerance, cairo_traps_t *traps) { cairo_polygon_t polygon; cairo_status_t status; if (path->is_empty_fill) return CAIRO_STATUS_SUCCESS; _cairo_polygon_init (&polygon); if (traps->num_limits) _cairo_polygon_limit (&polygon, traps->limits, traps->num_limits); status = _cairo_path_fixed_fill_to_polygon (path, tolerance, &polygon); if (unlikely (status || polygon.num_edges == 0)) goto CLEANUP; if (path->is_rectilinear) { status = _cairo_bentley_ottmann_tessellate_rectilinear_polygon (traps, &polygon, fill_rule); } else { status = _cairo_bentley_ottmann_tessellate_polygon (traps, &polygon, fill_rule); } CLEANUP: _cairo_polygon_fini (&polygon); return status; } static cairo_region_t * _cairo_path_fixed_fill_rectilinear_tessellate_to_region (const cairo_path_fixed_t *path, cairo_fill_rule_t fill_rule, const cairo_rectangle_int_t *extents) { cairo_box_t box; cairo_polygon_t polygon; cairo_traps_t traps; cairo_status_t status; cairo_region_t *region; /* first try to bypass fill-to-polygon */ _cairo_traps_init (&traps); status = _cairo_path_fixed_fill_rectilinear_to_traps (path, fill_rule, &traps); if (_cairo_status_is_error (status)) goto CLEANUP_TRAPS; if (status == CAIRO_STATUS_SUCCESS) { status = _cairo_traps_extract_region (&traps, ®ion); goto CLEANUP_TRAPS; } /* path is not rectangular, try extracting clipped rectilinear edges */ _cairo_polygon_init (&polygon); if (extents != NULL) { _cairo_box_from_rectangle (&box, extents); _cairo_polygon_limit (&polygon, &box, 1); } /* tolerance will be ignored as the path is rectilinear */ status = _cairo_path_fixed_fill_to_polygon (path, 0., &polygon); if (unlikely (status)) goto CLEANUP_POLYGON; if (polygon.num_edges == 0) { region = cairo_region_create (); } else { status = _cairo_bentley_ottmann_tessellate_rectilinear_polygon (&traps, &polygon, fill_rule); if (likely (status == CAIRO_STATUS_SUCCESS)) status = _cairo_traps_extract_region (&traps, ®ion); } CLEANUP_POLYGON: _cairo_polygon_fini (&polygon); CLEANUP_TRAPS: _cairo_traps_fini (&traps); if (unlikely (status)) region = _cairo_region_create_in_error (status); return region; } /* This special-case filler supports only a path that describes a * device-axis aligned rectangle. It exists to avoid the overhead of * the general tessellator when drawing very common rectangles. * * If the path described anything but a device-axis aligned rectangle, * this function will abort. */ cairo_region_t * _cairo_path_fixed_fill_rectilinear_to_region (const cairo_path_fixed_t *path, cairo_fill_rule_t fill_rule, const cairo_rectangle_int_t *extents) { cairo_rectangle_int_t rectangle_stack[CAIRO_STACK_ARRAY_LENGTH (cairo_rectangle_int_t)]; cairo_box_t box; cairo_region_t *region = NULL; assert (path->maybe_fill_region); assert (! path->is_empty_fill); if (_cairo_path_fixed_is_box (path, &box)) { rectangle_stack[0].x = _cairo_fixed_integer_part (box.p1.x); rectangle_stack[0].y = _cairo_fixed_integer_part (box.p1.y); rectangle_stack[0].width = _cairo_fixed_integer_part (box.p2.x) - rectangle_stack[0].x; rectangle_stack[0].height = _cairo_fixed_integer_part (box.p2.y) - rectangle_stack[0].y; if (! _cairo_rectangle_intersect (&rectangle_stack[0], extents)) region = cairo_region_create (); else region = cairo_region_create_rectangle (&rectangle_stack[0]); } else if (fill_rule == CAIRO_FILL_RULE_WINDING) { cairo_rectangle_int_t *rects = rectangle_stack; cairo_path_fixed_iter_t iter; int last_cw = -1; int size = ARRAY_LENGTH (rectangle_stack); int count = 0; /* Support a series of rectangles as can be expected to describe a * GdkRegion clip region during exposes. */ _cairo_path_fixed_iter_init (&iter, path); while (_cairo_path_fixed_iter_is_fill_box (&iter, &box)) { int cw = 0; if (box.p1.x > box.p2.x) { cairo_fixed_t t; t = box.p1.x; box.p1.x = box.p2.x; box.p2.x = t; cw = ! cw; } if (box.p1.y > box.p2.y) { cairo_fixed_t t; t = box.p1.y; box.p1.y = box.p2.y; box.p2.y = t; cw = ! cw; } if (last_cw < 0) last_cw = cw; else if (last_cw != cw) goto TESSELLATE; if (count == size) { cairo_rectangle_int_t *new_rects; size *= 4; if (rects == rectangle_stack) { new_rects = _cairo_malloc_ab (size, sizeof (cairo_rectangle_int_t)); if (unlikely (new_rects == NULL)) { /* XXX _cairo_region_nil */ break; } memcpy (new_rects, rects, sizeof (rectangle_stack)); } else { new_rects = _cairo_realloc_ab (rects, size, sizeof (cairo_rectangle_int_t)); if (unlikely (new_rects == NULL)) { /* XXX _cairo_region_nil */ break; } } rects = new_rects; } rects[count].x = _cairo_fixed_integer_part (box.p1.x); rects[count].y = _cairo_fixed_integer_part (box.p1.y); rects[count].width = _cairo_fixed_integer_part (box.p2.x) - rects[count].x; rects[count].height = _cairo_fixed_integer_part (box.p2.y) - rects[count].y; if (_cairo_rectangle_intersect (&rects[count], extents)) count++; } if (_cairo_path_fixed_iter_at_end (&iter)) region = cairo_region_create_rectangles (rects, count); TESSELLATE: if (rects != rectangle_stack) free (rects); } if (region == NULL) { /* Hmm, complex polygon */ region = _cairo_path_fixed_fill_rectilinear_tessellate_to_region (path, fill_rule, extents); } return region; } cairo_int_status_t _cairo_path_fixed_fill_rectilinear_to_traps (const cairo_path_fixed_t *path, cairo_fill_rule_t fill_rule, cairo_traps_t *traps) { cairo_box_t box; cairo_status_t status; traps->is_rectilinear = TRUE; traps->is_rectangular = TRUE; if (_cairo_path_fixed_is_box (path, &box)) { return _cairo_traps_tessellate_rectangle (traps, &box.p1, &box.p2); } else { cairo_path_fixed_iter_t iter; _cairo_path_fixed_iter_init (&iter, path); while (_cairo_path_fixed_iter_is_fill_box (&iter, &box)) { if (box.p1.y > box.p2.y) { cairo_fixed_t t; t = box.p1.y; box.p1.y = box.p2.y; box.p2.y = t; t = box.p1.x; box.p1.x = box.p2.x; box.p2.x = t; } status = _cairo_traps_tessellate_rectangle (traps, &box.p1, &box.p2); if (unlikely (status)) { _cairo_traps_clear (traps); return status; } } if (_cairo_path_fixed_iter_at_end (&iter)) return _cairo_bentley_ottmann_tessellate_rectangular_traps (traps, fill_rule); _cairo_traps_clear (traps); return CAIRO_INT_STATUS_UNSUPPORTED; } } static cairo_status_t _cairo_path_fixed_fill_rectilinear_tessellate_to_boxes (const cairo_path_fixed_t *path, cairo_fill_rule_t fill_rule, cairo_boxes_t *boxes) { cairo_polygon_t polygon; cairo_status_t status; _cairo_polygon_init (&polygon); if (boxes->num_limits) { _cairo_polygon_limit (&polygon, boxes->limits, boxes->num_limits); boxes->num_limits = 0; } /* tolerance will be ignored as the path is rectilinear */ status = _cairo_path_fixed_fill_to_polygon (path, 0., &polygon); if (likely (status == CAIRO_STATUS_SUCCESS)) { status = _cairo_bentley_ottmann_tessellate_rectilinear_polygon_to_boxes (&polygon, fill_rule, boxes); } _cairo_polygon_fini (&polygon); return status; } cairo_status_t _cairo_path_fixed_fill_rectilinear_to_boxes (const cairo_path_fixed_t *path, cairo_fill_rule_t fill_rule, cairo_boxes_t *boxes) { cairo_path_fixed_iter_t iter; cairo_status_t status; cairo_box_t box; if (_cairo_path_fixed_is_box (path, &box)) return _cairo_boxes_add (boxes, &box); _cairo_path_fixed_iter_init (&iter, path); while (_cairo_path_fixed_iter_is_fill_box (&iter, &box)) { if (box.p1.y == box.p2.y || box.p1.x == box.p2.x) continue; if (box.p1.y > box.p2.y) { cairo_fixed_t t; t = box.p1.y; box.p1.y = box.p2.y; box.p2.y = t; t = box.p1.x; box.p1.x = box.p2.x; box.p2.x = t; } status = _cairo_boxes_add (boxes, &box); if (unlikely (status)) return status; } if (_cairo_path_fixed_iter_at_end (&iter)) return _cairo_bentley_ottmann_tessellate_boxes (boxes, fill_rule, boxes); /* path is not rectangular, try extracting clipped rectilinear edges */ _cairo_boxes_clear (boxes); return _cairo_path_fixed_fill_rectilinear_tessellate_to_boxes (path, fill_rule, boxes); }