/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ /* Wrapper object for reflecting native xpcom objects into JavaScript. */ #include "xpcprivate.h" #include "mozilla/jsipc/CrossProcessObjectWrappers.h" #include "nsWrapperCacheInlines.h" #include "XPCLog.h" #include "jsprf.h" #include "jsfriendapi.h" #include "AccessCheck.h" #include "WrapperFactory.h" #include "XrayWrapper.h" #include "nsContentUtils.h" #include "nsCycleCollectionNoteRootCallback.h" #include #include "mozilla/DeferredFinalize.h" #include "mozilla/Likely.h" #include "mozilla/Unused.h" #include "mozilla/Sprintf.h" #include "mozilla/dom/BindingUtils.h" #include using namespace xpc; using namespace mozilla; using namespace mozilla::dom; using namespace JS; /***************************************************************************/ NS_IMPL_CYCLE_COLLECTION_CLASS(XPCWrappedNative) // No need to unlink the JS objects: if the XPCWrappedNative is cycle // collected then its mFlatJSObject will be cycle collected too and // finalization of the mFlatJSObject will unlink the JS objects (see // XPC_WN_NoHelper_Finalize and FlatJSObjectFinalized). NS_IMPL_CYCLE_COLLECTION_UNLINK_BEGIN(XPCWrappedNative) tmp->ExpireWrapper(); NS_IMPL_CYCLE_COLLECTION_UNLINK_END NS_IMPL_CYCLE_COLLECTION_TRAVERSE_BEGIN_INTERNAL(XPCWrappedNative) if (!tmp->IsValid()) return NS_OK; if (MOZ_UNLIKELY(cb.WantDebugInfo())) { char name[72]; XPCNativeScriptableInfo* si = tmp->GetScriptableInfo(); if (si) SprintfLiteral(name, "XPCWrappedNative (%s)", si->GetJSClass()->name); else SprintfLiteral(name, "XPCWrappedNative"); cb.DescribeRefCountedNode(tmp->mRefCnt.get(), name); } else { NS_IMPL_CYCLE_COLLECTION_DESCRIBE(XPCWrappedNative, tmp->mRefCnt.get()) } if (tmp->HasExternalReference()) { // If our refcount is > 1, our reference to the flat JS object is // considered "strong", and we're going to traverse it. // // If our refcount is <= 1, our reference to the flat JS object is // considered "weak", and we're *not* going to traverse it. // // This reasoning is in line with the slightly confusing lifecycle rules // for XPCWrappedNatives, described in a larger comment below and also // on our wiki at http://wiki.mozilla.org/XPConnect_object_wrapping JSObject* obj = tmp->GetFlatJSObjectPreserveColor(); NS_CYCLE_COLLECTION_NOTE_EDGE_NAME(cb, "mFlatJSObject"); cb.NoteJSChild(JS::GCCellPtr(obj)); } // XPCWrappedNative keeps its native object alive. NS_CYCLE_COLLECTION_NOTE_EDGE_NAME(cb, "mIdentity"); cb.NoteXPCOMChild(tmp->GetIdentityObject()); tmp->NoteTearoffs(cb); NS_IMPL_CYCLE_COLLECTION_TRAVERSE_END void XPCWrappedNative::Suspect(nsCycleCollectionNoteRootCallback& cb) { if (!IsValid() || IsWrapperExpired()) return; MOZ_ASSERT(NS_IsMainThread(), "Suspecting wrapped natives from non-main thread"); // Only record objects that might be part of a cycle as roots, unless // the callback wants all traces (a debug feature). Do this even if // the XPCWN doesn't own the JS reflector object in case the reflector // keeps alive other C++ things. This is safe because if the reflector // had died the reference from the XPCWN to it would have been cleared. JSObject* obj = GetFlatJSObjectPreserveColor(); if (JS::ObjectIsMarkedGray(obj) || cb.WantAllTraces()) cb.NoteJSRoot(obj); } void XPCWrappedNative::NoteTearoffs(nsCycleCollectionTraversalCallback& cb) { // Tearoffs hold their native object alive. If their JS object hasn't been // finalized yet we'll note the edge between the JS object and the native // (see nsXPConnect::Traverse), but if their JS object has been finalized // then the tearoff is only reachable through the XPCWrappedNative, so we // record an edge here. for (XPCWrappedNativeTearOff* to = &mFirstTearOff; to; to = to->GetNextTearOff()) { JSObject* jso = to->GetJSObjectPreserveColor(); if (!jso) { NS_CYCLE_COLLECTION_NOTE_EDGE_NAME(cb, "tearoff's mNative"); cb.NoteXPCOMChild(to->GetNative()); } } } #ifdef XPC_CHECK_CLASSINFO_CLAIMS static void DEBUG_CheckClassInfoClaims(XPCWrappedNative* wrapper); #else #define DEBUG_CheckClassInfoClaims(wrapper) ((void)0) #endif /***************************************************************************/ static nsresult FinishCreate(XPCWrappedNativeScope* Scope, XPCNativeInterface* Interface, nsWrapperCache* cache, XPCWrappedNative* inWrapper, XPCWrappedNative** resultWrapper); // static // // This method handles the special case of wrapping a new global object. // // The normal code path for wrapping natives goes through // XPCConvert::NativeInterface2JSObject, XPCWrappedNative::GetNewOrUsed, // and finally into XPCWrappedNative::Init. Unfortunately, this path assumes // very early on that we have an XPCWrappedNativeScope and corresponding global // JS object, which are the very things we need to create here. So we special- // case the logic and do some things in a different order. nsresult XPCWrappedNative::WrapNewGlobal(xpcObjectHelper& nativeHelper, nsIPrincipal* principal, bool initStandardClasses, JS::CompartmentOptions& aOptions, XPCWrappedNative** wrappedGlobal) { AutoJSContext cx; nsISupports* identity = nativeHelper.GetCanonical(); // The object should specify that it's meant to be global. MOZ_ASSERT(nativeHelper.GetScriptableFlags() & nsIXPCScriptable::IS_GLOBAL_OBJECT); // We shouldn't be reusing globals. MOZ_ASSERT(!nativeHelper.GetWrapperCache() || !nativeHelper.GetWrapperCache()->GetWrapperPreserveColor()); // Put together the ScriptableCreateInfo... XPCNativeScriptableCreateInfo sciProto; XPCNativeScriptableCreateInfo sciMaybe; const XPCNativeScriptableCreateInfo& sciWrapper = GatherScriptableCreateInfo(identity, nativeHelper.GetClassInfo(), sciProto, sciMaybe); // ...and then ScriptableInfo. We need all this stuff now because it's going // to tell us the JSClass of the object we're going to create. XPCNativeScriptableInfo* si = XPCNativeScriptableInfo::Construct(&sciWrapper); MOZ_ASSERT(si); // Finally, we get to the JSClass. const JSClass* clasp = si->GetJSClass(); MOZ_ASSERT(clasp->flags & JSCLASS_IS_GLOBAL); // Create the global. aOptions.creationOptions().setTrace(XPCWrappedNative::Trace); if (xpc::SharedMemoryEnabled()) aOptions.creationOptions().setSharedMemoryAndAtomicsEnabled(true); RootedObject global(cx, xpc::CreateGlobalObject(cx, clasp, principal, aOptions)); if (!global) return NS_ERROR_FAILURE; XPCWrappedNativeScope* scope = CompartmentPrivate::Get(global)->scope; // Immediately enter the global's compartment, so that everything else we // create ends up there. JSAutoCompartment ac(cx, global); // If requested, initialize the standard classes on the global. if (initStandardClasses && ! JS_InitStandardClasses(cx, global)) return NS_ERROR_FAILURE; // Make a proto. XPCWrappedNativeProto* proto = XPCWrappedNativeProto::GetNewOrUsed(scope, nativeHelper.GetClassInfo(), &sciProto, /* callPostCreatePrototype = */ false); if (!proto) return NS_ERROR_FAILURE; // Set up the prototype on the global. MOZ_ASSERT(proto->GetJSProtoObject()); RootedObject protoObj(cx, proto->GetJSProtoObject()); bool success = JS_SplicePrototype(cx, global, protoObj); if (!success) return NS_ERROR_FAILURE; // Construct the wrapper, which takes over the strong reference to the // native object. RefPtr wrapper = new XPCWrappedNative(nativeHelper.forgetCanonical(), proto); // // We don't call ::Init() on this wrapper, because our setup requirements // are different for globals. We do our setup inline here, instead. // // Share mScriptableInfo with the proto. // // This is probably more trouble than it's worth, since we've already // created an XPCNativeScriptableInfo for ourselves. Nevertheless, this is // what ::Init() does, and we want to be as consistent as possible with // that code. XPCNativeScriptableInfo* siProto = proto->GetScriptableInfo(); if (siProto && siProto->GetCallback() == sciWrapper.GetCallback()) { wrapper->mScriptableInfo = siProto; // XPCNativeScriptableInfo uses manual memory management. If we're // switching over to that of the proto, we need to destroy the one // we've allocated. delete si; si = nullptr; } else { wrapper->mScriptableInfo = si; } // Set the JS object to the global we already created. wrapper->mFlatJSObject = global; wrapper->mFlatJSObject.setFlags(FLAT_JS_OBJECT_VALID); // Set the private to the XPCWrappedNative. JS_SetPrivate(global, wrapper); // There are dire comments elsewhere in the code about how a GC can // happen somewhere after wrapper initialization but before the wrapper is // added to the hashtable in FinishCreate(). It's not clear if that can // happen here, but let's just be safe for now. AutoMarkingWrappedNativePtr wrapperMarker(cx, wrapper); // Call the common Init finish routine. This mainly just does an AddRef // on behalf of XPConnect (the corresponding Release is in the finalizer // hook), but it does some other miscellaneous things too, so we don't // inline it. success = wrapper->FinishInit(); MOZ_ASSERT(success); // Go through some extra work to find the tearoff. This is kind of silly // on a conceptual level: the point of tearoffs is to cache the results // of QI-ing mIdentity to different interfaces, and we don't need that // since we're dealing with nsISupports. But lots of code expects tearoffs // to exist for everything, so we just follow along. RefPtr iface = XPCNativeInterface::GetNewOrUsed(&NS_GET_IID(nsISupports)); MOZ_ASSERT(iface); nsresult status; success = wrapper->FindTearOff(iface, false, &status); if (!success) return status; // Call the common creation finish routine. This does all of the bookkeeping // like inserting the wrapper into the wrapper map and setting up the wrapper // cache. nsresult rv = FinishCreate(scope, iface, nativeHelper.GetWrapperCache(), wrapper, wrappedGlobal); NS_ENSURE_SUCCESS(rv, rv); return NS_OK; } // static nsresult XPCWrappedNative::GetNewOrUsed(xpcObjectHelper& helper, XPCWrappedNativeScope* Scope, XPCNativeInterface* Interface, XPCWrappedNative** resultWrapper) { MOZ_ASSERT(Interface); AutoJSContext cx; nsWrapperCache* cache = helper.GetWrapperCache(); MOZ_ASSERT(!cache || !cache->GetWrapperPreserveColor(), "We assume the caller already checked if it could get the " "wrapper from the cache."); nsresult rv; MOZ_ASSERT(!Scope->GetContext()->GCIsRunning(), "XPCWrappedNative::GetNewOrUsed called during GC"); nsISupports* identity = helper.GetCanonical(); if (!identity) { NS_ERROR("This XPCOM object fails in QueryInterface to nsISupports!"); return NS_ERROR_FAILURE; } RefPtr wrapper; Native2WrappedNativeMap* map = Scope->GetWrappedNativeMap(); // Some things are nsWrapperCache subclasses but never use the cache, so go // ahead and check our map even if we have a cache and it has no existing // wrapper: we might have an XPCWrappedNative anyway. wrapper = map->Find(identity); if (wrapper) { if (!wrapper->FindTearOff(Interface, false, &rv)) { MOZ_ASSERT(NS_FAILED(rv), "returning NS_OK on failure"); return rv; } wrapper.forget(resultWrapper); return NS_OK; } // There is a chance that the object wants to have the self-same JSObject // reflection regardless of the scope into which we are reflecting it. // Many DOM objects require this. The scriptable helper specifies this // in preCreate by indicating a 'parent' of a particular scope. // // To handle this we need to get the scriptable helper early and ask it. // It is possible that we will then end up forwarding this entire call // to this same function but with a different scope. // If we are making a wrapper for an nsIClassInfo singleton then // We *don't* want to have it use the prototype meant for instances // of that class. uint32_t classInfoFlags; bool isClassInfoSingleton = helper.GetClassInfo() == helper.Object() && NS_SUCCEEDED(helper.GetClassInfo() ->GetFlags(&classInfoFlags)) && (classInfoFlags & nsIClassInfo::SINGLETON_CLASSINFO); nsIClassInfo* info = helper.GetClassInfo(); XPCNativeScriptableCreateInfo sciProto; XPCNativeScriptableCreateInfo sci; // Gather scriptable create info if we are wrapping something // other than an nsIClassInfo object. We need to not do this for // nsIClassInfo objects because often nsIClassInfo implementations // are also nsIXPCScriptable helper implementations, but the helper // code is obviously intended for the implementation of the class // described by the nsIClassInfo, not for the class info object // itself. const XPCNativeScriptableCreateInfo& sciWrapper = isClassInfoSingleton ? sci : GatherScriptableCreateInfo(identity, info, sciProto, sci); RootedObject parent(cx, Scope->GetGlobalJSObject()); mozilla::Maybe ac; if (sciWrapper.GetFlags().WantPreCreate()) { RootedObject plannedParent(cx, parent); nsresult rv = sciWrapper.GetCallback()->PreCreate(identity, cx, parent, parent.address()); if (NS_FAILED(rv)) return rv; rv = NS_OK; MOZ_ASSERT(!xpc::WrapperFactory::IsXrayWrapper(parent), "Xray wrapper being used to parent XPCWrappedNative?"); MOZ_ASSERT(js::GetGlobalForObjectCrossCompartment(parent) == parent, "Non-global being used to parent XPCWrappedNative?"); ac.emplace(static_cast(cx), parent); if (parent != plannedParent) { XPCWrappedNativeScope* betterScope = ObjectScope(parent); MOZ_ASSERT(betterScope != Scope, "How can we have the same scope for two different globals?"); return GetNewOrUsed(helper, betterScope, Interface, resultWrapper); } // Take the performance hit of checking the hashtable again in case // the preCreate call caused the wrapper to get created through some // interesting path (the DOM code tends to make this happen sometimes). if (cache) { RootedObject cached(cx, cache->GetWrapper()); if (cached) wrapper = XPCWrappedNative::Get(cached); } else { wrapper = map->Find(identity); } if (wrapper) { if (wrapper->FindTearOff(Interface, false, &rv)) { MOZ_ASSERT(NS_FAILED(rv), "returning NS_OK on failure"); return rv; } wrapper.forget(resultWrapper); return NS_OK; } } else { ac.emplace(static_cast(cx), parent); } AutoMarkingWrappedNativeProtoPtr proto(cx); // If there is ClassInfo (and we are not building a wrapper for the // nsIClassInfo interface) then we use a wrapper that needs a prototype. // Note that the security check happens inside FindTearOff - after the // wrapper is actually created, but before JS code can see it. if (info && !isClassInfoSingleton) { proto = XPCWrappedNativeProto::GetNewOrUsed(Scope, info, &sciProto); if (!proto) return NS_ERROR_FAILURE; wrapper = new XPCWrappedNative(helper.forgetCanonical(), proto); } else { RefPtr iface = Interface; if (!iface) iface = XPCNativeInterface::GetISupports(); XPCNativeSetKey key(iface); RefPtr set = XPCNativeSet::GetNewOrUsed(&key); if (!set) return NS_ERROR_FAILURE; wrapper = new XPCWrappedNative(helper.forgetCanonical(), Scope, set.forget()); } MOZ_ASSERT(!xpc::WrapperFactory::IsXrayWrapper(parent), "Xray wrapper being used to parent XPCWrappedNative?"); // We use an AutoMarkingPtr here because it is possible for JS gc to happen // after we have Init'd the wrapper but *before* we add it to the hashtable. // This would cause the mSet to get collected and we'd later crash. I've // *seen* this happen. AutoMarkingWrappedNativePtr wrapperMarker(cx, wrapper); if (!wrapper->Init(&sciWrapper)) return NS_ERROR_FAILURE; if (!wrapper->FindTearOff(Interface, false, &rv)) { MOZ_ASSERT(NS_FAILED(rv), "returning NS_OK on failure"); return rv; } return FinishCreate(Scope, Interface, cache, wrapper, resultWrapper); } static nsresult FinishCreate(XPCWrappedNativeScope* Scope, XPCNativeInterface* Interface, nsWrapperCache* cache, XPCWrappedNative* inWrapper, XPCWrappedNative** resultWrapper) { AutoJSContext cx; MOZ_ASSERT(inWrapper); Native2WrappedNativeMap* map = Scope->GetWrappedNativeMap(); RefPtr wrapper; // Deal with the case where the wrapper got created as a side effect // of one of our calls out of this code. Add() returns the (possibly // pre-existing) wrapper that ultimately ends up in the map, which is // what we want. wrapper = map->Add(inWrapper); if (!wrapper) return NS_ERROR_FAILURE; if (wrapper == inWrapper) { JSObject* flat = wrapper->GetFlatJSObject(); MOZ_ASSERT(!cache || !cache->GetWrapperPreserveColor() || flat == cache->GetWrapperPreserveColor(), "This object has a cached wrapper that's different from " "the JSObject held by its native wrapper?"); if (cache && !cache->GetWrapperPreserveColor()) cache->SetWrapper(flat); } DEBUG_CheckClassInfoClaims(wrapper); wrapper.forget(resultWrapper); return NS_OK; } // static nsresult XPCWrappedNative::GetUsedOnly(nsISupports* Object, XPCWrappedNativeScope* Scope, XPCNativeInterface* Interface, XPCWrappedNative** resultWrapper) { AutoJSContext cx; MOZ_ASSERT(Object, "XPCWrappedNative::GetUsedOnly was called with a null Object"); MOZ_ASSERT(Interface); RefPtr wrapper; nsWrapperCache* cache = nullptr; CallQueryInterface(Object, &cache); if (cache) { RootedObject flat(cx, cache->GetWrapper()); if (!flat) { *resultWrapper = nullptr; return NS_OK; } wrapper = XPCWrappedNative::Get(flat); } else { nsCOMPtr identity = do_QueryInterface(Object); if (!identity) { NS_ERROR("This XPCOM object fails in QueryInterface to nsISupports!"); return NS_ERROR_FAILURE; } Native2WrappedNativeMap* map = Scope->GetWrappedNativeMap(); wrapper = map->Find(identity); if (!wrapper) { *resultWrapper = nullptr; return NS_OK; } } nsresult rv; if (!wrapper->FindTearOff(Interface, false, &rv)) { MOZ_ASSERT(NS_FAILED(rv), "returning NS_OK on failure"); return rv; } wrapper.forget(resultWrapper); return NS_OK; } // This ctor is used if this object will have a proto. XPCWrappedNative::XPCWrappedNative(already_AddRefed&& aIdentity, XPCWrappedNativeProto* aProto) : mMaybeProto(aProto), mSet(aProto->GetSet()), mScriptableInfo(nullptr) { MOZ_ASSERT(NS_IsMainThread()); mIdentity = aIdentity; mFlatJSObject.setFlags(FLAT_JS_OBJECT_VALID); MOZ_ASSERT(mMaybeProto, "bad ctor param"); MOZ_ASSERT(mSet, "bad ctor param"); } // This ctor is used if this object will NOT have a proto. XPCWrappedNative::XPCWrappedNative(already_AddRefed&& aIdentity, XPCWrappedNativeScope* aScope, already_AddRefed&& aSet) : mMaybeScope(TagScope(aScope)), mSet(aSet), mScriptableInfo(nullptr) { MOZ_ASSERT(NS_IsMainThread()); mIdentity = aIdentity; mFlatJSObject.setFlags(FLAT_JS_OBJECT_VALID); MOZ_ASSERT(aScope, "bad ctor param"); MOZ_ASSERT(mSet, "bad ctor param"); } XPCWrappedNative::~XPCWrappedNative() { Destroy(); } void XPCWrappedNative::Destroy() { XPCWrappedNativeProto* proto = GetProto(); if (mScriptableInfo && (!HasProto() || (proto && proto->GetScriptableInfo() != mScriptableInfo))) { delete mScriptableInfo; mScriptableInfo = nullptr; } XPCWrappedNativeScope* scope = GetScope(); if (scope) { Native2WrappedNativeMap* map = scope->GetWrappedNativeMap(); // Post-1.9 we should not remove this wrapper from the map if it is // uninitialized. map->Remove(this); } if (mIdentity) { XPCJSContext* cx = GetContext(); if (cx && cx->GetDoingFinalization()) { DeferredFinalize(mIdentity.forget().take()); } else { mIdentity = nullptr; } } mMaybeScope = nullptr; } void XPCWrappedNative::UpdateScriptableInfo(XPCNativeScriptableInfo* si) { MOZ_ASSERT(mScriptableInfo, "UpdateScriptableInfo expects an existing scriptable info"); mScriptableInfo = si; } void XPCWrappedNative::SetProto(XPCWrappedNativeProto* p) { MOZ_ASSERT(!IsWrapperExpired(), "bad ptr!"); MOZ_ASSERT(HasProto()); // Write barrier for incremental GC. JSContext* cx = GetContext()->Context(); GetProto()->WriteBarrierPre(cx); mMaybeProto = p; } // This is factored out so that it can be called publicly // static void XPCWrappedNative::GatherProtoScriptableCreateInfo(nsIClassInfo* classInfo, XPCNativeScriptableCreateInfo& sciProto) { MOZ_ASSERT(classInfo, "bad param"); MOZ_ASSERT(!sciProto.GetCallback(), "bad param"); nsXPCClassInfo* classInfoHelper = nullptr; CallQueryInterface(classInfo, &classInfoHelper); if (classInfoHelper) { nsCOMPtr helper = dont_AddRef(static_cast(classInfoHelper)); uint32_t flags = classInfoHelper->GetScriptableFlags(); sciProto.SetCallback(helper.forget()); sciProto.SetFlags(XPCNativeScriptableFlags(flags)); return; } nsCOMPtr helper; nsresult rv = classInfo->GetScriptableHelper(getter_AddRefs(helper)); if (NS_SUCCEEDED(rv) && helper) { uint32_t flags = helper->GetScriptableFlags(); sciProto.SetCallback(helper.forget()); sciProto.SetFlags(XPCNativeScriptableFlags(flags)); } } // static const XPCNativeScriptableCreateInfo& XPCWrappedNative::GatherScriptableCreateInfo(nsISupports* obj, nsIClassInfo* classInfo, XPCNativeScriptableCreateInfo& sciProto, XPCNativeScriptableCreateInfo& sciWrapper) { MOZ_ASSERT(!sciWrapper.GetCallback(), "bad param"); // Get the class scriptable helper (if present) if (classInfo) { GatherProtoScriptableCreateInfo(classInfo, sciProto); if (sciProto.GetFlags().DontAskInstanceForScriptable()) return sciProto; } // Do the same for the wrapper specific scriptable nsCOMPtr helper(do_QueryInterface(obj)); if (helper) { uint32_t flags = helper->GetScriptableFlags(); sciWrapper.SetCallback(helper.forget()); sciWrapper.SetFlags(XPCNativeScriptableFlags(flags)); // A whole series of assertions to catch bad uses of scriptable flags on // the siWrapper... MOZ_ASSERT(!(sciWrapper.GetFlags().WantPreCreate() && !sciProto.GetFlags().WantPreCreate()), "Can't set WANT_PRECREATE on an instance scriptable " "without also setting it on the class scriptable"); MOZ_ASSERT(!(sciWrapper.GetFlags().DontEnumQueryInterface() && !sciProto.GetFlags().DontEnumQueryInterface() && sciProto.GetCallback()), "Can't set DONT_ENUM_QUERY_INTERFACE on an instance scriptable " "without also setting it on the class scriptable (if present and shared)"); MOZ_ASSERT(!(sciWrapper.GetFlags().DontAskInstanceForScriptable() && !sciProto.GetFlags().DontAskInstanceForScriptable()), "Can't set DONT_ASK_INSTANCE_FOR_SCRIPTABLE on an instance scriptable " "without also setting it on the class scriptable"); MOZ_ASSERT(!(sciWrapper.GetFlags().ClassInfoInterfacesOnly() && !sciProto.GetFlags().ClassInfoInterfacesOnly() && sciProto.GetCallback()), "Can't set CLASSINFO_INTERFACES_ONLY on an instance scriptable " "without also setting it on the class scriptable (if present and shared)"); MOZ_ASSERT(!(sciWrapper.GetFlags().AllowPropModsDuringResolve() && !sciProto.GetFlags().AllowPropModsDuringResolve() && sciProto.GetCallback()), "Can't set ALLOW_PROP_MODS_DURING_RESOLVE on an instance scriptable " "without also setting it on the class scriptable (if present and shared)"); MOZ_ASSERT(!(sciWrapper.GetFlags().AllowPropModsToPrototype() && !sciProto.GetFlags().AllowPropModsToPrototype() && sciProto.GetCallback()), "Can't set ALLOW_PROP_MODS_TO_PROTOTYPE on an instance scriptable " "without also setting it on the class scriptable (if present and shared)"); return sciWrapper; } return sciProto; } bool XPCWrappedNative::Init(const XPCNativeScriptableCreateInfo* sci) { AutoJSContext cx; // setup our scriptable info... if (sci->GetCallback()) { if (HasProto()) { XPCNativeScriptableInfo* siProto = GetProto()->GetScriptableInfo(); if (siProto && siProto->GetCallback() == sci->GetCallback()) mScriptableInfo = siProto; } if (!mScriptableInfo) { mScriptableInfo = XPCNativeScriptableInfo::Construct(sci); if (!mScriptableInfo) return false; } } XPCNativeScriptableInfo* si = mScriptableInfo; // create our flatJSObject const JSClass* jsclazz = si ? si->GetJSClass() : Jsvalify(&XPC_WN_NoHelper_JSClass); // We should have the global jsclass flag if and only if we're a global. MOZ_ASSERT_IF(si, !!si->GetFlags().IsGlobalObject() == !!(jsclazz->flags & JSCLASS_IS_GLOBAL)); MOZ_ASSERT(jsclazz && jsclazz->name && jsclazz->flags && jsclazz->getResolve() && jsclazz->hasFinalize(), "bad class"); // XXXbz JS_GetObjectPrototype wants an object, even though it then asserts // that this object is same-compartment with cx, which means it could just // use the cx global... RootedObject global(cx, CurrentGlobalOrNull(cx)); RootedObject protoJSObject(cx, HasProto() ? GetProto()->GetJSProtoObject() : JS_GetObjectPrototype(cx, global)); if (!protoJSObject) { return false; } mFlatJSObject = JS_NewObjectWithGivenProto(cx, jsclazz, protoJSObject); if (!mFlatJSObject) { mFlatJSObject.unsetFlags(FLAT_JS_OBJECT_VALID); return false; } mFlatJSObject.setFlags(FLAT_JS_OBJECT_VALID); JS_SetPrivate(mFlatJSObject, this); return FinishInit(); } bool XPCWrappedNative::FinishInit() { AutoJSContext cx; // This reference will be released when mFlatJSObject is finalized. // Since this reference will push the refcount to 2 it will also root // mFlatJSObject; MOZ_ASSERT(1 == mRefCnt, "unexpected refcount value"); NS_ADDREF(this); // A hack for bug 517665, increase the probability for GC. JS_updateMallocCounter(cx, 2 * sizeof(XPCWrappedNative)); return true; } NS_INTERFACE_MAP_BEGIN_CYCLE_COLLECTION(XPCWrappedNative) NS_INTERFACE_MAP_ENTRY(nsIXPConnectWrappedNative) NS_INTERFACE_MAP_ENTRY(nsIXPConnectJSObjectHolder) NS_INTERFACE_MAP_ENTRY_AMBIGUOUS(nsISupports, nsIXPConnectWrappedNative) NS_INTERFACE_MAP_END NS_IMPL_CYCLE_COLLECTING_ADDREF(XPCWrappedNative) // Release calls Destroy() immediately when the refcount drops to 0 to // clear the weak references nsXPConnect has to XPCWNs and to ensure there // are no pointers to dying protos. NS_IMPL_CYCLE_COLLECTING_RELEASE_WITH_LAST_RELEASE(XPCWrappedNative, Destroy()) /* * Wrapped Native lifetime management is messy! * * - At creation we push the refcount to 2 (only one of which is owned by * the native caller that caused the wrapper creation). * - During the JS GC Mark phase we mark any wrapper with a refcount > 1. * - The *only* thing that can make the wrapper get destroyed is the * finalization of mFlatJSObject. And *that* should only happen if the only * reference is the single extra (internal) reference we hold. * * - The wrapper has a pointer to the nsISupports 'view' of the wrapped native * object i.e... mIdentity. This is held until the wrapper's refcount goes * to zero and the wrapper is released, or until an expired wrapper (i.e., * one unlinked by the cycle collector) has had its JS object finalized. * * - The wrapper also has 'tearoffs'. It has one tearoff for each interface * that is actually used on the native object. 'Used' means we have either * needed to QueryInterface to verify the availability of that interface * of that we've had to QueryInterface in order to actually make a call * into the wrapped object via the pointer for the given interface. * * - Each tearoff's 'mNative' member (if non-null) indicates one reference * held by our wrapper on the wrapped native for the given interface * associated with the tearoff. If we release that reference then we set * the tearoff's 'mNative' to null. * * - We use the occasion of the JavaScript GCCallback for the JSGC_MARK_END * event to scan the tearoffs of all wrappers for non-null mNative members * that represent unused references. We can tell that a given tearoff's * mNative is unused by noting that no live XPCCallContexts hold a pointer * to the tearoff. * * - As a time/space tradeoff we may decide to not do this scanning on * *every* JavaScript GC. We *do* want to do this *sometimes* because * we want to allow for wrapped native's to do their own tearoff patterns. * So, we want to avoid holding references to interfaces that we don't need. * At the same time, we don't want to be bracketing every call into a * wrapped native object with a QueryInterface/Release pair. And we *never* * make a call into the object except via the correct interface for which * we've QI'd. * * - Each tearoff *can* have a mJSObject whose lazily resolved properties * represent the methods/attributes/constants of that specific interface. * This is optionally reflected into JavaScript as "foo.nsIFoo" when "foo" * is the name of mFlatJSObject and "nsIFoo" is the name of the given * interface associated with the tearoff. When we create the tearoff's * mJSObject we set it's parent to be mFlatJSObject. This way we know that * when mFlatJSObject get's collected there are no outstanding reachable * tearoff mJSObjects. Note that we must clear the private of any lingering * mJSObjects at this point because we have no guarentee of the *order* of * finalization within a given gc cycle. */ void XPCWrappedNative::FlatJSObjectFinalized() { if (!IsValid()) return; // Iterate the tearoffs and null out each of their JSObject's privates. // This will keep them from trying to access their pointers to the // dying tearoff object. We can safely assume that those remaining // JSObjects are about to be finalized too. for (XPCWrappedNativeTearOff* to = &mFirstTearOff; to; to = to->GetNextTearOff()) { JSObject* jso = to->GetJSObjectPreserveColor(); if (jso) { JS_SetPrivate(jso, nullptr); #ifdef DEBUG JS_UpdateWeakPointerAfterGCUnbarriered(&jso); MOZ_ASSERT(!jso); #endif to->JSObjectFinalized(); } // We also need to release any native pointers held... RefPtr native = to->TakeNative(); if (native && GetContext()) { DeferredFinalize(native.forget().take()); } to->SetInterface(nullptr); } nsWrapperCache* cache = nullptr; CallQueryInterface(mIdentity, &cache); if (cache) cache->ClearWrapper(); mFlatJSObject = nullptr; mFlatJSObject.unsetFlags(FLAT_JS_OBJECT_VALID); MOZ_ASSERT(mIdentity, "bad pointer!"); #ifdef XP_WIN // Try to detect free'd pointer MOZ_ASSERT(*(int*)mIdentity.get() != 0xdddddddd, "bad pointer!"); MOZ_ASSERT(*(int*)mIdentity.get() != 0, "bad pointer!"); #endif if (IsWrapperExpired()) { Destroy(); } // Note that it's not safe to touch mNativeWrapper here since it's // likely that it has already been finalized. Release(); } void XPCWrappedNative::FlatJSObjectMoved(JSObject* obj, const JSObject* old) { JS::AutoAssertGCCallback inCallback(obj); MOZ_ASSERT(mFlatJSObject.unbarrieredGetPtr() == old); nsWrapperCache* cache = nullptr; CallQueryInterface(mIdentity, &cache); if (cache) cache->UpdateWrapper(obj, old); mFlatJSObject = obj; } void XPCWrappedNative::SystemIsBeingShutDown() { if (!IsValid()) return; // The long standing strategy is to leak some objects still held at shutdown. // The general problem is that propagating release out of xpconnect at // shutdown time causes a world of problems. // We leak mIdentity (see above). // Short circuit future finalization. JS_SetPrivate(mFlatJSObject, nullptr); mFlatJSObject = nullptr; mFlatJSObject.unsetFlags(FLAT_JS_OBJECT_VALID); XPCWrappedNativeProto* proto = GetProto(); if (HasProto()) proto->SystemIsBeingShutDown(); // We don't destroy mScriptableInfo here. The destructor will do it. // Cleanup the tearoffs. for (XPCWrappedNativeTearOff* to = &mFirstTearOff; to; to = to->GetNextTearOff()) { if (JSObject* jso = to->GetJSObjectPreserveColor()) { JS_SetPrivate(jso, nullptr); to->SetJSObject(nullptr); } // We leak the tearoff mNative // (for the same reason we leak mIdentity - see above). Unused << to->TakeNative().take(); to->SetInterface(nullptr); } } /***************************************************************************/ // Dynamically ensure that two objects don't end up with the same private. class MOZ_STACK_CLASS AutoClonePrivateGuard { public: AutoClonePrivateGuard(JSContext* cx, JSObject* aOld, JSObject* aNew) : mOldReflector(cx, aOld), mNewReflector(cx, aNew) { MOZ_ASSERT(JS_GetPrivate(aOld) == JS_GetPrivate(aNew)); } ~AutoClonePrivateGuard() { if (JS_GetPrivate(mOldReflector)) { JS_SetPrivate(mNewReflector, nullptr); } } private: RootedObject mOldReflector; RootedObject mNewReflector; }; bool XPCWrappedNative::ExtendSet(XPCNativeInterface* aInterface) { if (!mSet->HasInterface(aInterface)) { XPCNativeSetKey key(mSet, aInterface); RefPtr newSet = XPCNativeSet::GetNewOrUsed(&key); if (!newSet) return false; mSet = newSet.forget(); } return true; } XPCWrappedNativeTearOff* XPCWrappedNative::FindTearOff(XPCNativeInterface* aInterface, bool needJSObject /* = false */, nsresult* pError /* = nullptr */) { AutoJSContext cx; nsresult rv = NS_OK; XPCWrappedNativeTearOff* to; XPCWrappedNativeTearOff* firstAvailable = nullptr; XPCWrappedNativeTearOff* lastTearOff; for (lastTearOff = to = &mFirstTearOff; to; lastTearOff = to, to = to->GetNextTearOff()) { if (to->GetInterface() == aInterface) { if (needJSObject && !to->GetJSObjectPreserveColor()) { AutoMarkingWrappedNativeTearOffPtr tearoff(cx, to); bool ok = InitTearOffJSObject(to); // During shutdown, we don't sweep tearoffs. So make sure // to unmark manually in case the auto-marker marked us. // We shouldn't ever be getting here _during_ our // Mark/Sweep cycle, so this should be safe. to->Unmark(); if (!ok) { to = nullptr; rv = NS_ERROR_OUT_OF_MEMORY; } } if (pError) *pError = rv; return to; } if (!firstAvailable && to->IsAvailable()) firstAvailable = to; } to = firstAvailable; if (!to) { to = lastTearOff->AddTearOff(); } { // Scope keeps |tearoff| from leaking across the rest of the function. AutoMarkingWrappedNativeTearOffPtr tearoff(cx, to); rv = InitTearOff(to, aInterface, needJSObject); // During shutdown, we don't sweep tearoffs. So make sure to unmark // manually in case the auto-marker marked us. We shouldn't ever be // getting here _during_ our Mark/Sweep cycle, so this should be safe. to->Unmark(); if (NS_FAILED(rv)) to = nullptr; } if (pError) *pError = rv; return to; } XPCWrappedNativeTearOff* XPCWrappedNative::FindTearOff(const nsIID& iid) { RefPtr iface = XPCNativeInterface::GetNewOrUsed(&iid); return iface ? FindTearOff(iface) : nullptr; } nsresult XPCWrappedNative::InitTearOff(XPCWrappedNativeTearOff* aTearOff, XPCNativeInterface* aInterface, bool needJSObject) { AutoJSContext cx; // Determine if the object really does this interface... const nsIID* iid = aInterface->GetIID(); nsISupports* identity = GetIdentityObject(); // This is an nsRefPtr instead of an nsCOMPtr because it may not be the // canonical nsISupports for this object. RefPtr qiResult; // If the scriptable helper forbids us from reflecting additional // interfaces, then don't even try the QI, just fail. if (mScriptableInfo && mScriptableInfo->GetFlags().ClassInfoInterfacesOnly() && !mSet->HasInterface(aInterface) && !mSet->HasInterfaceWithAncestor(aInterface)) { return NS_ERROR_NO_INTERFACE; } // We are about to call out to other code. // So protect our intended tearoff. aTearOff->SetReserved(); if (NS_FAILED(identity->QueryInterface(*iid, getter_AddRefs(qiResult))) || !qiResult) { aTearOff->SetInterface(nullptr); return NS_ERROR_NO_INTERFACE; } // Guard against trying to build a tearoff for a shared nsIClassInfo. if (iid->Equals(NS_GET_IID(nsIClassInfo))) { nsCOMPtr alternate_identity(do_QueryInterface(qiResult)); if (alternate_identity.get() != identity) { aTearOff->SetInterface(nullptr); return NS_ERROR_NO_INTERFACE; } } // Guard against trying to build a tearoff for an interface that is // aggregated and is implemented as a nsIXPConnectWrappedJS using this // self-same JSObject. The XBL system does this. If we mutate the set // of this wrapper then we will shadow the method that XBL has added to // the JSObject that it has inserted in the JS proto chain between our // JSObject and our XPCWrappedNativeProto's JSObject. If we let this // set mutation happen then the interface's methods will be added to // our JSObject, but calls on those methods will get routed up to // native code and into the wrappedJS - which will do a method lookup // on *our* JSObject and find the same method and make another call // into an infinite loop. // see: http://bugzilla.mozilla.org/show_bug.cgi?id=96725 // The code in this block also does a check for the double wrapped // nsIPropertyBag case. nsCOMPtr wrappedJS(do_QueryInterface(qiResult)); if (wrappedJS) { RootedObject jso(cx, wrappedJS->GetJSObject()); if (jso == mFlatJSObject) { // The implementing JSObject is the same as ours! Just say OK // without actually extending the set. // // XXX It is a little cheesy to have FindTearOff return an // 'empty' tearoff. But this is the centralized place to do the // QI activities on the underlying object. *And* most caller to // FindTearOff only look for a non-null result and ignore the // actual tearoff returned. The only callers that do use the // returned tearoff make sure to check for either a non-null // JSObject or a matching Interface before proceeding. // I think we can get away with this bit of ugliness. aTearOff->SetInterface(nullptr); return NS_OK; } // Decide whether or not to expose nsIPropertyBag to calling // JS code in the double wrapped case. // // Our rule here is that when JSObjects are double wrapped and // exposed to other JSObjects then the nsIPropertyBag interface // is only exposed on an 'opt-in' basis; i.e. if the underlying // JSObject wants other JSObjects to be able to see this interface // then it must implement QueryInterface and not throw an exception // when asked for nsIPropertyBag. It need not actually *implement* // nsIPropertyBag - xpconnect will do that work. if (iid->Equals(NS_GET_IID(nsIPropertyBag)) && jso) { RefPtr clasp = nsXPCWrappedJSClass::GetNewOrUsed(cx, *iid); if (clasp) { RootedObject answer(cx, clasp->CallQueryInterfaceOnJSObject(cx, jso, *iid)); if (!answer) { aTearOff->SetInterface(nullptr); return NS_ERROR_NO_INTERFACE; } } } } if (NS_FAILED(nsXPConnect::SecurityManager()->CanCreateWrapper(cx, *iid, identity, GetClassInfo()))) { // the security manager vetoed. It should have set an exception. aTearOff->SetInterface(nullptr); return NS_ERROR_XPC_SECURITY_MANAGER_VETO; } // If this is not already in our set we need to extend our set. // Note: we do not cache the result of the previous call to HasInterface() // because we unlocked and called out in the interim and the result of the // previous call might not be correct anymore. if (!mSet->HasInterface(aInterface) && !ExtendSet(aInterface)) { aTearOff->SetInterface(nullptr); return NS_ERROR_NO_INTERFACE; } aTearOff->SetInterface(aInterface); aTearOff->SetNative(qiResult); if (needJSObject && !InitTearOffJSObject(aTearOff)) return NS_ERROR_OUT_OF_MEMORY; return NS_OK; } bool XPCWrappedNative::InitTearOffJSObject(XPCWrappedNativeTearOff* to) { AutoJSContext cx; JSObject* obj = JS_NewObject(cx, Jsvalify(&XPC_WN_Tearoff_JSClass)); if (!obj) return false; JS_SetPrivate(obj, to); to->SetJSObject(obj); js::SetReservedSlot(obj, XPC_WN_TEAROFF_FLAT_OBJECT_SLOT, JS::ObjectValue(*mFlatJSObject)); return true; } /***************************************************************************/ static bool Throw(nsresult errNum, XPCCallContext& ccx) { XPCThrower::Throw(errNum, ccx); return false; } /***************************************************************************/ class MOZ_STACK_CLASS CallMethodHelper { XPCCallContext& mCallContext; nsresult mInvokeResult; nsIInterfaceInfo* const mIFaceInfo; const nsXPTMethodInfo* mMethodInfo; nsISupports* const mCallee; const uint16_t mVTableIndex; HandleId mIdxValueId; AutoTArray mDispatchParams; uint8_t mJSContextIndex; // TODO make const uint8_t mOptArgcIndex; // TODO make const Value* const mArgv; const uint32_t mArgc; MOZ_ALWAYS_INLINE bool GetArraySizeFromParam(uint8_t paramIndex, HandleValue maybeArray, uint32_t* result); MOZ_ALWAYS_INLINE bool GetInterfaceTypeFromParam(uint8_t paramIndex, const nsXPTType& datum_type, nsID* result) const; MOZ_ALWAYS_INLINE bool GetOutParamSource(uint8_t paramIndex, MutableHandleValue srcp) const; MOZ_ALWAYS_INLINE bool GatherAndConvertResults(); MOZ_ALWAYS_INLINE bool QueryInterfaceFastPath(); nsXPTCVariant* GetDispatchParam(uint8_t paramIndex) { if (paramIndex >= mJSContextIndex) paramIndex += 1; if (paramIndex >= mOptArgcIndex) paramIndex += 1; return &mDispatchParams[paramIndex]; } const nsXPTCVariant* GetDispatchParam(uint8_t paramIndex) const { return const_cast(this)->GetDispatchParam(paramIndex); } MOZ_ALWAYS_INLINE bool InitializeDispatchParams(); MOZ_ALWAYS_INLINE bool ConvertIndependentParams(bool* foundDependentParam); MOZ_ALWAYS_INLINE bool ConvertIndependentParam(uint8_t i); MOZ_ALWAYS_INLINE bool ConvertDependentParams(); MOZ_ALWAYS_INLINE bool ConvertDependentParam(uint8_t i); MOZ_ALWAYS_INLINE void CleanupParam(nsXPTCMiniVariant& param, nsXPTType& type); MOZ_ALWAYS_INLINE bool AllocateStringClass(nsXPTCVariant* dp, const nsXPTParamInfo& paramInfo); MOZ_ALWAYS_INLINE nsresult Invoke(); public: explicit CallMethodHelper(XPCCallContext& ccx) : mCallContext(ccx) , mInvokeResult(NS_ERROR_UNEXPECTED) , mIFaceInfo(ccx.GetInterface()->GetInterfaceInfo()) , mMethodInfo(nullptr) , mCallee(ccx.GetTearOff()->GetNative()) , mVTableIndex(ccx.GetMethodIndex()) , mIdxValueId(ccx.GetContext()->GetStringID(XPCJSContext::IDX_VALUE)) , mJSContextIndex(UINT8_MAX) , mOptArgcIndex(UINT8_MAX) , mArgv(ccx.GetArgv()) , mArgc(ccx.GetArgc()) { // Success checked later. mIFaceInfo->GetMethodInfo(mVTableIndex, &mMethodInfo); } ~CallMethodHelper(); MOZ_ALWAYS_INLINE bool Call(); }; // static bool XPCWrappedNative::CallMethod(XPCCallContext& ccx, CallMode mode /*= CALL_METHOD */) { nsresult rv = ccx.CanCallNow(); if (NS_FAILED(rv)) { return Throw(rv, ccx); } return CallMethodHelper(ccx).Call(); } bool CallMethodHelper::Call() { mCallContext.SetRetVal(JS::UndefinedValue()); XPCJSContext::Get()->SetPendingException(nullptr); if (mVTableIndex == 0) { return QueryInterfaceFastPath(); } if (!mMethodInfo) { Throw(NS_ERROR_XPC_CANT_GET_METHOD_INFO, mCallContext); return false; } if (!InitializeDispatchParams()) return false; // Iterate through the params doing conversions of independent params only. // When we later convert the dependent params (if any) we will know that // the params upon which they depend will have already been converted - // regardless of ordering. bool foundDependentParam = false; if (!ConvertIndependentParams(&foundDependentParam)) return false; if (foundDependentParam && !ConvertDependentParams()) return false; mInvokeResult = Invoke(); if (JS_IsExceptionPending(mCallContext)) { return false; } if (NS_FAILED(mInvokeResult)) { ThrowBadResult(mInvokeResult, mCallContext); return false; } return GatherAndConvertResults(); } CallMethodHelper::~CallMethodHelper() { uint8_t paramCount = mMethodInfo->GetParamCount(); if (mDispatchParams.Length()) { for (uint8_t i = 0; i < paramCount; i++) { nsXPTCVariant* dp = GetDispatchParam(i); const nsXPTParamInfo& paramInfo = mMethodInfo->GetParam(i); if (paramInfo.GetType().IsArray()) { void* p = dp->val.p; if (!p) continue; // Clean up the array contents if necessary. if (dp->DoesValNeedCleanup()) { // We need some basic information to properly destroy the array. uint32_t array_count = 0; nsXPTType datum_type; if (!GetArraySizeFromParam(i, UndefinedHandleValue, &array_count) || !NS_SUCCEEDED(mIFaceInfo->GetTypeForParam(mVTableIndex, ¶mInfo, 1, &datum_type))) { // XXXbholley - I'm not convinced that the above calls will // ever fail. NS_ERROR("failed to get array information, we'll leak here"); continue; } // Loop over the array contents. For each one, we create a // dummy 'val' and pass it to the cleanup helper. for (uint32_t k = 0; k < array_count; k++) { nsXPTCMiniVariant v; v.val.p = static_cast(p)[k]; CleanupParam(v, datum_type); } } // always free the array itself free(p); } else { // Clean up single parameters (if requested). if (dp->DoesValNeedCleanup()) CleanupParam(*dp, dp->type); } } } } bool CallMethodHelper::GetArraySizeFromParam(uint8_t paramIndex, HandleValue maybeArray, uint32_t* result) { nsresult rv; const nsXPTParamInfo& paramInfo = mMethodInfo->GetParam(paramIndex); // TODO fixup the various exceptions that are thrown rv = mIFaceInfo->GetSizeIsArgNumberForParam(mVTableIndex, ¶mInfo, 0, ¶mIndex); if (NS_FAILED(rv)) return Throw(NS_ERROR_XPC_CANT_GET_ARRAY_INFO, mCallContext); // If the array length wasn't passed, it might have been listed as optional. // When converting arguments from JS to C++, we pass the array as |maybeArray|, // and give ourselves the chance to infer the length. Once we have it, we stick // it in the right slot so that we can find it again when cleaning up the params. // from the array. if (paramIndex >= mArgc && maybeArray.isObject()) { MOZ_ASSERT(mMethodInfo->GetParam(paramIndex).IsOptional()); RootedObject arrayOrNull(mCallContext, maybeArray.isObject() ? &maybeArray.toObject() : nullptr); bool isArray; if (!JS_IsArrayObject(mCallContext, maybeArray, &isArray) || !isArray || !JS_GetArrayLength(mCallContext, arrayOrNull, &GetDispatchParam(paramIndex)->val.u32)) { return Throw(NS_ERROR_XPC_CANT_CONVERT_OBJECT_TO_ARRAY, mCallContext); } } *result = GetDispatchParam(paramIndex)->val.u32; return true; } bool CallMethodHelper::GetInterfaceTypeFromParam(uint8_t paramIndex, const nsXPTType& datum_type, nsID* result) const { nsresult rv; const nsXPTParamInfo& paramInfo = mMethodInfo->GetParam(paramIndex); uint8_t tag = datum_type.TagPart(); // TODO fixup the various exceptions that are thrown if (tag == nsXPTType::T_INTERFACE) { rv = mIFaceInfo->GetIIDForParamNoAlloc(mVTableIndex, ¶mInfo, result); if (NS_FAILED(rv)) return ThrowBadParam(NS_ERROR_XPC_CANT_GET_PARAM_IFACE_INFO, paramIndex, mCallContext); } else if (tag == nsXPTType::T_INTERFACE_IS) { rv = mIFaceInfo->GetInterfaceIsArgNumberForParam(mVTableIndex, ¶mInfo, ¶mIndex); if (NS_FAILED(rv)) return Throw(NS_ERROR_XPC_CANT_GET_ARRAY_INFO, mCallContext); nsID* p = (nsID*) GetDispatchParam(paramIndex)->val.p; if (!p) return ThrowBadParam(NS_ERROR_XPC_CANT_GET_PARAM_IFACE_INFO, paramIndex, mCallContext); *result = *p; } return true; } bool CallMethodHelper::GetOutParamSource(uint8_t paramIndex, MutableHandleValue srcp) const { const nsXPTParamInfo& paramInfo = mMethodInfo->GetParam(paramIndex); MOZ_ASSERT(!paramInfo.IsDipper(), "Dipper params are handled separately"); if (paramInfo.IsOut() && !paramInfo.IsRetval()) { MOZ_ASSERT(paramIndex < mArgc || paramInfo.IsOptional(), "Expected either enough arguments or an optional argument"); Value arg = paramIndex < mArgc ? mArgv[paramIndex] : JS::NullValue(); if (paramIndex < mArgc) { RootedObject obj(mCallContext); if (!arg.isPrimitive()) obj = &arg.toObject(); if (!obj || !JS_GetPropertyById(mCallContext, obj, mIdxValueId, srcp)) { // Explicitly passed in unusable value for out param. Note // that if i >= mArgc we already know that |arg| is JS::NullValue(), // and that's ok. ThrowBadParam(NS_ERROR_XPC_NEED_OUT_OBJECT, paramIndex, mCallContext); return false; } } } return true; } bool CallMethodHelper::GatherAndConvertResults() { // now we iterate through the native params to gather and convert results uint8_t paramCount = mMethodInfo->GetParamCount(); for (uint8_t i = 0; i < paramCount; i++) { const nsXPTParamInfo& paramInfo = mMethodInfo->GetParam(i); if (!paramInfo.IsOut() && !paramInfo.IsDipper()) continue; const nsXPTType& type = paramInfo.GetType(); nsXPTCVariant* dp = GetDispatchParam(i); RootedValue v(mCallContext, NullValue()); uint32_t array_count = 0; nsXPTType datum_type; bool isArray = type.IsArray(); bool isSizedString = isArray ? false : type.TagPart() == nsXPTType::T_PSTRING_SIZE_IS || type.TagPart() == nsXPTType::T_PWSTRING_SIZE_IS; if (isArray) { if (NS_FAILED(mIFaceInfo->GetTypeForParam(mVTableIndex, ¶mInfo, 1, &datum_type))) { Throw(NS_ERROR_XPC_CANT_GET_ARRAY_INFO, mCallContext); return false; } } else datum_type = type; if (isArray || isSizedString) { if (!GetArraySizeFromParam(i, UndefinedHandleValue, &array_count)) return false; } nsID param_iid; if (datum_type.IsInterfacePointer() && !GetInterfaceTypeFromParam(i, datum_type, ¶m_iid)) return false; nsresult err; if (isArray) { if (!XPCConvert::NativeArray2JS(&v, (const void**)&dp->val, datum_type, ¶m_iid, array_count, &err)) { // XXX need exception scheme for arrays to indicate bad element ThrowBadParam(err, i, mCallContext); return false; } } else if (isSizedString) { if (!XPCConvert::NativeStringWithSize2JS(&v, (const void*)&dp->val, datum_type, array_count, &err)) { ThrowBadParam(err, i, mCallContext); return false; } } else { if (!XPCConvert::NativeData2JS(&v, &dp->val, datum_type, ¶m_iid, &err)) { ThrowBadParam(err, i, mCallContext); return false; } } if (paramInfo.IsRetval()) { mCallContext.SetRetVal(v); } else if (i < mArgc) { // we actually assured this before doing the invoke MOZ_ASSERT(mArgv[i].isObject(), "out var is not object"); RootedObject obj(mCallContext, &mArgv[i].toObject()); if (!JS_SetPropertyById(mCallContext, obj, mIdxValueId, v)) { ThrowBadParam(NS_ERROR_XPC_CANT_SET_OUT_VAL, i, mCallContext); return false; } } else { MOZ_ASSERT(paramInfo.IsOptional(), "Expected either enough arguments or an optional argument"); } } return true; } bool CallMethodHelper::QueryInterfaceFastPath() { MOZ_ASSERT(mVTableIndex == 0, "Using the QI fast-path for a method other than QueryInterface"); if (mArgc < 1) { Throw(NS_ERROR_XPC_NOT_ENOUGH_ARGS, mCallContext); return false; } if (!mArgv[0].isObject()) { ThrowBadParam(NS_ERROR_XPC_BAD_CONVERT_JS, 0, mCallContext); return false; } const nsID* iid = xpc_JSObjectToID(mCallContext, &mArgv[0].toObject()); if (!iid) { ThrowBadParam(NS_ERROR_XPC_BAD_CONVERT_JS, 0, mCallContext); return false; } nsISupports* qiresult = nullptr; mInvokeResult = mCallee->QueryInterface(*iid, (void**) &qiresult); if (NS_FAILED(mInvokeResult)) { ThrowBadResult(mInvokeResult, mCallContext); return false; } RootedValue v(mCallContext, NullValue()); nsresult err; bool success = XPCConvert::NativeData2JS(&v, &qiresult, nsXPTType::T_INTERFACE_IS, iid, &err); NS_IF_RELEASE(qiresult); if (!success) { ThrowBadParam(err, 0, mCallContext); return false; } mCallContext.SetRetVal(v); return true; } bool CallMethodHelper::InitializeDispatchParams() { const uint8_t wantsOptArgc = mMethodInfo->WantsOptArgc() ? 1 : 0; const uint8_t wantsJSContext = mMethodInfo->WantsContext() ? 1 : 0; const uint8_t paramCount = mMethodInfo->GetParamCount(); uint8_t requiredArgs = paramCount; uint8_t hasRetval = 0; // XXX ASSUMES that retval is last arg. The xpidl compiler ensures this. if (paramCount && mMethodInfo->GetParam(paramCount-1).IsRetval()) { hasRetval = 1; requiredArgs--; } if (mArgc < requiredArgs || wantsOptArgc) { if (wantsOptArgc) mOptArgcIndex = requiredArgs; // skip over any optional arguments while (requiredArgs && mMethodInfo->GetParam(requiredArgs-1).IsOptional()) requiredArgs--; if (mArgc < requiredArgs) { Throw(NS_ERROR_XPC_NOT_ENOUGH_ARGS, mCallContext); return false; } } if (wantsJSContext) { if (wantsOptArgc) // Need to bump mOptArgcIndex up one here. mJSContextIndex = mOptArgcIndex++; else if (mMethodInfo->IsSetter() || mMethodInfo->IsGetter()) // For attributes, we always put the JSContext* first. mJSContextIndex = 0; else mJSContextIndex = paramCount - hasRetval; } // iterate through the params to clear flags (for safe cleanup later) for (uint8_t i = 0; i < paramCount + wantsJSContext + wantsOptArgc; i++) { nsXPTCVariant* dp = mDispatchParams.AppendElement(); dp->ClearFlags(); dp->val.p = nullptr; } // Fill in the JSContext argument if (wantsJSContext) { nsXPTCVariant* dp = &mDispatchParams[mJSContextIndex]; dp->type = nsXPTType::T_VOID; dp->val.p = mCallContext; } // Fill in the optional_argc argument if (wantsOptArgc) { nsXPTCVariant* dp = &mDispatchParams[mOptArgcIndex]; dp->type = nsXPTType::T_U8; dp->val.u8 = std::min(mArgc, paramCount) - requiredArgs; } return true; } bool CallMethodHelper::ConvertIndependentParams(bool* foundDependentParam) { const uint8_t paramCount = mMethodInfo->GetParamCount(); for (uint8_t i = 0; i < paramCount; i++) { const nsXPTParamInfo& paramInfo = mMethodInfo->GetParam(i); if (paramInfo.GetType().IsDependent()) *foundDependentParam = true; else if (!ConvertIndependentParam(i)) return false; } return true; } bool CallMethodHelper::ConvertIndependentParam(uint8_t i) { const nsXPTParamInfo& paramInfo = mMethodInfo->GetParam(i); const nsXPTType& type = paramInfo.GetType(); uint8_t type_tag = type.TagPart(); nsXPTCVariant* dp = GetDispatchParam(i); dp->type = type; MOZ_ASSERT(!paramInfo.IsShared(), "[shared] implies [noscript]!"); // String classes are always "in" - those that are marked "out" are converted // by the XPIDL compiler to "in+dipper". See the note above IsDipper() in // xptinfo.h. // // Also note that the fact that we bail out early for dipper parameters means // that "inout" dipper parameters don't work - see bug 687612. if (paramInfo.IsStringClass()) { if (!AllocateStringClass(dp, paramInfo)) return false; if (paramInfo.IsDipper()) { // We've allocated our string class explicitly, so we don't need // to do any conversions on the incoming argument. However, we still // need to verify that it's an object, so that we don't get surprised // later on when trying to assign the result to .value. if (i < mArgc && !mArgv[i].isObject()) { ThrowBadParam(NS_ERROR_XPC_NEED_OUT_OBJECT, i, mCallContext); return false; } return true; } } // Specify the correct storage/calling semantics. if (paramInfo.IsIndirect()) dp->SetIndirect(); // The JSVal proper is always stored within the 'val' union and passed // indirectly, regardless of in/out-ness. if (type_tag == nsXPTType::T_JSVAL) { // Root the value. dp->val.j.asValueRef().setUndefined(); if (!js::AddRawValueRoot(mCallContext, &dp->val.j.asValueRef(), "XPCWrappedNative::CallMethod param")) { return false; } } // Flag cleanup for anything that isn't self-contained. if (!type.IsArithmetic()) dp->SetValNeedsCleanup(); // Even if there's nothing to convert, we still need to examine the // JSObject container for out-params. If it's null or otherwise invalid, // we want to know before the call, rather than after. // // This is a no-op for 'in' params. RootedValue src(mCallContext); if (!GetOutParamSource(i, &src)) return false; // All that's left to do is value conversion. Bail early if we don't need // to do that. if (!paramInfo.IsIn()) return true; // We're definitely some variety of 'in' now, so there's something to // convert. The source value for conversion depends on whether we're // dealing with an 'in' or an 'inout' parameter. 'inout' was handled above, // so all that's left is 'in'. if (!paramInfo.IsOut()) { // Handle the 'in' case. MOZ_ASSERT(i < mArgc || paramInfo.IsOptional(), "Expected either enough arguments or an optional argument"); if (i < mArgc) src = mArgv[i]; else if (type_tag == nsXPTType::T_JSVAL) src.setUndefined(); else src.setNull(); } nsID param_iid; if (type_tag == nsXPTType::T_INTERFACE && NS_FAILED(mIFaceInfo->GetIIDForParamNoAlloc(mVTableIndex, ¶mInfo, ¶m_iid))) { ThrowBadParam(NS_ERROR_XPC_CANT_GET_PARAM_IFACE_INFO, i, mCallContext); return false; } // Don't allow CPOWs to be passed to native code (in case they try to cast // to a concrete type). if (src.isObject() && jsipc::IsWrappedCPOW(&src.toObject()) && type_tag == nsXPTType::T_INTERFACE && !param_iid.Equals(NS_GET_IID(nsISupports))) { // Allow passing CPOWs to XPCWrappedJS. nsCOMPtr wrappedJS(do_QueryInterface(mCallee)); if (!wrappedJS) { ThrowBadParam(NS_ERROR_XPC_CANT_PASS_CPOW_TO_NATIVE, i, mCallContext); return false; } } nsresult err; if (!XPCConvert::JSData2Native(&dp->val, src, type, ¶m_iid, &err)) { ThrowBadParam(err, i, mCallContext); return false; } return true; } bool CallMethodHelper::ConvertDependentParams() { const uint8_t paramCount = mMethodInfo->GetParamCount(); for (uint8_t i = 0; i < paramCount; i++) { const nsXPTParamInfo& paramInfo = mMethodInfo->GetParam(i); if (!paramInfo.GetType().IsDependent()) continue; if (!ConvertDependentParam(i)) return false; } return true; } bool CallMethodHelper::ConvertDependentParam(uint8_t i) { const nsXPTParamInfo& paramInfo = mMethodInfo->GetParam(i); const nsXPTType& type = paramInfo.GetType(); nsXPTType datum_type; uint32_t array_count = 0; bool isArray = type.IsArray(); bool isSizedString = isArray ? false : type.TagPart() == nsXPTType::T_PSTRING_SIZE_IS || type.TagPart() == nsXPTType::T_PWSTRING_SIZE_IS; nsXPTCVariant* dp = GetDispatchParam(i); dp->type = type; if (isArray) { if (NS_FAILED(mIFaceInfo->GetTypeForParam(mVTableIndex, ¶mInfo, 1, &datum_type))) { Throw(NS_ERROR_XPC_CANT_GET_ARRAY_INFO, mCallContext); return false; } MOZ_ASSERT(datum_type.TagPart() != nsXPTType::T_JSVAL, "Arrays of JSVals not currently supported - see bug 693337."); } else { datum_type = type; } // Specify the correct storage/calling semantics. if (paramInfo.IsIndirect()) dp->SetIndirect(); // We have 3 possible type of dependent parameters: Arrays, Sized Strings, // and iid_is Interface pointers. The latter two always need cleanup, and // arrays need cleanup for all non-arithmetic types. Since the latter two // cases also happen to be non-arithmetic, we can just inspect datum_type // here. if (!datum_type.IsArithmetic()) dp->SetValNeedsCleanup(); // Even if there's nothing to convert, we still need to examine the // JSObject container for out-params. If it's null or otherwise invalid, // we want to know before the call, rather than after. // // This is a no-op for 'in' params. RootedValue src(mCallContext); if (!GetOutParamSource(i, &src)) return false; // All that's left to do is value conversion. Bail early if we don't need // to do that. if (!paramInfo.IsIn()) return true; // We're definitely some variety of 'in' now, so there's something to // convert. The source value for conversion depends on whether we're // dealing with an 'in' or an 'inout' parameter. 'inout' was handled above, // so all that's left is 'in'. if (!paramInfo.IsOut()) { // Handle the 'in' case. MOZ_ASSERT(i < mArgc || paramInfo.IsOptional(), "Expected either enough arguments or an optional argument"); src = i < mArgc ? mArgv[i] : JS::NullValue(); } nsID param_iid; if (datum_type.IsInterfacePointer() && !GetInterfaceTypeFromParam(i, datum_type, ¶m_iid)) return false; nsresult err; if (isArray || isSizedString) { if (!GetArraySizeFromParam(i, src, &array_count)) return false; if (isArray) { if (array_count && !XPCConvert::JSArray2Native((void**)&dp->val, src, array_count, datum_type, ¶m_iid, &err)) { // XXX need exception scheme for arrays to indicate bad element ThrowBadParam(err, i, mCallContext); return false; } } else // if (isSizedString) { if (!XPCConvert::JSStringWithSize2Native((void*)&dp->val, src, array_count, datum_type, &err)) { ThrowBadParam(err, i, mCallContext); return false; } } } else { if (!XPCConvert::JSData2Native(&dp->val, src, type, ¶m_iid, &err)) { ThrowBadParam(err, i, mCallContext); return false; } } return true; } // Performs all necessary teardown on a parameter after method invocation. // // This method should only be called if the value in question was flagged // for cleanup (ie, if dp->DoesValNeedCleanup()). void CallMethodHelper::CleanupParam(nsXPTCMiniVariant& param, nsXPTType& type) { // We handle array elements, but not the arrays themselves. MOZ_ASSERT(type.TagPart() != nsXPTType::T_ARRAY, "Can't handle arrays."); // Pointers may sometimes be null even if cleanup was requested. Combine // the null checking for all the different types into one check here. if (type.TagPart() != nsXPTType::T_JSVAL && param.val.p == nullptr) return; switch (type.TagPart()) { case nsXPTType::T_JSVAL: js::RemoveRawValueRoot(mCallContext, (Value*)¶m.val); break; case nsXPTType::T_INTERFACE: case nsXPTType::T_INTERFACE_IS: ((nsISupports*)param.val.p)->Release(); break; case nsXPTType::T_ASTRING: case nsXPTType::T_DOMSTRING: nsXPConnect::GetContextInstance()->mScratchStrings.Destroy((nsString*)param.val.p); break; case nsXPTType::T_UTF8STRING: case nsXPTType::T_CSTRING: nsXPConnect::GetContextInstance()->mScratchCStrings.Destroy((nsCString*)param.val.p); break; default: MOZ_ASSERT(!type.IsArithmetic(), "Cleanup requested on unexpected type."); free(param.val.p); break; } } bool CallMethodHelper::AllocateStringClass(nsXPTCVariant* dp, const nsXPTParamInfo& paramInfo) { // Get something we can make comparisons with. uint8_t type_tag = paramInfo.GetType().TagPart(); // There should be 4 cases, all strings. Verify that here. MOZ_ASSERT(type_tag == nsXPTType::T_ASTRING || type_tag == nsXPTType::T_DOMSTRING || type_tag == nsXPTType::T_UTF8STRING || type_tag == nsXPTType::T_CSTRING, "Unexpected string class type!"); // ASTRING and DOMSTRING are very similar, and both use nsString. // UTF8_STRING and CSTRING are also quite similar, and both use nsCString. if (type_tag == nsXPTType::T_ASTRING || type_tag == nsXPTType::T_DOMSTRING) dp->val.p = nsXPConnect::GetContextInstance()->mScratchStrings.Create(); else dp->val.p = nsXPConnect::GetContextInstance()->mScratchCStrings.Create(); // Check for OOM, in either case. if (!dp->val.p) { JS_ReportOutOfMemory(mCallContext); return false; } // We allocated, so we need to deallocate after the method call completes. dp->SetValNeedsCleanup(); return true; } nsresult CallMethodHelper::Invoke() { uint32_t argc = mDispatchParams.Length(); nsXPTCVariant* argv = mDispatchParams.Elements(); return NS_InvokeByIndex(mCallee, mVTableIndex, argc, argv); } /***************************************************************************/ // interface methods JSObject* XPCWrappedNative::GetJSObject() { return GetFlatJSObject(); } NS_IMETHODIMP XPCWrappedNative::GetNative(nsISupports * *aNative) { // No need to QI here, we already have the correct nsISupports // vtable. nsCOMPtr rval = mIdentity; rval.forget(aNative); return NS_OK; } NS_IMETHODIMP XPCWrappedNative::GetJSObjectPrototype(JSObject * *aJSObjectPrototype) { *aJSObjectPrototype = HasProto() ? GetProto()->GetJSProtoObject() : GetFlatJSObject(); return NS_OK; } nsIPrincipal* XPCWrappedNative::GetObjectPrincipal() const { nsIPrincipal* principal = GetScope()->GetPrincipal(); #ifdef DEBUG // Because of inner window reuse, we can have objects with one principal // living in a scope with a different (but same-origin) principal. So // just check same-origin here. nsCOMPtr objPrin(do_QueryInterface(mIdentity)); if (objPrin) { bool equal; if (!principal) equal = !objPrin->GetPrincipal(); else principal->Equals(objPrin->GetPrincipal(), &equal); MOZ_ASSERT(equal, "Principal mismatch. Expect bad things to happen"); } #endif return principal; } NS_IMETHODIMP XPCWrappedNative::FindInterfaceWithMember(HandleId name, nsIInterfaceInfo * *_retval) { RefPtr iface; XPCNativeMember* member; if (GetSet()->FindMember(name, &member, &iface) && iface) { nsCOMPtr temp = iface->GetInterfaceInfo(); temp.forget(_retval); } else *_retval = nullptr; return NS_OK; } NS_IMETHODIMP XPCWrappedNative::FindInterfaceWithName(HandleId name, nsIInterfaceInfo * *_retval) { XPCNativeInterface* iface = GetSet()->FindNamedInterface(name); if (iface) { nsCOMPtr temp = iface->GetInterfaceInfo(); temp.forget(_retval); } else *_retval = nullptr; return NS_OK; } NS_IMETHODIMP_(bool) XPCWrappedNative::HasNativeMember(HandleId name) { XPCNativeMember* member = nullptr; uint16_t ignored; return GetSet()->FindMember(name, &member, &ignored) && !!member; } NS_IMETHODIMP XPCWrappedNative::DebugDump(int16_t depth) { #ifdef DEBUG depth-- ; XPC_LOG_ALWAYS(("XPCWrappedNative @ %x with mRefCnt = %d", this, mRefCnt.get())); XPC_LOG_INDENT(); if (HasProto()) { XPCWrappedNativeProto* proto = GetProto(); if (depth && proto) proto->DebugDump(depth); else XPC_LOG_ALWAYS(("mMaybeProto @ %x", proto)); } else XPC_LOG_ALWAYS(("Scope @ %x", GetScope())); if (depth && mSet) mSet->DebugDump(depth); else XPC_LOG_ALWAYS(("mSet @ %x", mSet.get())); XPC_LOG_ALWAYS(("mFlatJSObject of %x", mFlatJSObject.unbarrieredGetPtr())); XPC_LOG_ALWAYS(("mIdentity of %x", mIdentity.get())); XPC_LOG_ALWAYS(("mScriptableInfo @ %x", mScriptableInfo)); if (depth && mScriptableInfo) { XPC_LOG_INDENT(); XPC_LOG_ALWAYS(("mScriptable @ %x", mScriptableInfo->GetCallback())); XPC_LOG_ALWAYS(("mFlags of %x", (uint32_t)mScriptableInfo->GetFlags())); XPC_LOG_ALWAYS(("mJSClass @ %x", mScriptableInfo->GetJSClass())); XPC_LOG_OUTDENT(); } XPC_LOG_OUTDENT(); #endif return NS_OK; } /***************************************************************************/ char* XPCWrappedNative::ToString(XPCWrappedNativeTearOff* to /* = nullptr */ ) const { #ifdef DEBUG # define FMT_ADDR " @ 0x%p" # define FMT_STR(str) str # define PARAM_ADDR(w) , w #else # define FMT_ADDR "" # define FMT_STR(str) # define PARAM_ADDR(w) #endif char* sz = nullptr; char* name = nullptr; XPCNativeScriptableInfo* si = GetScriptableInfo(); if (si) name = JS_smprintf("%s", si->GetJSClass()->name); if (to) { const char* fmt = name ? " (%s)" : "%s"; name = JS_sprintf_append(name, fmt, to->GetInterface()->GetNameString()); } else if (!name) { XPCNativeSet* set = GetSet(); XPCNativeInterface** array = set->GetInterfaceArray(); RefPtr isupp = XPCNativeInterface::GetISupports(); uint16_t count = set->GetInterfaceCount(); if (count == 1) name = JS_sprintf_append(name, "%s", array[0]->GetNameString()); else if (count == 2 && array[0] == isupp) { name = JS_sprintf_append(name, "%s", array[1]->GetNameString()); } else { for (uint16_t i = 0; i < count; i++) { const char* fmt = (i == 0) ? "(%s" : (i == count-1) ? ", %s)" : ", %s"; name = JS_sprintf_append(name, fmt, array[i]->GetNameString()); } } } if (!name) { return nullptr; } const char* fmt = "[xpconnect wrapped %s" FMT_ADDR FMT_STR(" (native") FMT_ADDR FMT_STR(")") "]"; if (si) { fmt = "[object %s" FMT_ADDR FMT_STR(" (native") FMT_ADDR FMT_STR(")") "]"; } sz = JS_smprintf(fmt, name PARAM_ADDR(this) PARAM_ADDR(mIdentity.get())); JS_smprintf_free(name); return sz; #undef FMT_ADDR #undef PARAM_ADDR } /***************************************************************************/ #ifdef XPC_CHECK_CLASSINFO_CLAIMS static void DEBUG_CheckClassInfoClaims(XPCWrappedNative* wrapper) { if (!wrapper || !wrapper->GetClassInfo()) return; nsISupports* obj = wrapper->GetIdentityObject(); XPCNativeSet* set = wrapper->GetSet(); uint16_t count = set->GetInterfaceCount(); for (uint16_t i = 0; i < count; i++) { nsIClassInfo* clsInfo = wrapper->GetClassInfo(); XPCNativeInterface* iface = set->GetInterfaceAt(i); nsIInterfaceInfo* info = iface->GetInterfaceInfo(); const nsIID* iid; nsISupports* ptr; info->GetIIDShared(&iid); nsresult rv = obj->QueryInterface(*iid, (void**)&ptr); if (NS_SUCCEEDED(rv)) { NS_RELEASE(ptr); continue; } if (rv == NS_ERROR_OUT_OF_MEMORY) continue; // Houston, We have a problem... char* className = nullptr; char* contractID = nullptr; const char* interfaceName; info->GetNameShared(&interfaceName); clsInfo->GetContractID(&contractID); if (wrapper->GetScriptableInfo()) { wrapper->GetScriptableInfo()->GetCallback()-> GetClassName(&className); } printf("\n!!! Object's nsIClassInfo lies about its interfaces!!!\n" " classname: %s \n" " contractid: %s \n" " unimplemented interface name: %s\n\n", className ? className : "", contractID ? contractID : "", interfaceName); if (className) free(className); if (contractID) free(contractID); } } #endif NS_IMPL_ISUPPORTS(XPCJSObjectHolder, nsIXPConnectJSObjectHolder) JSObject* XPCJSObjectHolder::GetJSObject() { NS_PRECONDITION(mJSObj, "bad object state"); return mJSObj; } XPCJSObjectHolder::XPCJSObjectHolder(JSObject* obj) : mJSObj(obj) { MOZ_ASSERT(obj); XPCJSContext::Get()->AddObjectHolderRoot(this); } XPCJSObjectHolder::~XPCJSObjectHolder() { RemoveFromRootSet(); } void XPCJSObjectHolder::TraceJS(JSTracer* trc) { JS::TraceEdge(trc, &mJSObj, "XPCJSObjectHolder::mJSObj"); }