diff options
Diffstat (limited to 'third_party/aom/av1/encoder/ml.c')
-rw-r--r-- | third_party/aom/av1/encoder/ml.c | 73 |
1 files changed, 0 insertions, 73 deletions
diff --git a/third_party/aom/av1/encoder/ml.c b/third_party/aom/av1/encoder/ml.c deleted file mode 100644 index d21def43a..000000000 --- a/third_party/aom/av1/encoder/ml.c +++ /dev/null @@ -1,73 +0,0 @@ -/* - * Copyright (c) 2016, Alliance for Open Media. All rights reserved - * - * This source code is subject to the terms of the BSD 2 Clause License and - * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License - * was not distributed with this source code in the LICENSE file, you can - * obtain it at www.aomedia.org/license/software. If the Alliance for Open - * Media Patent License 1.0 was not distributed with this source code in the - * PATENTS file, you can obtain it at www.aomedia.org/license/patent. - */ - -#include <assert.h> -#include <math.h> - -#include "aom_dsp/aom_dsp_common.h" -#include "av1/encoder/ml.h" - -void av1_nn_predict(const float *features, const NN_CONFIG *nn_config, - float *output) { - int num_input_nodes = nn_config->num_inputs; - int buf_index = 0; - float buf[2][NN_MAX_NODES_PER_LAYER]; - const float *input_nodes = features; - - // Propagate hidden layers. - const int num_layers = nn_config->num_hidden_layers; - assert(num_layers <= NN_MAX_HIDDEN_LAYERS); - for (int layer = 0; layer < num_layers; ++layer) { - const float *weights = nn_config->weights[layer]; - const float *bias = nn_config->bias[layer]; - float *output_nodes = buf[buf_index]; - const int num_output_nodes = nn_config->num_hidden_nodes[layer]; - assert(num_output_nodes < NN_MAX_NODES_PER_LAYER); - for (int node = 0; node < num_output_nodes; ++node) { - float val = 0.0f; - for (int i = 0; i < num_input_nodes; ++i) - val += weights[i] * input_nodes[i]; - val += bias[node]; - // ReLU as activation function. - val = val > 0.0f ? val : 0.0f; // Could use AOMMAX(). - output_nodes[node] = val; - weights += num_input_nodes; - } - num_input_nodes = num_output_nodes; - input_nodes = output_nodes; - buf_index = 1 - buf_index; - } - - // Final output layer. - const float *weights = nn_config->weights[num_layers]; - for (int node = 0; node < nn_config->num_outputs; ++node) { - const float *bias = nn_config->bias[num_layers]; - float val = 0.0f; - for (int i = 0; i < num_input_nodes; ++i) - val += weights[i] * input_nodes[i]; - output[node] = val + bias[node]; - weights += num_input_nodes; - } -} - -void av1_nn_softmax(const float *input, float *output, int n) { - // Softmax function is invariant to adding the same constant - // to all input values, so we subtract the maximum input to avoid - // possible overflow. - float max_inp = input[0]; - for (int i = 1; i < n; i++) max_inp = AOMMAX(max_inp, input[i]); - float sum_out = 0.0f; - for (int i = 0; i < n; i++) { - output[i] = (float)exp(input[i] - max_inp); - sum_out += output[i]; - } - for (int i = 0; i < n; i++) output[i] /= sum_out; -} |