diff options
Diffstat (limited to 'media/libaom/src/av1/encoder/x86/pickrst_avx2.c')
-rw-r--r-- | media/libaom/src/av1/encoder/x86/pickrst_avx2.c | 819 |
1 files changed, 750 insertions, 69 deletions
diff --git a/media/libaom/src/av1/encoder/x86/pickrst_avx2.c b/media/libaom/src/av1/encoder/x86/pickrst_avx2.c index 06aaaa7ee..f8703a23c 100644 --- a/media/libaom/src/av1/encoder/x86/pickrst_avx2.c +++ b/media/libaom/src/av1/encoder/x86/pickrst_avx2.c @@ -22,9 +22,9 @@ static INLINE void acc_stat_avx2(int32_t *dst, const uint8_t *src, const __m128i *shuffle, const __m256i *kl) { const __m128i s = _mm_shuffle_epi8(xx_loadu_128(src), *shuffle); const __m256i d0 = _mm256_madd_epi16(*kl, _mm256_cvtepu8_epi16(s)); - const __m256i dst0 = yy_loadu_256(dst); + const __m256i dst0 = yy_load_256(dst); const __m256i r0 = _mm256_add_epi32(dst0, d0); - yy_storeu_256(dst, r0); + yy_store_256(dst, r0); } static INLINE void acc_stat_win7_one_line_avx2( @@ -64,18 +64,19 @@ static INLINE void acc_stat_win7_one_line_avx2( static INLINE void compute_stats_win7_opt_avx2( const uint8_t *dgd, const uint8_t *src, int h_start, int h_end, int v_start, - int v_end, int dgd_stride, int src_stride, double *M, double *H) { + int v_end, int dgd_stride, int src_stride, int64_t *M, int64_t *H) { int i, j, k, l, m, n; const int wiener_win = WIENER_WIN; const int pixel_count = (h_end - h_start) * (v_end - v_start); const int wiener_win2 = wiener_win * wiener_win; const int wiener_halfwin = (wiener_win >> 1); - const double avg = - find_average(dgd, h_start, h_end, v_start, v_end, dgd_stride); + uint8_t avg = find_average(dgd, h_start, h_end, v_start, v_end, dgd_stride); int32_t M_int32[WIENER_WIN][WIENER_WIN] = { { 0 } }; int64_t M_int64[WIENER_WIN][WIENER_WIN] = { { 0 } }; - int32_t H_int32[WIENER_WIN2][WIENER_WIN * 8] = { { 0 } }; + + DECLARE_ALIGNED(32, int32_t, + H_int32[WIENER_WIN2][WIENER_WIN * 8]) = { { 0 } }; int64_t H_int64[WIENER_WIN2][WIENER_WIN * 8] = { { 0 } }; int32_t sumY[WIENER_WIN][WIENER_WIN] = { { 0 } }; int32_t sumX = 0; @@ -103,23 +104,285 @@ static INLINE void compute_stats_win7_opt_avx2( } } - const double avg_square_sum = avg * avg * pixel_count; + const int64_t avg_square_sum = (int64_t)avg * (int64_t)avg * pixel_count; for (k = 0; k < wiener_win; k++) { for (l = 0; l < wiener_win; l++) { const int32_t idx0 = l * wiener_win + k; - M[idx0] = M_int64[k][l] + avg_square_sum - avg * (sumX + sumY[k][l]); - double *H_ = H + idx0 * wiener_win2; + M[idx0] = + M_int64[k][l] + (avg_square_sum - (int64_t)avg * (sumX + sumY[k][l])); + int64_t *H_ = H + idx0 * wiener_win2; int64_t *H_int_ = &H_int64[idx0][0]; for (m = 0; m < wiener_win; m++) { for (n = 0; n < wiener_win; n++) { H_[m * wiener_win + n] = H_int_[n * 8 + m] + avg_square_sum - - avg * (sumY[k][l] + sumY[n][m]); + (int64_t)avg * (sumY[k][l] + sumY[n][m]); + } + } + } + } +} + +#if CONFIG_AV1_HIGHBITDEPTH +static INLINE void acc_stat_highbd_avx2(int64_t *dst, const uint16_t *dgd, + const __m256i *shuffle, + const __m256i *dgd_ijkl) { + // Load two 128-bit chunks from dgd + const __m256i s0 = _mm256_inserti128_si256( + _mm256_castsi128_si256(_mm_loadu_si128((__m128i *)dgd)), + _mm_loadu_si128((__m128i *)(dgd + 4)), 1); + // s0 = [11 10 9 8 7 6 5 4] [7 6 5 4 3 2 1 0] as u16 (values are dgd indices) + // The weird order is so the shuffle stays within 128-bit lanes + + // Shuffle 16x u16 values within lanes according to the mask: + // [0 1 1 2 2 3 3 4] [0 1 1 2 2 3 3 4] + // (Actually we shuffle u8 values as there's no 16-bit shuffle) + const __m256i s1 = _mm256_shuffle_epi8(s0, *shuffle); + // s1 = [8 7 7 6 6 5 5 4] [4 3 3 2 2 1 1 0] as u16 (values are dgd indices) + + // Multiply 16x 16-bit integers in dgd_ijkl and s1, resulting in 16x 32-bit + // integers then horizontally add pairs of these integers resulting in 8x + // 32-bit integers + const __m256i d0 = _mm256_madd_epi16(*dgd_ijkl, s1); + // d0 = [a b c d] [e f g h] as u32 + + // Take the lower-half of d0, extend to u64, add it on to dst (H) + const __m256i d0l = _mm256_cvtepu32_epi64(_mm256_extracti128_si256(d0, 0)); + // d0l = [a b] [c d] as u64 + const __m256i dst0 = yy_load_256(dst); + yy_store_256(dst, _mm256_add_epi64(d0l, dst0)); + + // Take the upper-half of d0, extend to u64, add it on to dst (H) + const __m256i d0h = _mm256_cvtepu32_epi64(_mm256_extracti128_si256(d0, 1)); + // d0h = [e f] [g h] as u64 + const __m256i dst1 = yy_load_256(dst + 4); + yy_store_256(dst + 4, _mm256_add_epi64(d0h, dst1)); +} + +static INLINE void acc_stat_highbd_win7_one_line_avx2( + const uint16_t *dgd, const uint16_t *src, int h_start, int h_end, + int dgd_stride, const __m256i *shuffle, int32_t *sumX, + int32_t sumY[WIENER_WIN][WIENER_WIN], int64_t M_int[WIENER_WIN][WIENER_WIN], + int64_t H_int[WIENER_WIN2][WIENER_WIN * 8]) { + int j, k, l; + const int wiener_win = WIENER_WIN; + for (j = h_start; j < h_end; j += 2) { + const uint16_t X1 = src[j]; + const uint16_t X2 = src[j + 1]; + *sumX += X1 + X2; + const uint16_t *dgd_ij = dgd + j; + for (k = 0; k < wiener_win; k++) { + const uint16_t *dgd_ijk = dgd_ij + k * dgd_stride; + for (l = 0; l < wiener_win; l++) { + int64_t *H_ = &H_int[(l * wiener_win + k)][0]; + const uint16_t D1 = dgd_ijk[l]; + const uint16_t D2 = dgd_ijk[l + 1]; + sumY[k][l] += D1 + D2; + M_int[k][l] += D1 * X1 + D2 * X2; + + // Load two u16 values from dgd_ijkl combined as a u32, + // then broadcast to 8x u32 slots of a 256 + const __m256i dgd_ijkl = + _mm256_set1_epi32(*((uint32_t *)(dgd_ijk + l))); + // dgd_ijkl = [y x y x y x y x] [y x y x y x y x] where each is a u16 + + acc_stat_highbd_avx2(H_ + 0 * 8, dgd_ij + 0 * dgd_stride, shuffle, + &dgd_ijkl); + acc_stat_highbd_avx2(H_ + 1 * 8, dgd_ij + 1 * dgd_stride, shuffle, + &dgd_ijkl); + acc_stat_highbd_avx2(H_ + 2 * 8, dgd_ij + 2 * dgd_stride, shuffle, + &dgd_ijkl); + acc_stat_highbd_avx2(H_ + 3 * 8, dgd_ij + 3 * dgd_stride, shuffle, + &dgd_ijkl); + acc_stat_highbd_avx2(H_ + 4 * 8, dgd_ij + 4 * dgd_stride, shuffle, + &dgd_ijkl); + acc_stat_highbd_avx2(H_ + 5 * 8, dgd_ij + 5 * dgd_stride, shuffle, + &dgd_ijkl); + acc_stat_highbd_avx2(H_ + 6 * 8, dgd_ij + 6 * dgd_stride, shuffle, + &dgd_ijkl); + } + } + } +} + +static INLINE void compute_stats_highbd_win7_opt_avx2( + const uint8_t *dgd8, const uint8_t *src8, int h_start, int h_end, + int v_start, int v_end, int dgd_stride, int src_stride, int64_t *M, + int64_t *H, aom_bit_depth_t bit_depth) { + int i, j, k, l, m, n; + const int wiener_win = WIENER_WIN; + const int pixel_count = (h_end - h_start) * (v_end - v_start); + const int wiener_win2 = wiener_win * wiener_win; + const int wiener_halfwin = (wiener_win >> 1); + const uint16_t *src = CONVERT_TO_SHORTPTR(src8); + const uint16_t *dgd = CONVERT_TO_SHORTPTR(dgd8); + const uint16_t avg = + find_average_highbd(dgd, h_start, h_end, v_start, v_end, dgd_stride); + + int64_t M_int[WIENER_WIN][WIENER_WIN] = { { 0 } }; + DECLARE_ALIGNED(32, int64_t, H_int[WIENER_WIN2][WIENER_WIN * 8]) = { { 0 } }; + int32_t sumY[WIENER_WIN][WIENER_WIN] = { { 0 } }; + int32_t sumX = 0; + const uint16_t *dgd_win = dgd - wiener_halfwin * dgd_stride - wiener_halfwin; + + const __m256i shuffle = yy_loadu_256(g_shuffle_stats_highbd_data); + for (j = v_start; j < v_end; j += 64) { + const int vert_end = AOMMIN(64, v_end - j) + j; + for (i = j; i < vert_end; i++) { + acc_stat_highbd_win7_one_line_avx2( + dgd_win + i * dgd_stride, src + i * src_stride, h_start, h_end, + dgd_stride, &shuffle, &sumX, sumY, M_int, H_int); + } + } + + uint8_t bit_depth_divider = 1; + if (bit_depth == AOM_BITS_12) + bit_depth_divider = 16; + else if (bit_depth == AOM_BITS_10) + bit_depth_divider = 4; + + const int64_t avg_square_sum = (int64_t)avg * (int64_t)avg * pixel_count; + for (k = 0; k < wiener_win; k++) { + for (l = 0; l < wiener_win; l++) { + const int32_t idx0 = l * wiener_win + k; + M[idx0] = (M_int[k][l] + + (avg_square_sum - (int64_t)avg * (sumX + sumY[k][l]))) / + bit_depth_divider; + int64_t *H_ = H + idx0 * wiener_win2; + int64_t *H_int_ = &H_int[idx0][0]; + for (m = 0; m < wiener_win; m++) { + for (n = 0; n < wiener_win; n++) { + H_[m * wiener_win + n] = + (H_int_[n * 8 + m] + + (avg_square_sum - (int64_t)avg * (sumY[k][l] + sumY[n][m]))) / + bit_depth_divider; } } } } } +static INLINE void acc_stat_highbd_win5_one_line_avx2( + const uint16_t *dgd, const uint16_t *src, int h_start, int h_end, + int dgd_stride, const __m256i *shuffle, int32_t *sumX, + int32_t sumY[WIENER_WIN_CHROMA][WIENER_WIN_CHROMA], + int64_t M_int[WIENER_WIN_CHROMA][WIENER_WIN_CHROMA], + int64_t H_int[WIENER_WIN2_CHROMA][WIENER_WIN_CHROMA * 8]) { + int j, k, l; + const int wiener_win = WIENER_WIN_CHROMA; + for (j = h_start; j < h_end; j += 2) { + const uint16_t X1 = src[j]; + const uint16_t X2 = src[j + 1]; + *sumX += X1 + X2; + const uint16_t *dgd_ij = dgd + j; + for (k = 0; k < wiener_win; k++) { + const uint16_t *dgd_ijk = dgd_ij + k * dgd_stride; + for (l = 0; l < wiener_win; l++) { + int64_t *H_ = &H_int[(l * wiener_win + k)][0]; + const uint16_t D1 = dgd_ijk[l]; + const uint16_t D2 = dgd_ijk[l + 1]; + sumY[k][l] += D1 + D2; + M_int[k][l] += D1 * X1 + D2 * X2; + + // Load two u16 values from dgd_ijkl combined as a u32, + // then broadcast to 8x u32 slots of a 256 + const __m256i dgd_ijkl = + _mm256_set1_epi32(*((uint32_t *)(dgd_ijk + l))); + // dgd_ijkl = [x y x y x y x y] [x y x y x y x y] where each is a u16 + + acc_stat_highbd_avx2(H_ + 0 * 8, dgd_ij + 0 * dgd_stride, shuffle, + &dgd_ijkl); + acc_stat_highbd_avx2(H_ + 1 * 8, dgd_ij + 1 * dgd_stride, shuffle, + &dgd_ijkl); + acc_stat_highbd_avx2(H_ + 2 * 8, dgd_ij + 2 * dgd_stride, shuffle, + &dgd_ijkl); + acc_stat_highbd_avx2(H_ + 3 * 8, dgd_ij + 3 * dgd_stride, shuffle, + &dgd_ijkl); + acc_stat_highbd_avx2(H_ + 4 * 8, dgd_ij + 4 * dgd_stride, shuffle, + &dgd_ijkl); + } + } + } +} + +static INLINE void compute_stats_highbd_win5_opt_avx2( + const uint8_t *dgd8, const uint8_t *src8, int h_start, int h_end, + int v_start, int v_end, int dgd_stride, int src_stride, int64_t *M, + int64_t *H, aom_bit_depth_t bit_depth) { + int i, j, k, l, m, n; + const int wiener_win = WIENER_WIN_CHROMA; + const int pixel_count = (h_end - h_start) * (v_end - v_start); + const int wiener_win2 = wiener_win * wiener_win; + const int wiener_halfwin = (wiener_win >> 1); + const uint16_t *src = CONVERT_TO_SHORTPTR(src8); + const uint16_t *dgd = CONVERT_TO_SHORTPTR(dgd8); + const uint16_t avg = + find_average_highbd(dgd, h_start, h_end, v_start, v_end, dgd_stride); + + int64_t M_int64[WIENER_WIN_CHROMA][WIENER_WIN_CHROMA] = { { 0 } }; + DECLARE_ALIGNED( + 32, int64_t, + H_int64[WIENER_WIN2_CHROMA][WIENER_WIN_CHROMA * 8]) = { { 0 } }; + int32_t sumY[WIENER_WIN_CHROMA][WIENER_WIN_CHROMA] = { { 0 } }; + int32_t sumX = 0; + const uint16_t *dgd_win = dgd - wiener_halfwin * dgd_stride - wiener_halfwin; + + const __m256i shuffle = yy_loadu_256(g_shuffle_stats_highbd_data); + for (j = v_start; j < v_end; j += 64) { + const int vert_end = AOMMIN(64, v_end - j) + j; + for (i = j; i < vert_end; i++) { + acc_stat_highbd_win5_one_line_avx2( + dgd_win + i * dgd_stride, src + i * src_stride, h_start, h_end, + dgd_stride, &shuffle, &sumX, sumY, M_int64, H_int64); + } + } + + uint8_t bit_depth_divider = 1; + if (bit_depth == AOM_BITS_12) + bit_depth_divider = 16; + else if (bit_depth == AOM_BITS_10) + bit_depth_divider = 4; + + const int64_t avg_square_sum = (int64_t)avg * (int64_t)avg * pixel_count; + for (k = 0; k < wiener_win; k++) { + for (l = 0; l < wiener_win; l++) { + const int32_t idx0 = l * wiener_win + k; + M[idx0] = (M_int64[k][l] + + (avg_square_sum - (int64_t)avg * (sumX + sumY[k][l]))) / + bit_depth_divider; + int64_t *H_ = H + idx0 * wiener_win2; + int64_t *H_int_ = &H_int64[idx0][0]; + for (m = 0; m < wiener_win; m++) { + for (n = 0; n < wiener_win; n++) { + H_[m * wiener_win + n] = + (H_int_[n * 8 + m] + + (avg_square_sum - (int64_t)avg * (sumY[k][l] + sumY[n][m]))) / + bit_depth_divider; + } + } + } + } +} + +void av1_compute_stats_highbd_avx2(int wiener_win, const uint8_t *dgd8, + const uint8_t *src8, int h_start, int h_end, + int v_start, int v_end, int dgd_stride, + int src_stride, int64_t *M, int64_t *H, + aom_bit_depth_t bit_depth) { + if (wiener_win == WIENER_WIN) { + compute_stats_highbd_win7_opt_avx2(dgd8, src8, h_start, h_end, v_start, + v_end, dgd_stride, src_stride, M, H, + bit_depth); + } else if (wiener_win == WIENER_WIN_CHROMA) { + compute_stats_highbd_win5_opt_avx2(dgd8, src8, h_start, h_end, v_start, + v_end, dgd_stride, src_stride, M, H, + bit_depth); + } else { + av1_compute_stats_highbd_c(wiener_win, dgd8, src8, h_start, h_end, v_start, + v_end, dgd_stride, src_stride, M, H, bit_depth); + } +} +#endif // CONFIG_AV1_HIGHBITDEPTH + static INLINE void acc_stat_win5_one_line_avx2( const uint8_t *dgd, const uint8_t *src, int h_start, int h_end, int dgd_stride, const __m128i *shuffle, int32_t *sumX, @@ -156,18 +419,19 @@ static INLINE void acc_stat_win5_one_line_avx2( static INLINE void compute_stats_win5_opt_avx2( const uint8_t *dgd, const uint8_t *src, int h_start, int h_end, int v_start, - int v_end, int dgd_stride, int src_stride, double *M, double *H) { + int v_end, int dgd_stride, int src_stride, int64_t *M, int64_t *H) { int i, j, k, l, m, n; const int wiener_win = WIENER_WIN_CHROMA; const int pixel_count = (h_end - h_start) * (v_end - v_start); const int wiener_win2 = wiener_win * wiener_win; const int wiener_halfwin = (wiener_win >> 1); - const double avg = - find_average(dgd, h_start, h_end, v_start, v_end, dgd_stride); + uint8_t avg = find_average(dgd, h_start, h_end, v_start, v_end, dgd_stride); int32_t M_int32[WIENER_WIN_CHROMA][WIENER_WIN_CHROMA] = { { 0 } }; int64_t M_int64[WIENER_WIN_CHROMA][WIENER_WIN_CHROMA] = { { 0 } }; - int32_t H_int32[WIENER_WIN2_CHROMA][WIENER_WIN_CHROMA * 8] = { { 0 } }; + DECLARE_ALIGNED( + 32, int32_t, + H_int32[WIENER_WIN2_CHROMA][WIENER_WIN_CHROMA * 8]) = { { 0 } }; int64_t H_int64[WIENER_WIN2_CHROMA][WIENER_WIN_CHROMA * 8] = { { 0 } }; int32_t sumY[WIENER_WIN_CHROMA][WIENER_WIN_CHROMA] = { { 0 } }; int32_t sumX = 0; @@ -195,17 +459,18 @@ static INLINE void compute_stats_win5_opt_avx2( } } - const double avg_square_sum = avg * avg * pixel_count; + const int64_t avg_square_sum = (int64_t)avg * (int64_t)avg * pixel_count; for (k = 0; k < wiener_win; k++) { for (l = 0; l < wiener_win; l++) { const int32_t idx0 = l * wiener_win + k; - M[idx0] = M_int64[k][l] + avg_square_sum - avg * (sumX + sumY[k][l]); - double *H_ = H + idx0 * wiener_win2; + M[idx0] = + M_int64[k][l] + (avg_square_sum - (int64_t)avg * (sumX + sumY[k][l])); + int64_t *H_ = H + idx0 * wiener_win2; int64_t *H_int_ = &H_int64[idx0][0]; for (m = 0; m < wiener_win; m++) { for (n = 0; n < wiener_win; n++) { H_[m * wiener_win + n] = H_int_[n * 8 + m] + avg_square_sum - - avg * (sumY[k][l] + sumY[n][m]); + (int64_t)avg * (sumY[k][l] + sumY[n][m]); } } } @@ -215,7 +480,7 @@ static INLINE void compute_stats_win5_opt_avx2( void av1_compute_stats_avx2(int wiener_win, const uint8_t *dgd, const uint8_t *src, int h_start, int h_end, int v_start, int v_end, int dgd_stride, - int src_stride, double *M, double *H) { + int src_stride, int64_t *M, int64_t *H) { if (wiener_win == WIENER_WIN) { compute_stats_win7_opt_avx2(dgd, src, h_start, h_end, v_start, v_end, dgd_stride, src_stride, M, H); @@ -228,7 +493,7 @@ void av1_compute_stats_avx2(int wiener_win, const uint8_t *dgd, } } -static INLINE __m256i pair_set_epi16(uint16_t a, uint16_t b) { +static INLINE __m256i pair_set_epi16(int a, int b) { return _mm256_set1_epi32( (int32_t)(((uint16_t)(a)) | (((uint32_t)(b)) << 16))); } @@ -279,7 +544,7 @@ int64_t av1_lowbd_pixel_proj_error_avx2( const int32_t u = (int32_t)(dat[k] << SGRPROJ_RST_BITS); int32_t v = xq[0] * (flt0[k] - u) + xq[1] * (flt1[k] - u); const int32_t e = ROUND_POWER_OF_TWO(v, shift) + dat[k] - src[k]; - err += e * e; + err += ((int64_t)e * e); } dat += dat_stride; src += src_stride; @@ -292,22 +557,25 @@ int64_t av1_lowbd_pixel_proj_error_avx2( sum64 = _mm256_add_epi64(sum64, sum64_0); sum64 = _mm256_add_epi64(sum64, sum64_1); } - } else if (params->r[0] > 0) { - __m256i xq_coeff = - pair_set_epi16(xq[0], (-xq[0] * (1 << SGRPROJ_RST_BITS))); + } else if (params->r[0] > 0 || params->r[1] > 0) { + const int xq_active = (params->r[0] > 0) ? xq[0] : xq[1]; + const __m256i xq_coeff = + pair_set_epi16(xq_active, (-xq_active * (1 << SGRPROJ_RST_BITS))); + const int32_t *flt = (params->r[0] > 0) ? flt0 : flt1; + const int flt_stride = (params->r[0] > 0) ? flt0_stride : flt1_stride; for (i = 0; i < height; ++i) { __m256i sum32 = _mm256_setzero_si256(); for (j = 0; j <= width - 16; j += 16) { const __m256i d0 = _mm256_cvtepu8_epi16(xx_loadu_128(dat + j)); const __m256i s0 = _mm256_cvtepu8_epi16(xx_loadu_128(src + j)); - const __m256i flt0_16b = _mm256_permute4x64_epi64( - _mm256_packs_epi32(yy_loadu_256(flt0 + j), - yy_loadu_256(flt0 + j + 8)), + const __m256i flt_16b = _mm256_permute4x64_epi64( + _mm256_packs_epi32(yy_loadu_256(flt + j), + yy_loadu_256(flt + j + 8)), 0xd8); const __m256i v0 = - _mm256_madd_epi16(xq_coeff, _mm256_unpacklo_epi16(flt0_16b, d0)); + _mm256_madd_epi16(xq_coeff, _mm256_unpacklo_epi16(flt_16b, d0)); const __m256i v1 = - _mm256_madd_epi16(xq_coeff, _mm256_unpackhi_epi16(flt0_16b, d0)); + _mm256_madd_epi16(xq_coeff, _mm256_unpackhi_epi16(flt_16b, d0)); const __m256i vr0 = _mm256_srai_epi32(_mm256_add_epi32(v0, rounding), shift); const __m256i vr1 = @@ -319,13 +587,13 @@ int64_t av1_lowbd_pixel_proj_error_avx2( } for (k = j; k < width; ++k) { const int32_t u = (int32_t)(dat[k] << SGRPROJ_RST_BITS); - int32_t v = xq[0] * (flt0[k] - u); + int32_t v = xq_active * (flt[k] - u); const int32_t e = ROUND_POWER_OF_TWO(v, shift) + dat[k] - src[k]; - err += e * e; + err += ((int64_t)e * e); } dat += dat_stride; src += src_stride; - flt0 += flt0_stride; + flt += flt_stride; const __m256i sum64_0 = _mm256_cvtepi32_epi64(_mm256_castsi256_si128(sum32)); const __m256i sum64_1 = @@ -333,71 +601,484 @@ int64_t av1_lowbd_pixel_proj_error_avx2( sum64 = _mm256_add_epi64(sum64, sum64_0); sum64 = _mm256_add_epi64(sum64, sum64_1); } - } else if (params->r[1] > 0) { - __m256i xq_coeff = pair_set_epi16(xq[1], -(xq[1] << SGRPROJ_RST_BITS)); + } else { + __m256i sum32 = _mm256_setzero_si256(); for (i = 0; i < height; ++i) { - __m256i sum32 = _mm256_setzero_si256(); for (j = 0; j <= width - 16; j += 16) { const __m256i d0 = _mm256_cvtepu8_epi16(xx_loadu_128(dat + j)); const __m256i s0 = _mm256_cvtepu8_epi16(xx_loadu_128(src + j)); - const __m256i flt1_16b = _mm256_permute4x64_epi64( - _mm256_packs_epi32(yy_loadu_256(flt1 + j), - yy_loadu_256(flt1 + j + 8)), - 0xd8); - const __m256i v0 = - _mm256_madd_epi16(xq_coeff, _mm256_unpacklo_epi16(flt1_16b, d0)); - const __m256i v1 = - _mm256_madd_epi16(xq_coeff, _mm256_unpackhi_epi16(flt1_16b, d0)); - const __m256i vr0 = - _mm256_srai_epi32(_mm256_add_epi32(v0, rounding), shift); - const __m256i vr1 = - _mm256_srai_epi32(_mm256_add_epi32(v1, rounding), shift); - const __m256i e0 = _mm256_sub_epi16( - _mm256_add_epi16(_mm256_packs_epi32(vr0, vr1), d0), s0); + const __m256i diff0 = _mm256_sub_epi16(d0, s0); + const __m256i err0 = _mm256_madd_epi16(diff0, diff0); + sum32 = _mm256_add_epi32(sum32, err0); + } + for (k = j; k < width; ++k) { + const int32_t e = (int32_t)(dat[k]) - src[k]; + err += ((int64_t)e * e); + } + dat += dat_stride; + src += src_stride; + } + const __m256i sum64_0 = + _mm256_cvtepi32_epi64(_mm256_castsi256_si128(sum32)); + const __m256i sum64_1 = + _mm256_cvtepi32_epi64(_mm256_extracti128_si256(sum32, 1)); + sum64 = _mm256_add_epi64(sum64_0, sum64_1); + } + int64_t sum[4]; + yy_storeu_256(sum, sum64); + err += sum[0] + sum[1] + sum[2] + sum[3]; + return err; +} + +// When params->r[0] > 0 and params->r[1] > 0. In this case all elements of +// C and H need to be computed. +static AOM_INLINE void calc_proj_params_r0_r1_avx2( + const uint8_t *src8, int width, int height, int src_stride, + const uint8_t *dat8, int dat_stride, int32_t *flt0, int flt0_stride, + int32_t *flt1, int flt1_stride, int64_t H[2][2], int64_t C[2]) { + const int size = width * height; + const uint8_t *src = src8; + const uint8_t *dat = dat8; + __m256i h00, h01, h11, c0, c1; + const __m256i zero = _mm256_setzero_si256(); + h01 = h11 = c0 = c1 = h00 = zero; + + for (int i = 0; i < height; ++i) { + for (int j = 0; j < width; j += 8) { + const __m256i u_load = _mm256_cvtepu8_epi32( + _mm_loadl_epi64((__m128i *)(dat + i * dat_stride + j))); + const __m256i s_load = _mm256_cvtepu8_epi32( + _mm_loadl_epi64((__m128i *)(src + i * src_stride + j))); + __m256i f1 = _mm256_loadu_si256((__m256i *)(flt0 + i * flt0_stride + j)); + __m256i f2 = _mm256_loadu_si256((__m256i *)(flt1 + i * flt1_stride + j)); + __m256i d = _mm256_slli_epi32(u_load, SGRPROJ_RST_BITS); + __m256i s = _mm256_slli_epi32(s_load, SGRPROJ_RST_BITS); + s = _mm256_sub_epi32(s, d); + f1 = _mm256_sub_epi32(f1, d); + f2 = _mm256_sub_epi32(f2, d); + + const __m256i h00_even = _mm256_mul_epi32(f1, f1); + const __m256i h00_odd = _mm256_mul_epi32(_mm256_srli_epi64(f1, 32), + _mm256_srli_epi64(f1, 32)); + h00 = _mm256_add_epi64(h00, h00_even); + h00 = _mm256_add_epi64(h00, h00_odd); + + const __m256i h01_even = _mm256_mul_epi32(f1, f2); + const __m256i h01_odd = _mm256_mul_epi32(_mm256_srli_epi64(f1, 32), + _mm256_srli_epi64(f2, 32)); + h01 = _mm256_add_epi64(h01, h01_even); + h01 = _mm256_add_epi64(h01, h01_odd); + + const __m256i h11_even = _mm256_mul_epi32(f2, f2); + const __m256i h11_odd = _mm256_mul_epi32(_mm256_srli_epi64(f2, 32), + _mm256_srli_epi64(f2, 32)); + h11 = _mm256_add_epi64(h11, h11_even); + h11 = _mm256_add_epi64(h11, h11_odd); + + const __m256i c0_even = _mm256_mul_epi32(f1, s); + const __m256i c0_odd = + _mm256_mul_epi32(_mm256_srli_epi64(f1, 32), _mm256_srli_epi64(s, 32)); + c0 = _mm256_add_epi64(c0, c0_even); + c0 = _mm256_add_epi64(c0, c0_odd); + + const __m256i c1_even = _mm256_mul_epi32(f2, s); + const __m256i c1_odd = + _mm256_mul_epi32(_mm256_srli_epi64(f2, 32), _mm256_srli_epi64(s, 32)); + c1 = _mm256_add_epi64(c1, c1_even); + c1 = _mm256_add_epi64(c1, c1_odd); + } + } + + __m256i c_low = _mm256_unpacklo_epi64(c0, c1); + const __m256i c_high = _mm256_unpackhi_epi64(c0, c1); + c_low = _mm256_add_epi64(c_low, c_high); + const __m128i c_128bit = _mm_add_epi64(_mm256_extracti128_si256(c_low, 1), + _mm256_castsi256_si128(c_low)); + + __m256i h0x_low = _mm256_unpacklo_epi64(h00, h01); + const __m256i h0x_high = _mm256_unpackhi_epi64(h00, h01); + h0x_low = _mm256_add_epi64(h0x_low, h0x_high); + const __m128i h0x_128bit = _mm_add_epi64(_mm256_extracti128_si256(h0x_low, 1), + _mm256_castsi256_si128(h0x_low)); + + // Using the symmetric properties of H, calculations of H[1][0] are not + // needed. + __m256i h1x_low = _mm256_unpacklo_epi64(zero, h11); + const __m256i h1x_high = _mm256_unpackhi_epi64(zero, h11); + h1x_low = _mm256_add_epi64(h1x_low, h1x_high); + const __m128i h1x_128bit = _mm_add_epi64(_mm256_extracti128_si256(h1x_low, 1), + _mm256_castsi256_si128(h1x_low)); + + xx_storeu_128(C, c_128bit); + xx_storeu_128(H[0], h0x_128bit); + xx_storeu_128(H[1], h1x_128bit); + + H[0][0] /= size; + H[0][1] /= size; + H[1][1] /= size; + + // Since H is a symmetric matrix + H[1][0] = H[0][1]; + C[0] /= size; + C[1] /= size; +} + +// When only params->r[0] > 0. In this case only H[0][0] and C[0] are +// non-zero and need to be computed. +static AOM_INLINE void calc_proj_params_r0_avx2(const uint8_t *src8, int width, + int height, int src_stride, + const uint8_t *dat8, + int dat_stride, int32_t *flt0, + int flt0_stride, + int64_t H[2][2], int64_t C[2]) { + const int size = width * height; + const uint8_t *src = src8; + const uint8_t *dat = dat8; + __m256i h00, c0; + const __m256i zero = _mm256_setzero_si256(); + c0 = h00 = zero; + + for (int i = 0; i < height; ++i) { + for (int j = 0; j < width; j += 8) { + const __m256i u_load = _mm256_cvtepu8_epi32( + _mm_loadl_epi64((__m128i *)(dat + i * dat_stride + j))); + const __m256i s_load = _mm256_cvtepu8_epi32( + _mm_loadl_epi64((__m128i *)(src + i * src_stride + j))); + __m256i f1 = _mm256_loadu_si256((__m256i *)(flt0 + i * flt0_stride + j)); + __m256i d = _mm256_slli_epi32(u_load, SGRPROJ_RST_BITS); + __m256i s = _mm256_slli_epi32(s_load, SGRPROJ_RST_BITS); + s = _mm256_sub_epi32(s, d); + f1 = _mm256_sub_epi32(f1, d); + + const __m256i h00_even = _mm256_mul_epi32(f1, f1); + const __m256i h00_odd = _mm256_mul_epi32(_mm256_srli_epi64(f1, 32), + _mm256_srli_epi64(f1, 32)); + h00 = _mm256_add_epi64(h00, h00_even); + h00 = _mm256_add_epi64(h00, h00_odd); + + const __m256i c0_even = _mm256_mul_epi32(f1, s); + const __m256i c0_odd = + _mm256_mul_epi32(_mm256_srli_epi64(f1, 32), _mm256_srli_epi64(s, 32)); + c0 = _mm256_add_epi64(c0, c0_even); + c0 = _mm256_add_epi64(c0, c0_odd); + } + } + const __m128i h00_128bit = _mm_add_epi64(_mm256_extracti128_si256(h00, 1), + _mm256_castsi256_si128(h00)); + const __m128i h00_val = + _mm_add_epi64(h00_128bit, _mm_srli_si128(h00_128bit, 8)); + + const __m128i c0_128bit = _mm_add_epi64(_mm256_extracti128_si256(c0, 1), + _mm256_castsi256_si128(c0)); + const __m128i c0_val = _mm_add_epi64(c0_128bit, _mm_srli_si128(c0_128bit, 8)); + + const __m128i c = _mm_unpacklo_epi64(c0_val, _mm256_castsi256_si128(zero)); + const __m128i h0x = _mm_unpacklo_epi64(h00_val, _mm256_castsi256_si128(zero)); + + xx_storeu_128(C, c); + xx_storeu_128(H[0], h0x); + + H[0][0] /= size; + C[0] /= size; +} + +// When only params->r[1] > 0. In this case only H[1][1] and C[1] are +// non-zero and need to be computed. +static AOM_INLINE void calc_proj_params_r1_avx2(const uint8_t *src8, int width, + int height, int src_stride, + const uint8_t *dat8, + int dat_stride, int32_t *flt1, + int flt1_stride, + int64_t H[2][2], int64_t C[2]) { + const int size = width * height; + const uint8_t *src = src8; + const uint8_t *dat = dat8; + __m256i h11, c1; + const __m256i zero = _mm256_setzero_si256(); + c1 = h11 = zero; + + for (int i = 0; i < height; ++i) { + for (int j = 0; j < width; j += 8) { + const __m256i u_load = _mm256_cvtepu8_epi32( + _mm_loadl_epi64((__m128i *)(dat + i * dat_stride + j))); + const __m256i s_load = _mm256_cvtepu8_epi32( + _mm_loadl_epi64((__m128i *)(src + i * src_stride + j))); + __m256i f2 = _mm256_loadu_si256((__m256i *)(flt1 + i * flt1_stride + j)); + __m256i d = _mm256_slli_epi32(u_load, SGRPROJ_RST_BITS); + __m256i s = _mm256_slli_epi32(s_load, SGRPROJ_RST_BITS); + s = _mm256_sub_epi32(s, d); + f2 = _mm256_sub_epi32(f2, d); + + const __m256i h11_even = _mm256_mul_epi32(f2, f2); + const __m256i h11_odd = _mm256_mul_epi32(_mm256_srli_epi64(f2, 32), + _mm256_srli_epi64(f2, 32)); + h11 = _mm256_add_epi64(h11, h11_even); + h11 = _mm256_add_epi64(h11, h11_odd); + + const __m256i c1_even = _mm256_mul_epi32(f2, s); + const __m256i c1_odd = + _mm256_mul_epi32(_mm256_srli_epi64(f2, 32), _mm256_srli_epi64(s, 32)); + c1 = _mm256_add_epi64(c1, c1_even); + c1 = _mm256_add_epi64(c1, c1_odd); + } + } + + const __m128i h11_128bit = _mm_add_epi64(_mm256_extracti128_si256(h11, 1), + _mm256_castsi256_si128(h11)); + const __m128i h11_val = + _mm_add_epi64(h11_128bit, _mm_srli_si128(h11_128bit, 8)); + + const __m128i c1_128bit = _mm_add_epi64(_mm256_extracti128_si256(c1, 1), + _mm256_castsi256_si128(c1)); + const __m128i c1_val = _mm_add_epi64(c1_128bit, _mm_srli_si128(c1_128bit, 8)); + + const __m128i c = _mm_unpacklo_epi64(_mm256_castsi256_si128(zero), c1_val); + const __m128i h1x = _mm_unpacklo_epi64(_mm256_castsi256_si128(zero), h11_val); + + xx_storeu_128(C, c); + xx_storeu_128(H[1], h1x); + + H[1][1] /= size; + C[1] /= size; +} + +// AVX2 variant of av1_calc_proj_params_c. +void av1_calc_proj_params_avx2(const uint8_t *src8, int width, int height, + int src_stride, const uint8_t *dat8, + int dat_stride, int32_t *flt0, int flt0_stride, + int32_t *flt1, int flt1_stride, int64_t H[2][2], + int64_t C[2], const sgr_params_type *params) { + if ((params->r[0] > 0) && (params->r[1] > 0)) { + calc_proj_params_r0_r1_avx2(src8, width, height, src_stride, dat8, + dat_stride, flt0, flt0_stride, flt1, + flt1_stride, H, C); + } else if (params->r[0] > 0) { + calc_proj_params_r0_avx2(src8, width, height, src_stride, dat8, dat_stride, + flt0, flt0_stride, H, C); + } else if (params->r[1] > 0) { + calc_proj_params_r1_avx2(src8, width, height, src_stride, dat8, dat_stride, + flt1, flt1_stride, H, C); + } +} + +#if CONFIG_AV1_HIGHBITDEPTH +int64_t av1_highbd_pixel_proj_error_avx2( + const uint8_t *src8, int width, int height, int src_stride, + const uint8_t *dat8, int dat_stride, int32_t *flt0, int flt0_stride, + int32_t *flt1, int flt1_stride, int xq[2], const sgr_params_type *params) { + int i, j, k; + const int32_t shift = SGRPROJ_RST_BITS + SGRPROJ_PRJ_BITS; + const __m256i rounding = _mm256_set1_epi32(1 << (shift - 1)); + __m256i sum64 = _mm256_setzero_si256(); + const uint16_t *src = CONVERT_TO_SHORTPTR(src8); + const uint16_t *dat = CONVERT_TO_SHORTPTR(dat8); + int64_t err = 0; + if (params->r[0] > 0 && params->r[1] > 0) { // Both filters are enabled + const __m256i xq0 = _mm256_set1_epi32(xq[0]); + const __m256i xq1 = _mm256_set1_epi32(xq[1]); + for (i = 0; i < height; ++i) { + __m256i sum32 = _mm256_setzero_si256(); + for (j = 0; j <= width - 16; j += 16) { // Process 16 pixels at a time + // Load 16 pixels each from source image and corrupted image + const __m256i s0 = yy_loadu_256(src + j); + const __m256i d0 = yy_loadu_256(dat + j); + // s0 = [15 14 13 12 11 10 9 8] [7 6 5 4 3 2 1 0] as u16 (indices) + + // Shift-up each pixel to match filtered image scaling + const __m256i u0 = _mm256_slli_epi16(d0, SGRPROJ_RST_BITS); + + // Split u0 into two halves and pad each from u16 to i32 + const __m256i u0l = _mm256_cvtepu16_epi32(_mm256_castsi256_si128(u0)); + const __m256i u0h = + _mm256_cvtepu16_epi32(_mm256_extracti128_si256(u0, 1)); + // u0h, u0l = [15 14 13 12] [11 10 9 8], [7 6 5 4] [3 2 1 0] as u32 + + // Load 16 pixels from each filtered image + const __m256i flt0l = yy_loadu_256(flt0 + j); + const __m256i flt0h = yy_loadu_256(flt0 + j + 8); + const __m256i flt1l = yy_loadu_256(flt1 + j); + const __m256i flt1h = yy_loadu_256(flt1 + j + 8); + // flt?l, flt?h = [15 14 13 12] [11 10 9 8], [7 6 5 4] [3 2 1 0] as u32 + + // Subtract shifted corrupt image from each filtered image + const __m256i flt0l_subu = _mm256_sub_epi32(flt0l, u0l); + const __m256i flt0h_subu = _mm256_sub_epi32(flt0h, u0h); + const __m256i flt1l_subu = _mm256_sub_epi32(flt1l, u0l); + const __m256i flt1h_subu = _mm256_sub_epi32(flt1h, u0h); + + // Multiply basis vectors by appropriate coefficients + const __m256i v0l = _mm256_mullo_epi32(flt0l_subu, xq0); + const __m256i v0h = _mm256_mullo_epi32(flt0h_subu, xq0); + const __m256i v1l = _mm256_mullo_epi32(flt1l_subu, xq1); + const __m256i v1h = _mm256_mullo_epi32(flt1h_subu, xq1); + + // Add together the contributions from the two basis vectors + const __m256i vl = _mm256_add_epi32(v0l, v1l); + const __m256i vh = _mm256_add_epi32(v0h, v1h); + + // Right-shift v with appropriate rounding + const __m256i vrl = + _mm256_srai_epi32(_mm256_add_epi32(vl, rounding), shift); + const __m256i vrh = + _mm256_srai_epi32(_mm256_add_epi32(vh, rounding), shift); + // vrh, vrl = [15 14 13 12] [11 10 9 8], [7 6 5 4] [3 2 1 0] + + // Saturate each i32 to an i16 then combine both halves + // The permute (control=[3 1 2 0]) fixes weird ordering from AVX lanes + const __m256i vr = + _mm256_permute4x64_epi64(_mm256_packs_epi32(vrl, vrh), 0xd8); + // intermediate = [15 14 13 12 7 6 5 4] [11 10 9 8 3 2 1 0] + // vr = [15 14 13 12 11 10 9 8] [7 6 5 4 3 2 1 0] + + // Add twin-subspace-sgr-filter to corrupt image then subtract source + const __m256i e0 = _mm256_sub_epi16(_mm256_add_epi16(vr, d0), s0); + + // Calculate squared error and add adjacent values const __m256i err0 = _mm256_madd_epi16(e0, e0); + sum32 = _mm256_add_epi32(sum32, err0); } + + const __m256i sum32l = + _mm256_cvtepu32_epi64(_mm256_castsi256_si128(sum32)); + sum64 = _mm256_add_epi64(sum64, sum32l); + const __m256i sum32h = + _mm256_cvtepu32_epi64(_mm256_extracti128_si256(sum32, 1)); + sum64 = _mm256_add_epi64(sum64, sum32h); + + // Process remaining pixels in this row (modulo 16) for (k = j; k < width; ++k) { const int32_t u = (int32_t)(dat[k] << SGRPROJ_RST_BITS); - int32_t v = xq[1] * (flt1[k] - u); + int32_t v = xq[0] * (flt0[k] - u) + xq[1] * (flt1[k] - u); const int32_t e = ROUND_POWER_OF_TWO(v, shift) + dat[k] - src[k]; - err += e * e; + err += ((int64_t)e * e); } dat += dat_stride; src += src_stride; + flt0 += flt0_stride; flt1 += flt1_stride; - const __m256i sum64_0 = - _mm256_cvtepi32_epi64(_mm256_castsi256_si128(sum32)); - const __m256i sum64_1 = - _mm256_cvtepi32_epi64(_mm256_extracti128_si256(sum32, 1)); - sum64 = _mm256_add_epi64(sum64, sum64_0); - sum64 = _mm256_add_epi64(sum64, sum64_1); } - } else { - __m256i sum32 = _mm256_setzero_si256(); + } else if (params->r[0] > 0 || params->r[1] > 0) { // Only one filter enabled + const int32_t xq_on = (params->r[0] > 0) ? xq[0] : xq[1]; + const __m256i xq_active = _mm256_set1_epi32(xq_on); + const __m256i xq_inactive = + _mm256_set1_epi32(-xq_on * (1 << SGRPROJ_RST_BITS)); + const int32_t *flt = (params->r[0] > 0) ? flt0 : flt1; + const int flt_stride = (params->r[0] > 0) ? flt0_stride : flt1_stride; for (i = 0; i < height; ++i) { + __m256i sum32 = _mm256_setzero_si256(); for (j = 0; j <= width - 16; j += 16) { - const __m256i d0 = _mm256_cvtepu8_epi16(xx_loadu_128(dat + j)); - const __m256i s0 = _mm256_cvtepu8_epi16(xx_loadu_128(src + j)); - const __m256i diff0 = _mm256_sub_epi16(d0, s0); - const __m256i err0 = _mm256_madd_epi16(diff0, diff0); + // Load 16 pixels from source image + const __m256i s0 = yy_loadu_256(src + j); + // s0 = [15 14 13 12 11 10 9 8] [7 6 5 4 3 2 1 0] as u16 + + // Load 16 pixels from corrupted image and pad each u16 to i32 + const __m256i d0 = yy_loadu_256(dat + j); + const __m256i d0h = + _mm256_cvtepu16_epi32(_mm256_extracti128_si256(d0, 1)); + const __m256i d0l = _mm256_cvtepu16_epi32(_mm256_castsi256_si128(d0)); + // d0 = [15 14 13 12 11 10 9 8] [7 6 5 4 3 2 1 0] as u16 + // d0h, d0l = [15 14 13 12] [11 10 9 8], [7 6 5 4] [3 2 1 0] as i32 + + // Load 16 pixels from the filtered image + const __m256i flth = yy_loadu_256(flt + j + 8); + const __m256i fltl = yy_loadu_256(flt + j); + // flth, fltl = [15 14 13 12] [11 10 9 8], [7 6 5 4] [3 2 1 0] as i32 + + const __m256i flth_xq = _mm256_mullo_epi32(flth, xq_active); + const __m256i fltl_xq = _mm256_mullo_epi32(fltl, xq_active); + const __m256i d0h_xq = _mm256_mullo_epi32(d0h, xq_inactive); + const __m256i d0l_xq = _mm256_mullo_epi32(d0l, xq_inactive); + + const __m256i vh = _mm256_add_epi32(flth_xq, d0h_xq); + const __m256i vl = _mm256_add_epi32(fltl_xq, d0l_xq); + + // Shift this down with appropriate rounding + const __m256i vrh = + _mm256_srai_epi32(_mm256_add_epi32(vh, rounding), shift); + const __m256i vrl = + _mm256_srai_epi32(_mm256_add_epi32(vl, rounding), shift); + // vrh, vrl = [15 14 13 12] [11 10 9 8], [7 6 5 4] [3 2 1 0] as i32 + + // Saturate each i32 to an i16 then combine both halves + // The permute (control=[3 1 2 0]) fixes weird ordering from AVX lanes + const __m256i vr = + _mm256_permute4x64_epi64(_mm256_packs_epi32(vrl, vrh), 0xd8); + // intermediate = [15 14 13 12 7 6 5 4] [11 10 9 8 3 2 1 0] as u16 + // vr = [15 14 13 12 11 10 9 8] [7 6 5 4 3 2 1 0] as u16 + + // Subtract twin-subspace-sgr filtered from source image to get error + const __m256i e0 = _mm256_sub_epi16(_mm256_add_epi16(vr, d0), s0); + + // Calculate squared error and add adjacent values + const __m256i err0 = _mm256_madd_epi16(e0, e0); + sum32 = _mm256_add_epi32(sum32, err0); } + + const __m256i sum32l = + _mm256_cvtepu32_epi64(_mm256_castsi256_si128(sum32)); + sum64 = _mm256_add_epi64(sum64, sum32l); + const __m256i sum32h = + _mm256_cvtepu32_epi64(_mm256_extracti128_si256(sum32, 1)); + sum64 = _mm256_add_epi64(sum64, sum32h); + + // Process remaining pixels in this row (modulo 16) + for (k = j; k < width; ++k) { + const int32_t u = (int32_t)(dat[k] << SGRPROJ_RST_BITS); + int32_t v = xq_on * (flt[k] - u); + const int32_t e = ROUND_POWER_OF_TWO(v, shift) + dat[k] - src[k]; + err += ((int64_t)e * e); + } + dat += dat_stride; + src += src_stride; + flt += flt_stride; + } + } else { // Neither filter is enabled + for (i = 0; i < height; ++i) { + __m256i sum32 = _mm256_setzero_si256(); + for (j = 0; j <= width - 32; j += 32) { + // Load 2x16 u16 from source image + const __m256i s0l = yy_loadu_256(src + j); + const __m256i s0h = yy_loadu_256(src + j + 16); + + // Load 2x16 u16 from corrupted image + const __m256i d0l = yy_loadu_256(dat + j); + const __m256i d0h = yy_loadu_256(dat + j + 16); + + // Subtract corrupted image from source image + const __m256i diffl = _mm256_sub_epi16(d0l, s0l); + const __m256i diffh = _mm256_sub_epi16(d0h, s0h); + + // Square error and add adjacent values + const __m256i err0l = _mm256_madd_epi16(diffl, diffl); + const __m256i err0h = _mm256_madd_epi16(diffh, diffh); + + sum32 = _mm256_add_epi32(sum32, err0l); + sum32 = _mm256_add_epi32(sum32, err0h); + } + + const __m256i sum32l = + _mm256_cvtepu32_epi64(_mm256_castsi256_si128(sum32)); + sum64 = _mm256_add_epi64(sum64, sum32l); + const __m256i sum32h = + _mm256_cvtepu32_epi64(_mm256_extracti128_si256(sum32, 1)); + sum64 = _mm256_add_epi64(sum64, sum32h); + + // Process remaining pixels (modulu 16) for (k = j; k < width; ++k) { const int32_t e = (int32_t)(dat[k]) - src[k]; - err += e * e; + err += ((int64_t)e * e); } dat += dat_stride; src += src_stride; } - const __m256i sum64_0 = - _mm256_cvtepi32_epi64(_mm256_castsi256_si128(sum32)); - const __m256i sum64_1 = - _mm256_cvtepi32_epi64(_mm256_extracti128_si256(sum32, 1)); - sum64 = _mm256_add_epi64(sum64_0, sum64_1); } + + // Sum 4 values from sum64l and sum64h into err int64_t sum[4]; yy_storeu_256(sum, sum64); err += sum[0] + sum[1] + sum[2] + sum[3]; return err; } +#endif // CONFIG_AV1_HIGHBITDEPTH |