diff options
Diffstat (limited to 'libs/libopus/silk/float/noise_shape_analysis_FLP.c')
-rw-r--r-- | libs/libopus/silk/float/noise_shape_analysis_FLP.c | 149 |
1 files changed, 67 insertions, 82 deletions
diff --git a/libs/libopus/silk/float/noise_shape_analysis_FLP.c b/libs/libopus/silk/float/noise_shape_analysis_FLP.c index 65f6ea587..cb3d8a50b 100644 --- a/libs/libopus/silk/float/noise_shape_analysis_FLP.c +++ b/libs/libopus/silk/float/noise_shape_analysis_FLP.c @@ -55,25 +55,21 @@ static OPUS_INLINE silk_float warped_gain( /* Convert warped filter coefficients to monic pseudo-warped coefficients and limit maximum */ /* amplitude of monic warped coefficients by using bandwidth expansion on the true coefficients */ static OPUS_INLINE void warped_true2monic_coefs( - silk_float *coefs_syn, - silk_float *coefs_ana, + silk_float *coefs, silk_float lambda, silk_float limit, opus_int order ) { opus_int i, iter, ind = 0; - silk_float tmp, maxabs, chirp, gain_syn, gain_ana; + silk_float tmp, maxabs, chirp, gain; /* Convert to monic coefficients */ for( i = order - 1; i > 0; i-- ) { - coefs_syn[ i - 1 ] -= lambda * coefs_syn[ i ]; - coefs_ana[ i - 1 ] -= lambda * coefs_ana[ i ]; + coefs[ i - 1 ] -= lambda * coefs[ i ]; } - gain_syn = ( 1.0f - lambda * lambda ) / ( 1.0f + lambda * coefs_syn[ 0 ] ); - gain_ana = ( 1.0f - lambda * lambda ) / ( 1.0f + lambda * coefs_ana[ 0 ] ); + gain = ( 1.0f - lambda * lambda ) / ( 1.0f + lambda * coefs[ 0 ] ); for( i = 0; i < order; i++ ) { - coefs_syn[ i ] *= gain_syn; - coefs_ana[ i ] *= gain_ana; + coefs[ i ] *= gain; } /* Limit */ @@ -81,7 +77,7 @@ static OPUS_INLINE void warped_true2monic_coefs( /* Find maximum absolute value */ maxabs = -1.0f; for( i = 0; i < order; i++ ) { - tmp = silk_max( silk_abs_float( coefs_syn[ i ] ), silk_abs_float( coefs_ana[ i ] ) ); + tmp = silk_abs_float( coefs[ i ] ); if( tmp > maxabs ) { maxabs = tmp; ind = i; @@ -94,36 +90,59 @@ static OPUS_INLINE void warped_true2monic_coefs( /* Convert back to true warped coefficients */ for( i = 1; i < order; i++ ) { - coefs_syn[ i - 1 ] += lambda * coefs_syn[ i ]; - coefs_ana[ i - 1 ] += lambda * coefs_ana[ i ]; + coefs[ i - 1 ] += lambda * coefs[ i ]; } - gain_syn = 1.0f / gain_syn; - gain_ana = 1.0f / gain_ana; + gain = 1.0f / gain; for( i = 0; i < order; i++ ) { - coefs_syn[ i ] *= gain_syn; - coefs_ana[ i ] *= gain_ana; + coefs[ i ] *= gain; } /* Apply bandwidth expansion */ chirp = 0.99f - ( 0.8f + 0.1f * iter ) * ( maxabs - limit ) / ( maxabs * ( ind + 1 ) ); - silk_bwexpander_FLP( coefs_syn, order, chirp ); - silk_bwexpander_FLP( coefs_ana, order, chirp ); + silk_bwexpander_FLP( coefs, order, chirp ); /* Convert to monic warped coefficients */ for( i = order - 1; i > 0; i-- ) { - coefs_syn[ i - 1 ] -= lambda * coefs_syn[ i ]; - coefs_ana[ i - 1 ] -= lambda * coefs_ana[ i ]; + coefs[ i - 1 ] -= lambda * coefs[ i ]; } - gain_syn = ( 1.0f - lambda * lambda ) / ( 1.0f + lambda * coefs_syn[ 0 ] ); - gain_ana = ( 1.0f - lambda * lambda ) / ( 1.0f + lambda * coefs_ana[ 0 ] ); + gain = ( 1.0f - lambda * lambda ) / ( 1.0f + lambda * coefs[ 0 ] ); for( i = 0; i < order; i++ ) { - coefs_syn[ i ] *= gain_syn; - coefs_ana[ i ] *= gain_ana; + coefs[ i ] *= gain; } } silk_assert( 0 ); } +static OPUS_INLINE void limit_coefs( + silk_float *coefs, + silk_float limit, + opus_int order +) { + opus_int i, iter, ind = 0; + silk_float tmp, maxabs, chirp; + + for( iter = 0; iter < 10; iter++ ) { + /* Find maximum absolute value */ + maxabs = -1.0f; + for( i = 0; i < order; i++ ) { + tmp = silk_abs_float( coefs[ i ] ); + if( tmp > maxabs ) { + maxabs = tmp; + ind = i; + } + } + if( maxabs <= limit ) { + /* Coefficients are within range - done */ + return; + } + + /* Apply bandwidth expansion */ + chirp = 0.99f - ( 0.8f + 0.1f * iter ) * ( maxabs - limit ) / ( maxabs * ( ind + 1 ) ); + silk_bwexpander_FLP( coefs, order, chirp ); + } + silk_assert( 0 ); +} + /* Compute noise shaping coefficients and initial gain values */ void silk_noise_shape_analysis_FLP( silk_encoder_state_FLP *psEnc, /* I/O Encoder state FLP */ @@ -133,12 +152,13 @@ void silk_noise_shape_analysis_FLP( ) { silk_shape_state_FLP *psShapeSt = &psEnc->sShape; - opus_int k, nSamples; - silk_float SNR_adj_dB, HarmBoost, HarmShapeGain, Tilt; - silk_float nrg, pre_nrg, log_energy, log_energy_prev, energy_variation; - silk_float delta, BWExp1, BWExp2, gain_mult, gain_add, strength, b, warping; + opus_int k, nSamples, nSegs; + silk_float SNR_adj_dB, HarmShapeGain, Tilt; + silk_float nrg, log_energy, log_energy_prev, energy_variation; + silk_float BWExp, gain_mult, gain_add, strength, b, warping; silk_float x_windowed[ SHAPE_LPC_WIN_MAX ]; silk_float auto_corr[ MAX_SHAPE_LPC_ORDER + 1 ]; + silk_float rc[ MAX_SHAPE_LPC_ORDER + 1 ]; const silk_float *x_ptr, *pitch_res_ptr; /* Point to start of first LPC analysis block */ @@ -176,14 +196,14 @@ void silk_noise_shape_analysis_FLP( if( psEnc->sCmn.indices.signalType == TYPE_VOICED ) { /* Initially set to 0; may be overruled in process_gains(..) */ psEnc->sCmn.indices.quantOffsetType = 0; - psEncCtrl->sparseness = 0.0f; } else { /* Sparseness measure, based on relative fluctuations of energy per 2 milliseconds */ nSamples = 2 * psEnc->sCmn.fs_kHz; energy_variation = 0.0f; log_energy_prev = 0.0f; pitch_res_ptr = pitch_res; - for( k = 0; k < silk_SMULBB( SUB_FRAME_LENGTH_MS, psEnc->sCmn.nb_subfr ) / 2; k++ ) { + nSegs = silk_SMULBB( SUB_FRAME_LENGTH_MS, psEnc->sCmn.nb_subfr ) / 2; + for( k = 0; k < nSegs; k++ ) { nrg = ( silk_float )nSamples + ( silk_float )silk_energy_FLP( pitch_res_ptr, nSamples ); log_energy = silk_log2( nrg ); if( k > 0 ) { @@ -192,17 +212,13 @@ void silk_noise_shape_analysis_FLP( log_energy_prev = log_energy; pitch_res_ptr += nSamples; } - psEncCtrl->sparseness = silk_sigmoid( 0.4f * ( energy_variation - 5.0f ) ); /* Set quantization offset depending on sparseness measure */ - if( psEncCtrl->sparseness > SPARSENESS_THRESHOLD_QNT_OFFSET ) { + if( energy_variation > ENERGY_VARIATION_THRESHOLD_QNT_OFFSET * (nSegs-1) ) { psEnc->sCmn.indices.quantOffsetType = 0; } else { psEnc->sCmn.indices.quantOffsetType = 1; } - - /* Increase coding SNR for sparse signals */ - SNR_adj_dB += SPARSE_SNR_INCR_dB * ( psEncCtrl->sparseness - 0.5f ); } /*******************************/ @@ -210,19 +226,10 @@ void silk_noise_shape_analysis_FLP( /*******************************/ /* More BWE for signals with high prediction gain */ strength = FIND_PITCH_WHITE_NOISE_FRACTION * psEncCtrl->predGain; /* between 0.0 and 1.0 */ - BWExp1 = BWExp2 = BANDWIDTH_EXPANSION / ( 1.0f + strength * strength ); - delta = LOW_RATE_BANDWIDTH_EXPANSION_DELTA * ( 1.0f - 0.75f * psEncCtrl->coding_quality ); - BWExp1 -= delta; - BWExp2 += delta; - /* BWExp1 will be applied after BWExp2, so make it relative */ - BWExp1 /= BWExp2; - - if( psEnc->sCmn.warping_Q16 > 0 ) { - /* Slightly more warping in analysis will move quantization noise up in frequency, where it's better masked */ - warping = (silk_float)psEnc->sCmn.warping_Q16 / 65536.0f + 0.01f * psEncCtrl->coding_quality; - } else { - warping = 0.0f; - } + BWExp = BANDWIDTH_EXPANSION / ( 1.0f + strength * strength ); + + /* Slightly more warping in analysis will move quantization noise up in frequency, where it's better masked */ + warping = (silk_float)psEnc->sCmn.warping_Q16 / 65536.0f + 0.01f * psEncCtrl->coding_quality; /********************************************/ /* Compute noise shaping AR coefs and gains */ @@ -252,37 +259,28 @@ void silk_noise_shape_analysis_FLP( } /* Add white noise, as a fraction of energy */ - auto_corr[ 0 ] += auto_corr[ 0 ] * SHAPE_WHITE_NOISE_FRACTION; + auto_corr[ 0 ] += auto_corr[ 0 ] * SHAPE_WHITE_NOISE_FRACTION + 1.0f; /* Convert correlations to prediction coefficients, and compute residual energy */ - nrg = silk_levinsondurbin_FLP( &psEncCtrl->AR2[ k * MAX_SHAPE_LPC_ORDER ], auto_corr, psEnc->sCmn.shapingLPCOrder ); + nrg = silk_schur_FLP( rc, auto_corr, psEnc->sCmn.shapingLPCOrder ); + silk_k2a_FLP( &psEncCtrl->AR[ k * MAX_SHAPE_LPC_ORDER ], rc, psEnc->sCmn.shapingLPCOrder ); psEncCtrl->Gains[ k ] = ( silk_float )sqrt( nrg ); if( psEnc->sCmn.warping_Q16 > 0 ) { /* Adjust gain for warping */ - psEncCtrl->Gains[ k ] *= warped_gain( &psEncCtrl->AR2[ k * MAX_SHAPE_LPC_ORDER ], warping, psEnc->sCmn.shapingLPCOrder ); + psEncCtrl->Gains[ k ] *= warped_gain( &psEncCtrl->AR[ k * MAX_SHAPE_LPC_ORDER ], warping, psEnc->sCmn.shapingLPCOrder ); } /* Bandwidth expansion for synthesis filter shaping */ - silk_bwexpander_FLP( &psEncCtrl->AR2[ k * MAX_SHAPE_LPC_ORDER ], psEnc->sCmn.shapingLPCOrder, BWExp2 ); - - /* Compute noise shaping filter coefficients */ - silk_memcpy( - &psEncCtrl->AR1[ k * MAX_SHAPE_LPC_ORDER ], - &psEncCtrl->AR2[ k * MAX_SHAPE_LPC_ORDER ], - psEnc->sCmn.shapingLPCOrder * sizeof( silk_float ) ); + silk_bwexpander_FLP( &psEncCtrl->AR[ k * MAX_SHAPE_LPC_ORDER ], psEnc->sCmn.shapingLPCOrder, BWExp ); - /* Bandwidth expansion for analysis filter shaping */ - silk_bwexpander_FLP( &psEncCtrl->AR1[ k * MAX_SHAPE_LPC_ORDER ], psEnc->sCmn.shapingLPCOrder, BWExp1 ); - - /* Ratio of prediction gains, in energy domain */ - pre_nrg = silk_LPC_inverse_pred_gain_FLP( &psEncCtrl->AR2[ k * MAX_SHAPE_LPC_ORDER ], psEnc->sCmn.shapingLPCOrder ); - nrg = silk_LPC_inverse_pred_gain_FLP( &psEncCtrl->AR1[ k * MAX_SHAPE_LPC_ORDER ], psEnc->sCmn.shapingLPCOrder ); - psEncCtrl->GainsPre[ k ] = 1.0f - 0.7f * ( 1.0f - pre_nrg / nrg ); - - /* Convert to monic warped prediction coefficients and limit absolute values */ - warped_true2monic_coefs( &psEncCtrl->AR2[ k * MAX_SHAPE_LPC_ORDER ], &psEncCtrl->AR1[ k * MAX_SHAPE_LPC_ORDER ], - warping, 3.999f, psEnc->sCmn.shapingLPCOrder ); + if( psEnc->sCmn.warping_Q16 > 0 ) { + /* Convert to monic warped prediction coefficients and limit absolute values */ + warped_true2monic_coefs( &psEncCtrl->AR[ k * MAX_SHAPE_LPC_ORDER ], warping, 3.999f, psEnc->sCmn.shapingLPCOrder ); + } else { + /* Limit absolute values */ + limit_coefs( &psEncCtrl->AR[ k * MAX_SHAPE_LPC_ORDER ], 3.999f, psEnc->sCmn.shapingLPCOrder ); + } } /*****************/ @@ -296,11 +294,6 @@ void silk_noise_shape_analysis_FLP( psEncCtrl->Gains[ k ] += gain_add; } - gain_mult = 1.0f + INPUT_TILT + psEncCtrl->coding_quality * HIGH_RATE_INPUT_TILT; - for( k = 0; k < psEnc->sCmn.nb_subfr; k++ ) { - psEncCtrl->GainsPre[ k ] *= gain_mult; - } - /************************************************/ /* Control low-frequency shaping and noise tilt */ /************************************************/ @@ -331,12 +324,6 @@ void silk_noise_shape_analysis_FLP( /****************************/ /* HARMONIC SHAPING CONTROL */ /****************************/ - /* Control boosting of harmonic frequencies */ - HarmBoost = LOW_RATE_HARMONIC_BOOST * ( 1.0f - psEncCtrl->coding_quality ) * psEnc->LTPCorr; - - /* More harmonic boost for noisy input signals */ - HarmBoost += LOW_INPUT_QUALITY_HARMONIC_BOOST * ( 1.0f - psEncCtrl->input_quality ); - if( USE_HARM_SHAPING && psEnc->sCmn.indices.signalType == TYPE_VOICED ) { /* Harmonic noise shaping */ HarmShapeGain = HARMONIC_SHAPING; @@ -355,8 +342,6 @@ void silk_noise_shape_analysis_FLP( /* Smooth over subframes */ /*************************/ for( k = 0; k < psEnc->sCmn.nb_subfr; k++ ) { - psShapeSt->HarmBoost_smth += SUBFR_SMTH_COEF * ( HarmBoost - psShapeSt->HarmBoost_smth ); - psEncCtrl->HarmBoost[ k ] = psShapeSt->HarmBoost_smth; psShapeSt->HarmShapeGain_smth += SUBFR_SMTH_COEF * ( HarmShapeGain - psShapeSt->HarmShapeGain_smth ); psEncCtrl->HarmShapeGain[ k ] = psShapeSt->HarmShapeGain_smth; psShapeSt->Tilt_smth += SUBFR_SMTH_COEF * ( Tilt - psShapeSt->Tilt_smth ); |