summaryrefslogtreecommitdiff
path: root/libs/libaom/src/av1/encoder/partition_strategy.c
diff options
context:
space:
mode:
Diffstat (limited to 'libs/libaom/src/av1/encoder/partition_strategy.c')
-rw-r--r--libs/libaom/src/av1/encoder/partition_strategy.c1288
1 files changed, 1288 insertions, 0 deletions
diff --git a/libs/libaom/src/av1/encoder/partition_strategy.c b/libs/libaom/src/av1/encoder/partition_strategy.c
new file mode 100644
index 000000000..cc820ba24
--- /dev/null
+++ b/libs/libaom/src/av1/encoder/partition_strategy.c
@@ -0,0 +1,1288 @@
+/*
+ * Copyright (c) 2019, Alliance for Open Media. All rights reserved
+ *
+ * This source code is subject to the terms of the BSD 2 Clause License and
+ * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
+ * was not distributed with this source code in the LICENSE file, you can
+ * obtain it at www.aomedia.org/license/software. If the Alliance for Open
+ * Media Patent License 1.0 was not distributed with this source code in the
+ * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
+ */
+
+#include <float.h>
+
+#include "config/aom_dsp_rtcd.h"
+
+#include "aom_ports/system_state.h"
+
+#include "av1/common/enums.h"
+#include "av1/common/reconinter.h"
+
+#if !CONFIG_REALTIME_ONLY
+#include "av1/encoder/cnn.h"
+#include "av1/encoder/partition_model_weights.h"
+#include "av1/encoder/partition_cnn_weights.h"
+#endif
+#include "av1/encoder/encoder.h"
+
+#include "av1/encoder/motion_search_facade.h"
+#include "av1/encoder/partition_strategy.h"
+#include "av1/encoder/rdopt.h"
+
+#if !CONFIG_REALTIME_ONLY
+static AOM_INLINE void simple_motion_search_prune_part_features(
+ AV1_COMP *const cpi, MACROBLOCK *x, PC_TREE *pc_tree, int mi_row,
+ int mi_col, BLOCK_SIZE bsize, float *features, int features_to_get);
+#endif
+
+static INLINE int convert_bsize_to_idx(BLOCK_SIZE bsize) {
+ switch (bsize) {
+ case BLOCK_128X128: return 0;
+ case BLOCK_64X64: return 1;
+ case BLOCK_32X32: return 2;
+ case BLOCK_16X16: return 3;
+ case BLOCK_8X8: return 4;
+ default: assert(0 && "Invalid bsize"); return -1;
+ }
+}
+
+#if !CONFIG_REALTIME_ONLY
+// TODO(chiyotsai@google.com): This is very much a work in progress. We still
+// need to the following:
+// -- add support for hdres
+// -- add support for pruning rectangular partitions
+// -- use reconstructed pixels instead of source pixels for padding
+// -- use chroma pixels in addition to luma pixels
+void av1_intra_mode_cnn_partition(const AV1_COMMON *const cm, MACROBLOCK *x,
+ int bsize, int quad_tree_idx,
+ int *partition_none_allowed,
+ int *partition_horz_allowed,
+ int *partition_vert_allowed,
+ int *do_rectangular_split,
+ int *do_square_split) {
+ assert(cm->seq_params.sb_size >= BLOCK_64X64 &&
+ "Invalid sb_size for intra_cnn!");
+ const int bsize_idx = convert_bsize_to_idx(bsize);
+
+ if (bsize == BLOCK_128X128) {
+ return;
+ }
+
+ // Precompute the CNN part and cache the result in MACROBLOCK
+ if (bsize == BLOCK_64X64 && !x->cnn_output_valid) {
+ aom_clear_system_state();
+ const CNN_CONFIG *cnn_config = &av1_intra_mode_cnn_partition_cnn_config;
+
+ // Prepare the output
+ const CNN_THREAD_DATA thread_data = { .num_workers = 1, .workers = NULL };
+ const int num_outputs = 4;
+ const int output_dims[4] = { 1, 2, 4, 8 };
+ const int out_chs[4] = { CNN_BRANCH_0_OUT_CH, CNN_BRANCH_1_OUT_CH,
+ CNN_BRANCH_2_OUT_CH, CNN_BRANCH_3_OUT_CH };
+ float *output_buffer[CNN_TOT_OUT_CH];
+
+ float **cur_output_buf = output_buffer;
+ float *curr_buf_ptr = x->cnn_buffer;
+ for (int output_idx = 0; output_idx < num_outputs; output_idx++) {
+ const int num_chs = out_chs[output_idx];
+ const int ch_size = output_dims[output_idx] * output_dims[output_idx];
+ for (int ch = 0; ch < num_chs; ch++) {
+ cur_output_buf[ch] = curr_buf_ptr;
+ curr_buf_ptr += ch_size;
+ }
+ cur_output_buf += num_chs;
+ }
+
+ CNN_MULTI_OUT output = {
+ .num_outputs = 4,
+ .output_channels = out_chs,
+ .output_strides = output_dims,
+ .output_buffer = output_buffer,
+ };
+
+ // Prepare the input
+ const MACROBLOCKD *xd = &x->e_mbd;
+ const int bit_depth = xd->bd;
+ const int dc_q =
+ av1_dc_quant_QTX(x->qindex, 0, bit_depth) >> (bit_depth - 8);
+ x->log_q = logf(1.0f + (float)(dc_q * dc_q) / 256.0f);
+ x->log_q = (x->log_q - av1_intra_mode_cnn_partition_mean[0]) /
+ av1_intra_mode_cnn_partition_std[0];
+
+ const int width = 65, height = 65,
+ stride = x->plane[AOM_PLANE_Y].src.stride;
+
+ if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
+ uint16_t *image[1] = {
+ CONVERT_TO_SHORTPTR(x->plane[AOM_PLANE_Y].src.buf) - stride - 1
+ };
+
+ av1_cnn_predict_img_multi_out_highbd(image, width, height, stride,
+ cnn_config, &thread_data, bit_depth,
+ &output);
+ } else {
+ uint8_t *image[1] = { x->plane[AOM_PLANE_Y].src.buf - stride - 1 };
+
+ av1_cnn_predict_img_multi_out(image, width, height, stride, cnn_config,
+ &thread_data, &output);
+ }
+
+ x->cnn_output_valid = 1;
+ }
+
+ if (!x->cnn_output_valid) {
+ return;
+ }
+
+ const NN_CONFIG *dnn_configs[5] = {
+ NULL,
+ &av1_intra_mode_cnn_partition_branch_0_dnn_config,
+ &av1_intra_mode_cnn_partition_branch_1_dnn_config,
+ &av1_intra_mode_cnn_partition_branch_2_dnn_config,
+ &av1_intra_mode_cnn_partition_branch_3_dnn_config,
+ };
+
+ const NN_CONFIG *dnn_config = dnn_configs[bsize_idx];
+
+ aom_clear_system_state();
+ float dnn_features[100];
+ float logits[4] = { 0.0f };
+
+ const float *branch_0 = x->cnn_buffer;
+ const float *branch_1 = branch_0 + CNN_BRANCH_0_OUT_SIZE;
+ const float *branch_2 = branch_1 + CNN_BRANCH_1_OUT_SIZE;
+ const float *branch_3 = branch_2 + CNN_BRANCH_2_OUT_SIZE;
+
+ if (bsize == BLOCK_64X64) {
+ int f_idx = 0;
+ for (int ch_idx = 0; ch_idx < CNN_BRANCH_0_OUT_CH; ch_idx++) {
+ dnn_features[f_idx++] = branch_0[ch_idx];
+ }
+
+ const int spa_stride = 2 * 2;
+ for (int lin_idx = 0; lin_idx < spa_stride; lin_idx++) {
+ for (int ch_idx = 0; ch_idx < CNN_BRANCH_1_OUT_CH; ch_idx++) {
+ dnn_features[f_idx++] = branch_1[lin_idx + ch_idx * spa_stride];
+ }
+ }
+ dnn_features[f_idx++] = x->log_q;
+ } else if (bsize == BLOCK_32X32) {
+ int f_idx = 0;
+ for (int idx = 0; idx < CNN_BRANCH_0_OUT_CH; idx++) {
+ dnn_features[f_idx++] = branch_0[idx];
+ }
+
+ const int curr_lin_idx = quad_to_linear_1[quad_tree_idx - 1];
+ const int spa_stride = 2 * 2;
+ for (int ch_idx = 0; ch_idx < CNN_BRANCH_1_OUT_CH; ch_idx++) {
+ dnn_features[f_idx++] = branch_1[curr_lin_idx + ch_idx * spa_stride];
+ }
+ dnn_features[f_idx++] = x->log_q;
+ } else if (bsize == BLOCK_16X16) {
+ int f_idx = 0;
+ const int prev_quad_idx = (quad_tree_idx - 1) / 4;
+ const int prev_lin_idx = quad_to_linear_1[prev_quad_idx - 1];
+ const int prev_spa_stride = 2 * 2;
+ for (int ch_idx = 0; ch_idx < CNN_BRANCH_1_OUT_CH; ch_idx++) {
+ dnn_features[f_idx++] = branch_1[prev_lin_idx + ch_idx * prev_spa_stride];
+ }
+
+ const int curr_lin_idx = quad_to_linear_2[quad_tree_idx - 5];
+ const int spa_stride = 4 * 4;
+ for (int ch_idx = 0; ch_idx < CNN_BRANCH_2_OUT_CH; ch_idx++) {
+ dnn_features[f_idx++] = branch_2[curr_lin_idx + ch_idx * spa_stride];
+ }
+ dnn_features[f_idx++] = x->log_q;
+ } else if (bsize == BLOCK_8X8) {
+ int f_idx = 0;
+ const int prev_quad_idx = (quad_tree_idx - 1) / 4;
+ const int prev_lin_idx = quad_to_linear_2[prev_quad_idx - 5];
+ const int prev_spa_stride = 4 * 4;
+ for (int ch_idx = 0; ch_idx < CNN_BRANCH_2_OUT_CH; ch_idx++) {
+ dnn_features[f_idx++] = branch_2[prev_lin_idx + ch_idx * prev_spa_stride];
+ }
+
+ const int curr_lin_idx = quad_to_linear_3[quad_tree_idx - 21];
+ const int spa_stride = 8 * 8;
+ for (int ch_idx = 0; ch_idx < CNN_BRANCH_3_OUT_CH; ch_idx++) {
+ dnn_features[f_idx++] = branch_3[curr_lin_idx + ch_idx * spa_stride];
+ }
+ dnn_features[f_idx++] = x->log_q;
+ } else {
+ assert(0 && "Invalid bsize in intra_cnn partition");
+ }
+
+ // Make decision
+ av1_nn_predict(dnn_features, dnn_config, 1, logits);
+ aom_clear_system_state();
+
+ const int is_720p_or_larger = AOMMIN(cm->width, cm->height) >= 720;
+ const int is_480p_or_larger = AOMMIN(cm->width, cm->height) >= 480;
+ float split_only_thresh = 100.0f, no_split_thresh = -100.0f;
+ if (is_720p_or_larger) {
+ split_only_thresh =
+ av1_intra_mode_cnn_partition_split_thresh_hdres[bsize_idx];
+ no_split_thresh =
+ av1_intra_mode_cnn_partition_no_split_thresh_hdres[bsize_idx];
+ } else if (is_480p_or_larger) {
+ split_only_thresh =
+ av1_intra_mode_cnn_partition_split_thresh_midres[bsize_idx];
+ no_split_thresh =
+ av1_intra_mode_cnn_partition_no_split_thresh_midres[bsize_idx];
+ } else {
+ split_only_thresh =
+ av1_intra_mode_cnn_partition_split_thresh_lowres[bsize_idx];
+ no_split_thresh =
+ av1_intra_mode_cnn_partition_no_split_thresh_lowres[bsize_idx];
+ }
+
+ if (logits[0] > split_only_thresh) {
+ *partition_none_allowed = 0;
+ *partition_horz_allowed = 0;
+ *partition_vert_allowed = 0;
+ *do_rectangular_split = 0;
+ }
+
+ if (logits[0] < no_split_thresh) {
+ *do_square_split = 0;
+ }
+}
+
+void av1_simple_motion_search_based_split(
+ AV1_COMP *const cpi, MACROBLOCK *x, PC_TREE *pc_tree, int mi_row,
+ int mi_col, BLOCK_SIZE bsize, int *partition_none_allowed,
+ int *partition_horz_allowed, int *partition_vert_allowed,
+ int *do_rectangular_split, int *do_square_split) {
+ aom_clear_system_state();
+
+ const AV1_COMMON *const cm = &cpi->common;
+ const int bsize_idx = convert_bsize_to_idx(bsize);
+ const int is_720p_or_larger = AOMMIN(cm->width, cm->height) >= 720;
+ const int is_480p_or_larger = AOMMIN(cm->width, cm->height) >= 480;
+ // res_idx is 0 for res < 480p, 1 for 480p, 2 for 720p+
+ const int res_idx = is_480p_or_larger + is_720p_or_larger;
+
+ assert(bsize_idx >= 0 && bsize_idx <= 4 &&
+ "Invalid bsize in simple_motion_search_based_split");
+
+ const float *ml_mean = av1_simple_motion_search_split_mean[bsize_idx];
+ const float *ml_std = av1_simple_motion_search_split_std[bsize_idx];
+ const NN_CONFIG *nn_config =
+ av1_simple_motion_search_split_nn_config[bsize_idx];
+ const int agg = cpi->sf.part_sf.simple_motion_search_prune_agg;
+
+ const float split_only_thresh =
+ av1_simple_motion_search_split_thresh[agg][res_idx][bsize_idx];
+ const float no_split_thresh =
+ av1_simple_motion_search_no_split_thresh[agg][res_idx][bsize_idx];
+
+ float features[FEATURE_SIZE_SMS_SPLIT] = { 0.0f };
+ simple_motion_search_prune_part_features(cpi, x, pc_tree, mi_row, mi_col,
+ bsize, features,
+ FEATURE_SMS_SPLIT_MODEL_FLAG);
+ for (int idx = 0; idx < FEATURE_SIZE_SMS_SPLIT; idx++) {
+ features[idx] = (features[idx] - ml_mean[idx]) / ml_std[idx];
+ }
+
+ float score = 0.0f;
+
+ av1_nn_predict(features, nn_config, 1, &score);
+ aom_clear_system_state();
+
+ if (score > split_only_thresh) {
+ *partition_none_allowed = 0;
+ *partition_horz_allowed = 0;
+ *partition_vert_allowed = 0;
+ *do_rectangular_split = 0;
+ }
+
+ if (cpi->sf.part_sf.simple_motion_search_split >= 2 &&
+ score < no_split_thresh) {
+ *do_square_split = 0;
+ }
+}
+
+// Given a list of ref frames in refs, performs simple_motion_search on each of
+// the refs and returns the ref with the smallest sse. Returns -1 if none of the
+// ref in the list is available. Also stores the best sse and var in best_sse,
+// best_var, respectively. If save_mv is 0, don't update mv_ref_fulls in
+// pc_tree. If save_mv is 1, update mv_ref_fulls under pc_tree and the
+// subtrees.
+static int simple_motion_search_get_best_ref(
+ AV1_COMP *const cpi, MACROBLOCK *x, PC_TREE *pc_tree, int mi_row,
+ int mi_col, BLOCK_SIZE bsize, const int *const refs, int num_refs,
+ int use_subpixel, int save_mv, unsigned int *best_sse,
+ unsigned int *best_var) {
+ const AV1_COMMON *const cm = &cpi->common;
+ int best_ref = -1;
+
+ if (mi_col >= cm->mi_params.mi_cols || mi_row >= cm->mi_params.mi_rows) {
+ // If the whole block is outside of the image, set the var and sse to 0.
+ *best_var = 0;
+ *best_sse = 0;
+
+ return best_ref;
+ }
+
+ // Otherwise do loop through the reference frames and find the one with the
+ // minimum SSE
+ const MACROBLOCKD *xd = &x->e_mbd;
+
+ const int num_planes = 1;
+
+ *best_sse = INT_MAX;
+
+ for (int ref_idx = 0; ref_idx < num_refs; ref_idx++) {
+ const int ref = refs[ref_idx];
+
+ if (cpi->ref_frame_flags & av1_ref_frame_flag_list[ref]) {
+ const FULLPEL_MV *start_mvs = pc_tree->start_mvs;
+ unsigned int curr_sse = 0, curr_var = 0;
+ int_mv best_mv =
+ av1_simple_motion_search(cpi, x, mi_row, mi_col, bsize, ref,
+ start_mvs[ref], num_planes, use_subpixel);
+ curr_var = cpi->fn_ptr[bsize].vf(
+ x->plane[0].src.buf, x->plane[0].src.stride, xd->plane[0].dst.buf,
+ xd->plane[0].dst.stride, &curr_sse);
+ if (curr_sse < *best_sse) {
+ *best_sse = curr_sse;
+ *best_var = curr_var;
+ best_ref = ref;
+ }
+
+ if (save_mv) {
+ pc_tree->start_mvs[ref].row = best_mv.as_mv.row / 8;
+ pc_tree->start_mvs[ref].col = best_mv.as_mv.col / 8;
+
+ if (bsize >= BLOCK_8X8) {
+ for (int r_idx = 0; r_idx < 4; r_idx++) {
+ // Propagate the new motion vectors to a lower level
+ PC_TREE *sub_tree = pc_tree->split[r_idx];
+ sub_tree->start_mvs[ref] = pc_tree->start_mvs[ref];
+ }
+ }
+ }
+ }
+ }
+
+ return best_ref;
+}
+
+// Collects features using simple_motion_search and store them in features. The
+// features are also cached in PC_TREE. By default, the features collected are
+// the sse and var from the subblocks flagged by features_to_get. Furthermore,
+// if features is not NULL, then 7 more features are appended to the end of
+// features:
+// - log(1.0 + dc_q ** 2)
+// - whether an above macroblock exists
+// - width of above macroblock
+// - height of above macroblock
+// - whether a left marcoblock exists
+// - width of left macroblock
+// - height of left macroblock
+static AOM_INLINE void simple_motion_search_prune_part_features(
+ AV1_COMP *const cpi, MACROBLOCK *x, PC_TREE *pc_tree, int mi_row,
+ int mi_col, BLOCK_SIZE bsize, float *features, int features_to_get) {
+ const int w_mi = mi_size_wide[bsize];
+ const int h_mi = mi_size_high[bsize];
+ assert(mi_size_wide[bsize] == mi_size_high[bsize]);
+ assert(cpi->ref_frame_flags & av1_ref_frame_flag_list[LAST_FRAME] ||
+ cpi->ref_frame_flags & av1_ref_frame_flag_list[ALTREF_FRAME]);
+
+ // Setting up motion search
+ const int ref_list[] = { cpi->rc.is_src_frame_alt_ref ? ALTREF_FRAME
+ : LAST_FRAME };
+ const int num_refs = 1;
+ const int use_subpixel = 1;
+
+ // Doing whole block first to update the mv
+ if (!pc_tree->sms_none_valid && features_to_get & FEATURE_SMS_NONE_FLAG) {
+ simple_motion_search_get_best_ref(cpi, x, pc_tree, mi_row, mi_col, bsize,
+ ref_list, num_refs, use_subpixel, 1,
+ &pc_tree->sms_none_feat[0],
+ &pc_tree->sms_none_feat[1]);
+ pc_tree->sms_none_valid = 1;
+ }
+
+ // Split subblocks
+ if (features_to_get & FEATURE_SMS_SPLIT_FLAG) {
+ const BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_SPLIT);
+ for (int r_idx = 0; r_idx < 4; r_idx++) {
+ const int sub_mi_col = mi_col + (r_idx & 1) * w_mi / 2;
+ const int sub_mi_row = mi_row + (r_idx >> 1) * h_mi / 2;
+ PC_TREE *sub_tree = pc_tree->split[r_idx];
+
+ if (!sub_tree->sms_none_valid) {
+ simple_motion_search_get_best_ref(
+ cpi, x, sub_tree, sub_mi_row, sub_mi_col, subsize, ref_list,
+ num_refs, use_subpixel, 1, &sub_tree->sms_none_feat[0],
+ &sub_tree->sms_none_feat[1]);
+ sub_tree->sms_none_valid = 1;
+ }
+ }
+ }
+
+ // Rectangular subblocks
+ if (!pc_tree->sms_rect_valid && features_to_get & FEATURE_SMS_RECT_FLAG) {
+ // Horz subblock
+ BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_HORZ);
+ for (int r_idx = 0; r_idx < 2; r_idx++) {
+ const int sub_mi_col = mi_col + 0;
+ const int sub_mi_row = mi_row + r_idx * h_mi / 2;
+
+ simple_motion_search_get_best_ref(
+ cpi, x, pc_tree, sub_mi_row, sub_mi_col, subsize, ref_list, num_refs,
+ use_subpixel, 0, &pc_tree->sms_rect_feat[2 * r_idx],
+ &pc_tree->sms_rect_feat[2 * r_idx + 1]);
+ }
+
+ // Vert subblock
+ subsize = get_partition_subsize(bsize, PARTITION_VERT);
+ for (int r_idx = 0; r_idx < 2; r_idx++) {
+ const int sub_mi_col = mi_col + r_idx * w_mi / 2;
+ const int sub_mi_row = mi_row + 0;
+
+ simple_motion_search_get_best_ref(
+ cpi, x, pc_tree, sub_mi_row, sub_mi_col, subsize, ref_list, num_refs,
+ use_subpixel, 0, &pc_tree->sms_rect_feat[4 + 2 * r_idx],
+ &pc_tree->sms_rect_feat[4 + 2 * r_idx + 1]);
+ }
+ pc_tree->sms_rect_valid = 1;
+ }
+
+ if (!features) return;
+
+ aom_clear_system_state();
+ int f_idx = 0;
+ if (features_to_get & FEATURE_SMS_NONE_FLAG) {
+ for (int sub_idx = 0; sub_idx < 2; sub_idx++) {
+ features[f_idx++] = logf(1.0f + pc_tree->sms_none_feat[sub_idx]);
+ }
+ }
+
+ if (features_to_get & FEATURE_SMS_SPLIT_FLAG) {
+ for (int sub_idx = 0; sub_idx < 4; sub_idx++) {
+ PC_TREE *sub_tree = pc_tree->split[sub_idx];
+ features[f_idx++] = logf(1.0f + sub_tree->sms_none_feat[0]);
+ features[f_idx++] = logf(1.0f + sub_tree->sms_none_feat[1]);
+ }
+ }
+
+ if (features_to_get & FEATURE_SMS_RECT_FLAG) {
+ for (int sub_idx = 0; sub_idx < 8; sub_idx++) {
+ features[f_idx++] = logf(1.0f + pc_tree->sms_rect_feat[sub_idx]);
+ }
+ }
+
+ const MACROBLOCKD *xd = &x->e_mbd;
+ set_offsets_for_motion_search(cpi, x, mi_row, mi_col, bsize);
+
+ // Q_INDEX
+ const int dc_q = av1_dc_quant_QTX(x->qindex, 0, xd->bd) >> (xd->bd - 8);
+ features[f_idx++] = logf(1.0f + (float)(dc_q * dc_q) / 256.0f);
+
+ // Neighbor stuff
+ const int has_above = !!xd->above_mbmi;
+ const int has_left = !!xd->left_mbmi;
+ const BLOCK_SIZE above_bsize = has_above ? xd->above_mbmi->sb_type : bsize;
+ const BLOCK_SIZE left_bsize = has_left ? xd->left_mbmi->sb_type : bsize;
+ features[f_idx++] = (float)has_above;
+ features[f_idx++] = (float)mi_size_wide_log2[above_bsize];
+ features[f_idx++] = (float)mi_size_high_log2[above_bsize];
+ features[f_idx++] = (float)has_left;
+ features[f_idx++] = (float)mi_size_wide_log2[left_bsize];
+ features[f_idx++] = (float)mi_size_high_log2[left_bsize];
+}
+
+void av1_simple_motion_search_prune_rect(AV1_COMP *const cpi, MACROBLOCK *x,
+ PC_TREE *pc_tree, int mi_row,
+ int mi_col, BLOCK_SIZE bsize,
+ int *partition_horz_allowed,
+ int *partition_vert_allowed,
+ int *prune_horz, int *prune_vert) {
+ aom_clear_system_state();
+ const AV1_COMMON *const cm = &cpi->common;
+ const int bsize_idx = convert_bsize_to_idx(bsize);
+ const int is_720p_or_larger = AOMMIN(cm->width, cm->height) >= 720;
+ const int is_480p_or_larger = AOMMIN(cm->width, cm->height) >= 480;
+ // res_idx is 0 for lowres, 1 for 48p, 2 for 720p+
+ const int res_idx = is_480p_or_larger + is_720p_or_larger;
+
+ // Get model parameters
+ const NN_CONFIG *nn_config =
+ av1_simple_motion_search_prune_rect_nn_config[bsize_idx];
+ const float *ml_mean = av1_simple_motion_search_prune_rect_mean[bsize_idx],
+ *ml_std = av1_simple_motion_search_prune_rect_std[bsize_idx];
+
+ const int agg = cpi->sf.part_sf.simple_motion_search_prune_agg;
+ const float prune_thresh =
+ av1_simple_motion_search_prune_rect_thresh[agg][res_idx][bsize_idx];
+
+ // If there is no valid threshold, return immediately.
+ if (!nn_config || prune_thresh == 0.0f) {
+ return;
+ }
+
+ // Get features
+ float features[FEATURE_SIZE_SMS_PRUNE_PART] = { 0.0f };
+ simple_motion_search_prune_part_features(cpi, x, pc_tree, mi_row, mi_col,
+ bsize, features,
+ FEATURE_SMS_PRUNE_PART_FLAG);
+ for (int f_idx = 0; f_idx < FEATURE_SIZE_SMS_PRUNE_PART; f_idx++) {
+ features[f_idx] = (features[f_idx] - ml_mean[f_idx]) / ml_std[f_idx];
+ }
+
+ // Get probabilities
+ float scores[EXT_PARTITION_TYPES] = { 0.0f },
+ probs[EXT_PARTITION_TYPES] = { 0.0f };
+ const int num_classes = (bsize == BLOCK_128X128 || bsize == BLOCK_8X8)
+ ? PARTITION_TYPES
+ : EXT_PARTITION_TYPES;
+
+ av1_nn_predict(features, nn_config, 1, scores);
+ aom_clear_system_state();
+
+ av1_nn_softmax(scores, probs, num_classes);
+
+ // Determine if we should prune rectangular partitions.
+ if (cpi->sf.part_sf.simple_motion_search_prune_rect &&
+ !frame_is_intra_only(cm) &&
+ (*partition_horz_allowed || *partition_vert_allowed) &&
+ bsize >= BLOCK_8X8 && !av1_superres_scaled(cm)) {
+ *prune_horz = probs[PARTITION_HORZ] <= prune_thresh;
+ *prune_vert = probs[PARTITION_VERT] <= prune_thresh;
+ }
+}
+
+// Early terminates PARTITION_NONE using simple_motion_search features and the
+// rate, distortion, and rdcost of PARTITION_NONE. This is only called when:
+// - The frame is a show frame
+// - The frame is not intra only
+// - The current bsize is > BLOCK_8X8
+// - blk_row + blk_height/2 < total_rows and blk_col + blk_width/2 < total_cols
+void av1_simple_motion_search_early_term_none(AV1_COMP *const cpi,
+ MACROBLOCK *x, PC_TREE *pc_tree,
+ int mi_row, int mi_col,
+ BLOCK_SIZE bsize,
+ const RD_STATS *none_rdc,
+ int *early_terminate) {
+ // TODO(chiyotsai@google.com): There are other features we can extract from
+ // PARTITION_NONE. Play with this later.
+ float features[FEATURE_SIZE_SMS_TERM_NONE] = { 0.0f };
+ simple_motion_search_prune_part_features(cpi, x, pc_tree, mi_row, mi_col,
+ bsize, features,
+ FEATURE_SMS_PRUNE_PART_FLAG);
+ int f_idx = FEATURE_SIZE_SMS_PRUNE_PART;
+
+ features[f_idx++] = logf(1.0f + (float)none_rdc->rate);
+ features[f_idx++] = logf(1.0f + (float)none_rdc->dist);
+ features[f_idx++] = logf(1.0f + (float)none_rdc->rdcost);
+
+ assert(f_idx == FEATURE_SIZE_SMS_TERM_NONE);
+
+ const float *ml_mean = NULL;
+ const float *ml_std = NULL;
+ const float *ml_model = NULL;
+
+ if (bsize == BLOCK_128X128) {
+ ml_mean = av1_simple_motion_search_term_none_mean_128;
+ ml_std = av1_simple_motion_search_term_none_std_128;
+ ml_model = av1_simple_motion_search_term_none_model_128;
+ } else if (bsize == BLOCK_64X64) {
+ ml_mean = av1_simple_motion_search_term_none_mean_64;
+ ml_std = av1_simple_motion_search_term_none_std_64;
+ ml_model = av1_simple_motion_search_term_none_model_64;
+ } else if (bsize == BLOCK_32X32) {
+ ml_mean = av1_simple_motion_search_term_none_mean_32;
+ ml_std = av1_simple_motion_search_term_none_std_32;
+ ml_model = av1_simple_motion_search_term_none_model_32;
+ } else if (bsize == BLOCK_16X16) {
+ ml_mean = av1_simple_motion_search_term_none_mean_16;
+ ml_std = av1_simple_motion_search_term_none_std_16;
+ ml_model = av1_simple_motion_search_term_none_model_16;
+ } else {
+ assert(0 && "Unexpected block size in simple_motion_term_none");
+ }
+
+ if (ml_model) {
+ float score = 0.0f;
+ for (f_idx = 0; f_idx < FEATURE_SIZE_SMS_TERM_NONE; f_idx++) {
+ score +=
+ ml_model[f_idx] * (features[f_idx] - ml_mean[f_idx]) / ml_std[f_idx];
+ }
+ score += ml_model[FEATURE_SIZE_SMS_TERM_NONE];
+
+ if (score >= 0.0f) {
+ *early_terminate = 1;
+ }
+ }
+}
+
+void av1_get_max_min_partition_features(AV1_COMP *const cpi, MACROBLOCK *x,
+ int mi_row, int mi_col,
+ float *features) {
+ AV1_COMMON *const cm = &cpi->common;
+ MACROBLOCKD *xd = &x->e_mbd;
+ const BLOCK_SIZE sb_size = cm->seq_params.sb_size;
+
+ assert(sb_size == BLOCK_128X128);
+
+ int f_idx = 0;
+
+ const int dc_q = av1_dc_quant_QTX(x->qindex, 0, xd->bd) >> (xd->bd - 8);
+ aom_clear_system_state();
+ const float log_q_sq = logf(1.0f + (float)(dc_q * dc_q) / 256.0f);
+
+ // Perform full-pixel single motion search in Y plane of 16x16 mbs in the sb
+ float sum_mv_row_sq = 0;
+ float sum_mv_row = 0;
+ float min_abs_mv_row = FLT_MAX;
+ float max_abs_mv_row = 0;
+
+ float sum_mv_col_sq = 0;
+ float sum_mv_col = 0;
+ float min_abs_mv_col = FLT_MAX;
+ float max_abs_mv_col = 0;
+
+ float sum_log_sse_sq = 0;
+ float sum_log_sse = 0;
+ float min_log_sse = FLT_MAX;
+ float max_log_sse = 0;
+
+ const BLOCK_SIZE mb_size = BLOCK_16X16;
+ const int mb_rows = block_size_high[sb_size] / block_size_high[mb_size];
+ const int mb_cols = block_size_wide[sb_size] / block_size_wide[mb_size];
+ const int mb_in_mi_size_high_log2 = mi_size_high_log2[mb_size];
+ const int mb_in_mi_size_wide_log2 = mi_size_wide_log2[mb_size];
+
+ for (int mb_row = 0; mb_row < mb_rows; mb_row++)
+ for (int mb_col = 0; mb_col < mb_cols; mb_col++) {
+ const int this_mi_row = mi_row + (mb_row << mb_in_mi_size_high_log2);
+ const int this_mi_col = mi_col + (mb_col << mb_in_mi_size_wide_log2);
+ unsigned int sse = 0;
+ unsigned int var = 0;
+ const FULLPEL_MV start_mv = kZeroFullMv;
+ int_mv best_mv = av1_simple_motion_sse_var(
+ cpi, x, this_mi_row, this_mi_col, mb_size, start_mv, 0, &sse, &var);
+
+ aom_clear_system_state();
+ const float mv_row = (float)(best_mv.as_mv.row / 8);
+ const float mv_col = (float)(best_mv.as_mv.col / 8);
+ const float log_sse = logf(1.0f + (float)sse);
+ const float abs_mv_row = fabsf(mv_row);
+ const float abs_mv_col = fabsf(mv_col);
+
+ sum_mv_row_sq += mv_row * mv_row;
+ sum_mv_row += mv_row;
+ sum_mv_col_sq += mv_col * mv_col;
+ sum_mv_col += mv_col;
+
+ if (abs_mv_row < min_abs_mv_row) min_abs_mv_row = abs_mv_row;
+ if (abs_mv_row > max_abs_mv_row) max_abs_mv_row = abs_mv_row;
+ if (abs_mv_col < min_abs_mv_col) min_abs_mv_col = abs_mv_col;
+ if (abs_mv_col > max_abs_mv_col) max_abs_mv_col = abs_mv_col;
+
+ sum_log_sse_sq += log_sse * log_sse;
+ sum_log_sse += log_sse;
+ if (log_sse < min_log_sse) min_log_sse = log_sse;
+ if (log_sse > max_log_sse) max_log_sse = log_sse;
+ }
+ aom_clear_system_state();
+ const float avg_mv_row = sum_mv_row / 64.0f;
+ const float var_mv_row = sum_mv_row_sq / 64.0f - avg_mv_row * avg_mv_row;
+
+ const float avg_mv_col = sum_mv_col / 64.0f;
+ const float var_mv_col = sum_mv_col_sq / 64.0f - avg_mv_col * avg_mv_col;
+
+ const float avg_log_sse = sum_log_sse / 64.0f;
+ const float var_log_sse = sum_log_sse_sq / 64.0f - avg_log_sse * avg_log_sse;
+
+ features[f_idx++] = avg_log_sse;
+ features[f_idx++] = avg_mv_col;
+ features[f_idx++] = avg_mv_row;
+ features[f_idx++] = log_q_sq;
+ features[f_idx++] = max_abs_mv_col;
+ features[f_idx++] = max_abs_mv_row;
+ features[f_idx++] = max_log_sse;
+ features[f_idx++] = min_abs_mv_col;
+ features[f_idx++] = min_abs_mv_row;
+ features[f_idx++] = min_log_sse;
+ features[f_idx++] = var_log_sse;
+ features[f_idx++] = var_mv_col;
+ features[f_idx++] = var_mv_row;
+
+ assert(f_idx == FEATURE_SIZE_MAX_MIN_PART_PRED);
+}
+
+BLOCK_SIZE av1_predict_max_partition(AV1_COMP *const cpi, MACROBLOCK *const x,
+ const float *features) {
+ float scores[MAX_NUM_CLASSES_MAX_MIN_PART_PRED] = { 0.0f },
+ probs[MAX_NUM_CLASSES_MAX_MIN_PART_PRED] = { 0.0f };
+ const NN_CONFIG *nn_config = &av1_max_part_pred_nn_config;
+
+ assert(cpi->sf.part_sf.auto_max_partition_based_on_simple_motion !=
+ NOT_IN_USE);
+
+ aom_clear_system_state();
+ av1_nn_predict(features, nn_config, 1, scores);
+ av1_nn_softmax(scores, probs, MAX_NUM_CLASSES_MAX_MIN_PART_PRED);
+
+ int result = MAX_NUM_CLASSES_MAX_MIN_PART_PRED - 1;
+ if (cpi->sf.part_sf.auto_max_partition_based_on_simple_motion ==
+ DIRECT_PRED) {
+ result = 0;
+ float max_prob = probs[0];
+ for (int i = 1; i < MAX_NUM_CLASSES_MAX_MIN_PART_PRED; ++i) {
+ if (probs[i] > max_prob) {
+ max_prob = probs[i];
+ result = i;
+ }
+ }
+ } else if (cpi->sf.part_sf.auto_max_partition_based_on_simple_motion ==
+ RELAXED_PRED) {
+ for (result = MAX_NUM_CLASSES_MAX_MIN_PART_PRED - 1; result >= 0;
+ --result) {
+ if (result < MAX_NUM_CLASSES_MAX_MIN_PART_PRED - 1) {
+ probs[result] += probs[result + 1];
+ }
+ if (probs[result] > 0.2) break;
+ }
+ } else if (cpi->sf.part_sf.auto_max_partition_based_on_simple_motion ==
+ ADAPT_PRED) {
+ const BLOCK_SIZE sb_size = cpi->common.seq_params.sb_size;
+ MACROBLOCKD *const xd = &x->e_mbd;
+ // TODO(debargha): x->source_variance is unavailable at this point,
+ // so compute. The redundant recomputation later can be removed.
+ const unsigned int source_variance =
+ is_cur_buf_hbd(xd)
+ ? av1_high_get_sby_perpixel_variance(cpi, &x->plane[0].src, sb_size,
+ xd->bd)
+ : av1_get_sby_perpixel_variance(cpi, &x->plane[0].src, sb_size);
+ if (source_variance > 16) {
+ const double thresh = source_variance < 128 ? 0.05 : 0.1;
+ for (result = MAX_NUM_CLASSES_MAX_MIN_PART_PRED - 1; result >= 0;
+ --result) {
+ if (result < MAX_NUM_CLASSES_MAX_MIN_PART_PRED - 1) {
+ probs[result] += probs[result + 1];
+ }
+ if (probs[result] > thresh) break;
+ }
+ }
+ }
+
+ return (BLOCK_SIZE)((result + 2) * 3);
+}
+
+// Get the minimum partition block width and height(in log scale) under a
+// PC_TREE.
+static AOM_INLINE void get_min_bsize(const PC_TREE *pc_tree, int *min_bw,
+ int *min_bh) {
+ if (!pc_tree) return;
+
+ const BLOCK_SIZE bsize = pc_tree->block_size;
+ if (bsize == BLOCK_4X4) {
+ *min_bw = 0;
+ *min_bh = 0;
+ return;
+ }
+
+ PARTITION_TYPE part_type = pc_tree->partitioning;
+ if (part_type == PARTITION_INVALID) return;
+
+ if (part_type == PARTITION_SPLIT) {
+ for (int i = 0; i < 4; ++i) {
+ get_min_bsize(pc_tree->split[i], min_bw, min_bh);
+ }
+ } else {
+ if (part_type == PARTITION_HORZ_A || part_type == PARTITION_HORZ_B ||
+ part_type == PARTITION_VERT_A || part_type == PARTITION_VERT_B)
+ part_type = PARTITION_SPLIT;
+ const BLOCK_SIZE subsize = get_partition_subsize(bsize, part_type);
+ if (subsize != BLOCK_INVALID) {
+ *min_bw = AOMMIN(*min_bw, mi_size_wide_log2[subsize]);
+ *min_bh = AOMMIN(*min_bh, mi_size_high_log2[subsize]);
+ }
+ }
+}
+
+static INLINE void add_rd_feature(int64_t rd, int64_t best_rd, float *features,
+ int *feature_idx) {
+ const int rd_valid = rd > 0 && rd < INT64_MAX;
+ const float rd_ratio = rd_valid ? (float)rd / best_rd : 1.0f;
+ features[(*feature_idx)++] = (float)rd_valid;
+ features[(*feature_idx)++] = rd_ratio;
+}
+
+#define FEATURES 31
+void av1_ml_early_term_after_split(AV1_COMP *const cpi, MACROBLOCK *const x,
+ PC_TREE *const pc_tree, BLOCK_SIZE bsize,
+ int64_t best_rd, int64_t part_none_rd,
+ int64_t part_split_rd,
+ int64_t *split_block_rd, int mi_row,
+ int mi_col,
+ int *const terminate_partition_search) {
+ if (best_rd <= 0 || best_rd == INT64_MAX || *terminate_partition_search)
+ return;
+
+ const AV1_COMMON *const cm = &cpi->common;
+ const int is_480p_or_larger = AOMMIN(cm->width, cm->height) >= 480;
+ const NN_CONFIG *nn_config = NULL;
+ float thresh = -1e6;
+ switch (bsize) {
+ case BLOCK_128X128: break;
+ case BLOCK_64X64:
+ nn_config = &av1_early_term_after_split_nnconfig_64;
+ thresh = is_480p_or_larger ? -2.0f : -1.2f;
+ break;
+ case BLOCK_32X32:
+ nn_config = &av1_early_term_after_split_nnconfig_32;
+ thresh = is_480p_or_larger ? -2.6f : -2.3f;
+ break;
+ case BLOCK_16X16:
+ nn_config = &av1_early_term_after_split_nnconfig_16;
+ thresh = is_480p_or_larger ? -2.0f : -2.4f;
+ break;
+ case BLOCK_8X8:
+ nn_config = &av1_early_term_after_split_nnconfig_8;
+ thresh = is_480p_or_larger ? -1.0f : -1.4f;
+ break;
+ case BLOCK_4X4: break;
+ default:
+ assert(0 && "Invalid block size in av1_ml_early_term_after_split().");
+ break;
+ }
+ if (!nn_config) return;
+
+ // Use more conservative threshold for level 1.
+ if (cpi->sf.part_sf.ml_early_term_after_part_split_level < 2) thresh -= 0.3f;
+
+ const MACROBLOCKD *const xd = &x->e_mbd;
+ const int dc_q = av1_dc_quant_QTX(x->qindex, 0, xd->bd) >> (xd->bd - 8);
+ const int bs = block_size_wide[bsize];
+ int f_idx = 0;
+ float features[FEATURES] = { 0.0f };
+
+ aom_clear_system_state();
+
+ features[f_idx++] = logf(1.0f + (float)dc_q / 4.0f);
+ features[f_idx++] = logf(1.0f + (float)best_rd / bs / bs / 1024.0f);
+
+ add_rd_feature(part_none_rd, best_rd, features, &f_idx);
+ add_rd_feature(part_split_rd, best_rd, features, &f_idx);
+
+ for (int i = 0; i < 4; ++i) {
+ add_rd_feature(split_block_rd[i], best_rd, features, &f_idx);
+ int min_bw = MAX_SB_SIZE_LOG2;
+ int min_bh = MAX_SB_SIZE_LOG2;
+ get_min_bsize(pc_tree->split[i], &min_bw, &min_bh);
+ features[f_idx++] = (float)min_bw;
+ features[f_idx++] = (float)min_bh;
+ }
+
+ simple_motion_search_prune_part_features(cpi, x, pc_tree, mi_row, mi_col,
+ bsize, NULL,
+ FEATURE_SMS_PRUNE_PART_FLAG);
+
+ features[f_idx++] = logf(1.0f + (float)pc_tree->sms_none_feat[1]);
+
+ features[f_idx++] = logf(1.0f + (float)pc_tree->split[0]->sms_none_feat[1]);
+ features[f_idx++] = logf(1.0f + (float)pc_tree->split[1]->sms_none_feat[1]);
+ features[f_idx++] = logf(1.0f + (float)pc_tree->split[2]->sms_none_feat[1]);
+ features[f_idx++] = logf(1.0f + (float)pc_tree->split[3]->sms_none_feat[1]);
+
+ features[f_idx++] = logf(1.0f + (float)pc_tree->sms_rect_feat[1]);
+ features[f_idx++] = logf(1.0f + (float)pc_tree->sms_rect_feat[3]);
+ features[f_idx++] = logf(1.0f + (float)pc_tree->sms_rect_feat[5]);
+ features[f_idx++] = logf(1.0f + (float)pc_tree->sms_rect_feat[7]);
+
+ assert(f_idx == FEATURES);
+
+ float score = 0.0f;
+ av1_nn_predict(features, nn_config, 1, &score);
+ // Score is indicator of confidence that we should NOT terminate.
+ if (score < thresh) *terminate_partition_search = 1;
+}
+#undef FEATURES
+
+void av1_ml_prune_rect_partition(const AV1_COMP *const cpi,
+ const MACROBLOCK *const x, BLOCK_SIZE bsize,
+ int64_t best_rd, int64_t none_rd,
+ int64_t *split_rd, int *const dst_prune_horz,
+ int *const dst_prune_vert) {
+ if (bsize < BLOCK_8X8 || best_rd >= 1000000000) return;
+ best_rd = AOMMAX(best_rd, 1);
+ const NN_CONFIG *nn_config = NULL;
+ const float prob_thresholds[5] = { 0.01f, 0.01f, 0.004f, 0.002f, 0.002f };
+ float cur_thresh = 0.0f;
+ switch (bsize) {
+ case BLOCK_8X8:
+ nn_config = &av1_rect_partition_nnconfig_8;
+ cur_thresh = prob_thresholds[0];
+ break;
+ case BLOCK_16X16:
+ nn_config = &av1_rect_partition_nnconfig_16;
+ cur_thresh = prob_thresholds[1];
+ break;
+ case BLOCK_32X32:
+ nn_config = &av1_rect_partition_nnconfig_32;
+ cur_thresh = prob_thresholds[2];
+ break;
+ case BLOCK_64X64:
+ nn_config = &av1_rect_partition_nnconfig_64;
+ cur_thresh = prob_thresholds[3];
+ break;
+ case BLOCK_128X128:
+ nn_config = &av1_rect_partition_nnconfig_128;
+ cur_thresh = prob_thresholds[4];
+ break;
+ default: assert(0 && "Unexpected bsize.");
+ }
+ if (!nn_config) return;
+ aom_clear_system_state();
+
+ // 1. Compute input features
+ float features[9];
+
+ // RD cost ratios
+ for (int i = 0; i < 5; i++) features[i] = 1.0f;
+ if (none_rd > 0 && none_rd < 1000000000)
+ features[0] = (float)none_rd / (float)best_rd;
+ for (int i = 0; i < 4; i++) {
+ if (split_rd[i] > 0 && split_rd[i] < 1000000000)
+ features[1 + i] = (float)split_rd[i] / (float)best_rd;
+ }
+
+ // Variance ratios
+ const MACROBLOCKD *const xd = &x->e_mbd;
+ int whole_block_variance;
+ if (is_cur_buf_hbd(xd)) {
+ whole_block_variance = av1_high_get_sby_perpixel_variance(
+ cpi, &x->plane[0].src, bsize, xd->bd);
+ } else {
+ whole_block_variance =
+ av1_get_sby_perpixel_variance(cpi, &x->plane[0].src, bsize);
+ }
+ whole_block_variance = AOMMAX(whole_block_variance, 1);
+
+ int split_variance[4];
+ const BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_SPLIT);
+ struct buf_2d buf;
+ buf.stride = x->plane[0].src.stride;
+ const int bw = block_size_wide[bsize];
+ for (int i = 0; i < 4; ++i) {
+ const int x_idx = (i & 1) * bw / 2;
+ const int y_idx = (i >> 1) * bw / 2;
+ buf.buf = x->plane[0].src.buf + x_idx + y_idx * buf.stride;
+ if (is_cur_buf_hbd(xd)) {
+ split_variance[i] =
+ av1_high_get_sby_perpixel_variance(cpi, &buf, subsize, xd->bd);
+ } else {
+ split_variance[i] = av1_get_sby_perpixel_variance(cpi, &buf, subsize);
+ }
+ }
+
+ for (int i = 0; i < 4; i++)
+ features[5 + i] = (float)split_variance[i] / (float)whole_block_variance;
+
+ // 2. Do the prediction and prune 0-2 partitions based on their probabilities
+ float raw_scores[3] = { 0.0f };
+ av1_nn_predict(features, nn_config, 1, raw_scores);
+ aom_clear_system_state();
+ float probs[3] = { 0.0f };
+ av1_nn_softmax(raw_scores, probs, 3);
+
+ // probs[0] is the probability of the fact that both rectangular partitions
+ // are worse than current best_rd
+ if (probs[1] <= cur_thresh) (*dst_prune_horz) = 1;
+ if (probs[2] <= cur_thresh) (*dst_prune_vert) = 1;
+}
+
+// Use a ML model to predict if horz_a, horz_b, vert_a, and vert_b should be
+// considered.
+void av1_ml_prune_ab_partition(BLOCK_SIZE bsize, int part_ctx, int var_ctx,
+ int64_t best_rd, int64_t horz_rd[2],
+ int64_t vert_rd[2], int64_t split_rd[4],
+ int *const horza_partition_allowed,
+ int *const horzb_partition_allowed,
+ int *const verta_partition_allowed,
+ int *const vertb_partition_allowed) {
+ if (bsize < BLOCK_8X8 || best_rd >= 1000000000) return;
+ const NN_CONFIG *nn_config = NULL;
+ switch (bsize) {
+ case BLOCK_8X8: nn_config = NULL; break;
+ case BLOCK_16X16: nn_config = &av1_ab_partition_nnconfig_16; break;
+ case BLOCK_32X32: nn_config = &av1_ab_partition_nnconfig_32; break;
+ case BLOCK_64X64: nn_config = &av1_ab_partition_nnconfig_64; break;
+ case BLOCK_128X128: nn_config = &av1_ab_partition_nnconfig_128; break;
+ default: assert(0 && "Unexpected bsize.");
+ }
+ if (!nn_config) return;
+
+ aom_clear_system_state();
+
+ // Generate features.
+ float features[10];
+ int feature_index = 0;
+ features[feature_index++] = (float)part_ctx;
+ features[feature_index++] = (float)var_ctx;
+ const int rdcost = (int)AOMMIN(INT_MAX, best_rd);
+ int sub_block_rdcost[8] = { 0 };
+ int rd_index = 0;
+ for (int i = 0; i < 2; ++i) {
+ if (horz_rd[i] > 0 && horz_rd[i] < 1000000000)
+ sub_block_rdcost[rd_index] = (int)horz_rd[i];
+ ++rd_index;
+ }
+ for (int i = 0; i < 2; ++i) {
+ if (vert_rd[i] > 0 && vert_rd[i] < 1000000000)
+ sub_block_rdcost[rd_index] = (int)vert_rd[i];
+ ++rd_index;
+ }
+ for (int i = 0; i < 4; ++i) {
+ if (split_rd[i] > 0 && split_rd[i] < 1000000000)
+ sub_block_rdcost[rd_index] = (int)split_rd[i];
+ ++rd_index;
+ }
+ for (int i = 0; i < 8; ++i) {
+ // Ratio between the sub-block RD and the whole-block RD.
+ float rd_ratio = 1.0f;
+ if (sub_block_rdcost[i] > 0 && sub_block_rdcost[i] < rdcost)
+ rd_ratio = (float)sub_block_rdcost[i] / (float)rdcost;
+ features[feature_index++] = rd_ratio;
+ }
+ assert(feature_index == 10);
+
+ // Calculate scores using the NN model.
+ float score[16] = { 0.0f };
+ av1_nn_predict(features, nn_config, 1, score);
+ aom_clear_system_state();
+ int int_score[16];
+ int max_score = -1000;
+ for (int i = 0; i < 16; ++i) {
+ int_score[i] = (int)(100 * score[i]);
+ max_score = AOMMAX(int_score[i], max_score);
+ }
+
+ // Make decisions based on the model scores.
+ int thresh = max_score;
+ switch (bsize) {
+ case BLOCK_16X16: thresh -= 150; break;
+ case BLOCK_32X32: thresh -= 100; break;
+ default: break;
+ }
+ *horza_partition_allowed = 0;
+ *horzb_partition_allowed = 0;
+ *verta_partition_allowed = 0;
+ *vertb_partition_allowed = 0;
+ for (int i = 0; i < 16; ++i) {
+ if (int_score[i] >= thresh) {
+ if ((i >> 0) & 1) *horza_partition_allowed = 1;
+ if ((i >> 1) & 1) *horzb_partition_allowed = 1;
+ if ((i >> 2) & 1) *verta_partition_allowed = 1;
+ if ((i >> 3) & 1) *vertb_partition_allowed = 1;
+ }
+ }
+}
+
+#define FEATURES 18
+#define LABELS 4
+// Use a ML model to predict if horz4 and vert4 should be considered.
+void av1_ml_prune_4_partition(const AV1_COMP *const cpi, MACROBLOCK *const x,
+ BLOCK_SIZE bsize, int part_ctx, int64_t best_rd,
+ int64_t horz_rd[2], int64_t vert_rd[2],
+ int64_t split_rd[4],
+ int *const partition_horz4_allowed,
+ int *const partition_vert4_allowed,
+ unsigned int pb_source_variance, int mi_row,
+ int mi_col) {
+ if (best_rd >= 1000000000) return;
+ const NN_CONFIG *nn_config = NULL;
+ switch (bsize) {
+ case BLOCK_16X16: nn_config = &av1_4_partition_nnconfig_16; break;
+ case BLOCK_32X32: nn_config = &av1_4_partition_nnconfig_32; break;
+ case BLOCK_64X64: nn_config = &av1_4_partition_nnconfig_64; break;
+ default: assert(0 && "Unexpected bsize.");
+ }
+ if (!nn_config) return;
+
+ aom_clear_system_state();
+
+ // Generate features.
+ float features[FEATURES];
+ int feature_index = 0;
+ features[feature_index++] = (float)part_ctx;
+ features[feature_index++] = (float)get_unsigned_bits(pb_source_variance);
+
+ const int rdcost = (int)AOMMIN(INT_MAX, best_rd);
+ int sub_block_rdcost[8] = { 0 };
+ int rd_index = 0;
+ for (int i = 0; i < 2; ++i) {
+ if (horz_rd[i] > 0 && horz_rd[i] < 1000000000)
+ sub_block_rdcost[rd_index] = (int)horz_rd[i];
+ ++rd_index;
+ }
+ for (int i = 0; i < 2; ++i) {
+ if (vert_rd[i] > 0 && vert_rd[i] < 1000000000)
+ sub_block_rdcost[rd_index] = (int)vert_rd[i];
+ ++rd_index;
+ }
+ for (int i = 0; i < 4; ++i) {
+ if (split_rd[i] > 0 && split_rd[i] < 1000000000)
+ sub_block_rdcost[rd_index] = (int)split_rd[i];
+ ++rd_index;
+ }
+ for (int i = 0; i < 8; ++i) {
+ // Ratio between the sub-block RD and the whole-block RD.
+ float rd_ratio = 1.0f;
+ if (sub_block_rdcost[i] > 0 && sub_block_rdcost[i] < rdcost)
+ rd_ratio = (float)sub_block_rdcost[i] / (float)rdcost;
+ features[feature_index++] = rd_ratio;
+ }
+
+ // Get variance of the 1:4 and 4:1 sub-blocks.
+ unsigned int horz_4_source_var[4] = { 0 };
+ unsigned int vert_4_source_var[4] = { 0 };
+ {
+ BLOCK_SIZE horz_4_bs = get_partition_subsize(bsize, PARTITION_HORZ_4);
+ BLOCK_SIZE vert_4_bs = get_partition_subsize(bsize, PARTITION_VERT_4);
+ av1_setup_src_planes(x, cpi->source, mi_row, mi_col,
+ av1_num_planes(&cpi->common), bsize);
+ const int src_stride = x->plane[0].src.stride;
+ uint8_t *src = x->plane[0].src.buf;
+ const MACROBLOCKD *const xd = &x->e_mbd;
+
+ struct buf_2d horz_4_src, vert_4_src;
+ horz_4_src.stride = src_stride;
+ vert_4_src.stride = src_stride;
+
+ for (int i = 0; i < 4; ++i) {
+ horz_4_src.buf = src + i * block_size_high[horz_4_bs] * src_stride;
+ vert_4_src.buf = src + i * block_size_wide[vert_4_bs];
+
+ if (is_cur_buf_hbd(xd)) {
+ horz_4_source_var[i] = av1_high_get_sby_perpixel_variance(
+ cpi, &horz_4_src, horz_4_bs, xd->bd);
+ vert_4_source_var[i] = av1_high_get_sby_perpixel_variance(
+ cpi, &vert_4_src, vert_4_bs, xd->bd);
+ } else {
+ horz_4_source_var[i] =
+ av1_get_sby_perpixel_variance(cpi, &horz_4_src, horz_4_bs);
+ vert_4_source_var[i] =
+ av1_get_sby_perpixel_variance(cpi, &vert_4_src, vert_4_bs);
+ }
+ }
+ }
+
+ const float denom = (float)(pb_source_variance + 1);
+ const float low_b = 0.1f;
+ const float high_b = 10.0f;
+ for (int i = 0; i < 4; ++i) {
+ // Ratio between the 4:1 sub-block variance and the whole-block variance.
+ float var_ratio = (float)(horz_4_source_var[i] + 1) / denom;
+ if (var_ratio < low_b) var_ratio = low_b;
+ if (var_ratio > high_b) var_ratio = high_b;
+ features[feature_index++] = var_ratio;
+ }
+ for (int i = 0; i < 4; ++i) {
+ // Ratio between the 1:4 sub-block RD and the whole-block RD.
+ float var_ratio = (float)(vert_4_source_var[i] + 1) / denom;
+ if (var_ratio < low_b) var_ratio = low_b;
+ if (var_ratio > high_b) var_ratio = high_b;
+ features[feature_index++] = var_ratio;
+ }
+ assert(feature_index == FEATURES);
+
+ // Calculate scores using the NN model.
+ float score[LABELS] = { 0.0f };
+ av1_nn_predict(features, nn_config, 1, score);
+ aom_clear_system_state();
+ int int_score[LABELS];
+ int max_score = -1000;
+ for (int i = 0; i < LABELS; ++i) {
+ int_score[i] = (int)(100 * score[i]);
+ max_score = AOMMAX(int_score[i], max_score);
+ }
+
+ // Make decisions based on the model scores.
+ int thresh = max_score;
+ switch (bsize) {
+ case BLOCK_16X16: thresh -= 500; break;
+ case BLOCK_32X32: thresh -= 500; break;
+ case BLOCK_64X64: thresh -= 200; break;
+ default: break;
+ }
+ *partition_horz4_allowed = 0;
+ *partition_vert4_allowed = 0;
+ for (int i = 0; i < LABELS; ++i) {
+ if (int_score[i] >= thresh) {
+ if ((i >> 0) & 1) *partition_horz4_allowed = 1;
+ if ((i >> 1) & 1) *partition_vert4_allowed = 1;
+ }
+ }
+}
+#undef FEATURES
+#undef LABELS
+
+#define FEATURES 4
+int av1_ml_predict_breakout(const AV1_COMP *const cpi, BLOCK_SIZE bsize,
+ const MACROBLOCK *const x,
+ const RD_STATS *const rd_stats,
+ unsigned int pb_source_variance) {
+ const NN_CONFIG *nn_config = NULL;
+ int thresh = 0;
+ switch (bsize) {
+ case BLOCK_8X8:
+ nn_config = &av1_partition_breakout_nnconfig_8;
+ thresh = cpi->sf.part_sf.ml_partition_search_breakout_thresh[0];
+ break;
+ case BLOCK_16X16:
+ nn_config = &av1_partition_breakout_nnconfig_16;
+ thresh = cpi->sf.part_sf.ml_partition_search_breakout_thresh[1];
+ break;
+ case BLOCK_32X32:
+ nn_config = &av1_partition_breakout_nnconfig_32;
+ thresh = cpi->sf.part_sf.ml_partition_search_breakout_thresh[2];
+ break;
+ case BLOCK_64X64:
+ nn_config = &av1_partition_breakout_nnconfig_64;
+ thresh = cpi->sf.part_sf.ml_partition_search_breakout_thresh[3];
+ break;
+ case BLOCK_128X128:
+ nn_config = &av1_partition_breakout_nnconfig_128;
+ thresh = cpi->sf.part_sf.ml_partition_search_breakout_thresh[4];
+ break;
+ default: assert(0 && "Unexpected bsize.");
+ }
+ if (!nn_config || thresh < 0) return 0;
+
+ // Generate feature values.
+ float features[FEATURES];
+ int feature_index = 0;
+ aom_clear_system_state();
+
+ const int num_pels_log2 = num_pels_log2_lookup[bsize];
+ float rate_f = (float)AOMMIN(rd_stats->rate, INT_MAX);
+ rate_f = ((float)x->rdmult / 128.0f / 512.0f / (float)(1 << num_pels_log2)) *
+ rate_f;
+ features[feature_index++] = rate_f;
+
+ const float dist_f =
+ (float)(AOMMIN(rd_stats->dist, INT_MAX) >> num_pels_log2);
+ features[feature_index++] = dist_f;
+
+ features[feature_index++] = (float)pb_source_variance;
+
+ const int dc_q = (int)x->plane[0].dequant_QTX[0];
+ features[feature_index++] = (float)(dc_q * dc_q) / 256.0f;
+ assert(feature_index == FEATURES);
+
+ // Calculate score using the NN model.
+ float score = 0.0f;
+ av1_nn_predict(features, nn_config, 1, &score);
+ aom_clear_system_state();
+
+ // Make decision.
+ return (int)(score * 100) >= thresh;
+}
+#undef FEATURES
+#endif // !CONFIG_REALTIME_ONLY