summaryrefslogtreecommitdiff
path: root/libs/libaom/src/av1/encoder/encodeframe.c
diff options
context:
space:
mode:
Diffstat (limited to 'libs/libaom/src/av1/encoder/encodeframe.c')
-rw-r--r--libs/libaom/src/av1/encoder/encodeframe.c6475
1 files changed, 6475 insertions, 0 deletions
diff --git a/libs/libaom/src/av1/encoder/encodeframe.c b/libs/libaom/src/av1/encoder/encodeframe.c
new file mode 100644
index 000000000..53b47d49e
--- /dev/null
+++ b/libs/libaom/src/av1/encoder/encodeframe.c
@@ -0,0 +1,6475 @@
+/*
+ * Copyright (c) 2016, Alliance for Open Media. All rights reserved
+ *
+ * This source code is subject to the terms of the BSD 2 Clause License and
+ * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
+ * was not distributed with this source code in the LICENSE file, you can
+ * obtain it at www.aomedia.org/license/software. If the Alliance for Open
+ * Media Patent License 1.0 was not distributed with this source code in the
+ * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
+ */
+
+#include <limits.h>
+#include <float.h>
+#include <math.h>
+#include <stdbool.h>
+#include <stdio.h>
+
+#include "config/aom_config.h"
+#include "config/aom_dsp_rtcd.h"
+#include "config/av1_rtcd.h"
+
+#include "aom_dsp/aom_dsp_common.h"
+#include "aom_dsp/binary_codes_writer.h"
+#include "aom_ports/mem.h"
+#include "aom_ports/aom_timer.h"
+#include "aom_ports/system_state.h"
+
+#if CONFIG_MISMATCH_DEBUG
+#include "aom_util/debug_util.h"
+#endif // CONFIG_MISMATCH_DEBUG
+
+#include "av1/common/cfl.h"
+#include "av1/common/common.h"
+#include "av1/common/entropy.h"
+#include "av1/common/entropymode.h"
+#include "av1/common/idct.h"
+#include "av1/common/mv.h"
+#include "av1/common/mvref_common.h"
+#include "av1/common/pred_common.h"
+#include "av1/common/quant_common.h"
+#include "av1/common/reconintra.h"
+#include "av1/common/reconinter.h"
+#include "av1/common/seg_common.h"
+#include "av1/common/tile_common.h"
+#include "av1/common/warped_motion.h"
+
+#include "av1/encoder/aq_complexity.h"
+#include "av1/encoder/aq_cyclicrefresh.h"
+#include "av1/encoder/aq_variance.h"
+#include "av1/encoder/corner_detect.h"
+#include "av1/encoder/global_motion.h"
+#include "av1/encoder/encodeframe.h"
+#include "av1/encoder/encodemb.h"
+#include "av1/encoder/encodemv.h"
+#include "av1/encoder/encodetxb.h"
+#include "av1/encoder/ethread.h"
+#include "av1/encoder/extend.h"
+#include "av1/encoder/ml.h"
+#include "av1/encoder/motion_search_facade.h"
+#include "av1/encoder/partition_strategy.h"
+#if !CONFIG_REALTIME_ONLY
+#include "av1/encoder/partition_model_weights.h"
+#endif
+#include "av1/encoder/rd.h"
+#include "av1/encoder/rdopt.h"
+#include "av1/encoder/reconinter_enc.h"
+#include "av1/encoder/segmentation.h"
+#include "av1/encoder/tokenize.h"
+#include "av1/encoder/tpl_model.h"
+#include "av1/encoder/var_based_part.h"
+
+#if CONFIG_TUNE_VMAF
+#include "av1/encoder/tune_vmaf.h"
+#endif
+
+static AOM_INLINE void encode_superblock(const AV1_COMP *const cpi,
+ TileDataEnc *tile_data, ThreadData *td,
+ TOKENEXTRA **t, RUN_TYPE dry_run,
+ BLOCK_SIZE bsize, int *rate);
+
+// This is used as a reference when computing the source variance for the
+// purposes of activity masking.
+// Eventually this should be replaced by custom no-reference routines,
+// which will be faster.
+const uint8_t AV1_VAR_OFFS[MAX_SB_SIZE] = {
+ 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
+ 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
+ 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
+ 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
+ 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
+ 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
+ 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
+ 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
+ 128, 128, 128, 128, 128, 128, 128, 128
+};
+
+static const uint16_t AV1_HIGH_VAR_OFFS_8[MAX_SB_SIZE] = {
+ 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
+ 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
+ 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
+ 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
+ 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
+ 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
+ 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
+ 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
+ 128, 128, 128, 128, 128, 128, 128, 128
+};
+
+static const uint16_t AV1_HIGH_VAR_OFFS_10[MAX_SB_SIZE] = {
+ 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
+ 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
+ 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
+ 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
+ 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
+ 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
+ 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
+ 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
+ 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
+ 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
+ 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
+ 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
+ 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
+ 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
+ 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
+ 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4
+};
+
+static const uint16_t AV1_HIGH_VAR_OFFS_12[MAX_SB_SIZE] = {
+ 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
+ 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
+ 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
+ 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
+ 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
+ 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
+ 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
+ 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
+ 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
+ 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
+ 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
+ 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
+ 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
+ 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
+ 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
+ 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
+ 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
+ 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
+ 128 * 16, 128 * 16
+};
+
+typedef struct {
+ ENTROPY_CONTEXT a[MAX_MIB_SIZE * MAX_MB_PLANE];
+ ENTROPY_CONTEXT l[MAX_MIB_SIZE * MAX_MB_PLANE];
+ PARTITION_CONTEXT sa[MAX_MIB_SIZE];
+ PARTITION_CONTEXT sl[MAX_MIB_SIZE];
+ TXFM_CONTEXT *p_ta;
+ TXFM_CONTEXT *p_tl;
+ TXFM_CONTEXT ta[MAX_MIB_SIZE];
+ TXFM_CONTEXT tl[MAX_MIB_SIZE];
+} RD_SEARCH_MACROBLOCK_CONTEXT;
+
+enum { PICK_MODE_RD = 0, PICK_MODE_NONRD };
+
+enum {
+ SB_SINGLE_PASS, // Single pass encoding: all ctxs get updated normally
+ SB_DRY_PASS, // First pass of multi-pass: does not update the ctxs
+ SB_WET_PASS // Second pass of multi-pass: finalize and update the ctx
+} UENUM1BYTE(SB_MULTI_PASS_MODE);
+
+// This struct is used to store the statistics used by sb-level multi-pass
+// encoding. Currently, this is only used to make a copy of the state before we
+// perform the first pass
+typedef struct SB_FIRST_PASS_STATS {
+ RD_SEARCH_MACROBLOCK_CONTEXT x_ctx;
+ RD_COUNTS rd_count;
+
+ int split_count;
+ FRAME_COUNTS fc;
+ InterModeRdModel inter_mode_rd_models[BLOCK_SIZES_ALL];
+ int thresh_freq_fact[BLOCK_SIZES_ALL][MAX_MODES];
+ int current_qindex;
+
+#if CONFIG_INTERNAL_STATS
+ unsigned int mode_chosen_counts[MAX_MODES];
+#endif // CONFIG_INTERNAL_STATS
+} SB_FIRST_PASS_STATS;
+
+unsigned int av1_get_sby_perpixel_variance(const AV1_COMP *cpi,
+ const struct buf_2d *ref,
+ BLOCK_SIZE bs) {
+ unsigned int sse;
+ const unsigned int var =
+ cpi->fn_ptr[bs].vf(ref->buf, ref->stride, AV1_VAR_OFFS, 0, &sse);
+ return ROUND_POWER_OF_TWO(var, num_pels_log2_lookup[bs]);
+}
+
+unsigned int av1_high_get_sby_perpixel_variance(const AV1_COMP *cpi,
+ const struct buf_2d *ref,
+ BLOCK_SIZE bs, int bd) {
+ unsigned int var, sse;
+ assert(bd == 8 || bd == 10 || bd == 12);
+ const int off_index = (bd - 8) >> 1;
+ const uint16_t *high_var_offs[3] = { AV1_HIGH_VAR_OFFS_8,
+ AV1_HIGH_VAR_OFFS_10,
+ AV1_HIGH_VAR_OFFS_12 };
+ var =
+ cpi->fn_ptr[bs].vf(ref->buf, ref->stride,
+ CONVERT_TO_BYTEPTR(high_var_offs[off_index]), 0, &sse);
+ return ROUND_POWER_OF_TWO(var, num_pels_log2_lookup[bs]);
+}
+
+static unsigned int get_sby_perpixel_diff_variance(const AV1_COMP *const cpi,
+ const struct buf_2d *ref,
+ int mi_row, int mi_col,
+ BLOCK_SIZE bs) {
+ unsigned int sse, var;
+ uint8_t *last_y;
+ const YV12_BUFFER_CONFIG *last =
+ get_ref_frame_yv12_buf(&cpi->common, LAST_FRAME);
+
+ assert(last != NULL);
+ last_y =
+ &last->y_buffer[mi_row * MI_SIZE * last->y_stride + mi_col * MI_SIZE];
+ var = cpi->fn_ptr[bs].vf(ref->buf, ref->stride, last_y, last->y_stride, &sse);
+ return ROUND_POWER_OF_TWO(var, num_pels_log2_lookup[bs]);
+}
+
+static BLOCK_SIZE get_rd_var_based_fixed_partition(AV1_COMP *cpi, MACROBLOCK *x,
+ int mi_row, int mi_col) {
+ unsigned int var = get_sby_perpixel_diff_variance(
+ cpi, &x->plane[0].src, mi_row, mi_col, BLOCK_64X64);
+ if (var < 8)
+ return BLOCK_64X64;
+ else if (var < 128)
+ return BLOCK_32X32;
+ else if (var < 2048)
+ return BLOCK_16X16;
+ else
+ return BLOCK_8X8;
+}
+
+static int set_deltaq_rdmult(const AV1_COMP *const cpi, MACROBLOCKD *const xd) {
+ const AV1_COMMON *const cm = &cpi->common;
+ const CommonQuantParams *quant_params = &cm->quant_params;
+ return av1_compute_rd_mult(cpi, quant_params->base_qindex + xd->delta_qindex +
+ quant_params->y_dc_delta_q);
+}
+
+static AOM_INLINE void set_ssim_rdmult(const AV1_COMP *const cpi,
+ MACROBLOCK *const x,
+ const BLOCK_SIZE bsize, const int mi_row,
+ const int mi_col, int *const rdmult) {
+ const AV1_COMMON *const cm = &cpi->common;
+
+ const int bsize_base = BLOCK_16X16;
+ const int num_mi_w = mi_size_wide[bsize_base];
+ const int num_mi_h = mi_size_high[bsize_base];
+ const int num_cols = (cm->mi_params.mi_cols + num_mi_w - 1) / num_mi_w;
+ const int num_rows = (cm->mi_params.mi_rows + num_mi_h - 1) / num_mi_h;
+ const int num_bcols = (mi_size_wide[bsize] + num_mi_w - 1) / num_mi_w;
+ const int num_brows = (mi_size_high[bsize] + num_mi_h - 1) / num_mi_h;
+ int row, col;
+ double num_of_mi = 0.0;
+ double geom_mean_of_scale = 0.0;
+
+ assert(cpi->oxcf.tuning == AOM_TUNE_SSIM);
+
+ aom_clear_system_state();
+ for (row = mi_row / num_mi_w;
+ row < num_rows && row < mi_row / num_mi_w + num_brows; ++row) {
+ for (col = mi_col / num_mi_h;
+ col < num_cols && col < mi_col / num_mi_h + num_bcols; ++col) {
+ const int index = row * num_cols + col;
+ geom_mean_of_scale += log(cpi->ssim_rdmult_scaling_factors[index]);
+ num_of_mi += 1.0;
+ }
+ }
+ geom_mean_of_scale = exp(geom_mean_of_scale / num_of_mi);
+
+ *rdmult = (int)((double)(*rdmult) * geom_mean_of_scale + 0.5);
+ *rdmult = AOMMAX(*rdmult, 0);
+ set_error_per_bit(x, *rdmult);
+ aom_clear_system_state();
+}
+
+static int get_hier_tpl_rdmult(const AV1_COMP *const cpi, MACROBLOCK *const x,
+ const BLOCK_SIZE bsize, const int mi_row,
+ const int mi_col, int orig_rdmult) {
+ const AV1_COMMON *const cm = &cpi->common;
+ assert(IMPLIES(cpi->gf_group.size > 0,
+ cpi->gf_group.index < cpi->gf_group.size));
+ const int tpl_idx = cpi->gf_group.index;
+ const TplDepFrame *tpl_frame = &cpi->tpl_data.tpl_frame[tpl_idx];
+ MACROBLOCKD *const xd = &x->e_mbd;
+ const int deltaq_rdmult = set_deltaq_rdmult(cpi, xd);
+ if (tpl_frame->is_valid == 0) return deltaq_rdmult;
+ if (!is_frame_tpl_eligible((AV1_COMP *)cpi)) return deltaq_rdmult;
+ if (tpl_idx >= MAX_LAG_BUFFERS) return deltaq_rdmult;
+ if (cpi->superres_mode != SUPERRES_NONE) return deltaq_rdmult;
+ if (cpi->oxcf.aq_mode != NO_AQ) return deltaq_rdmult;
+
+ const int bsize_base = BLOCK_16X16;
+ const int num_mi_w = mi_size_wide[bsize_base];
+ const int num_mi_h = mi_size_high[bsize_base];
+ const int num_cols = (cm->mi_params.mi_cols + num_mi_w - 1) / num_mi_w;
+ const int num_rows = (cm->mi_params.mi_rows + num_mi_h - 1) / num_mi_h;
+ const int num_bcols = (mi_size_wide[bsize] + num_mi_w - 1) / num_mi_w;
+ const int num_brows = (mi_size_high[bsize] + num_mi_h - 1) / num_mi_h;
+ int row, col;
+ double base_block_count = 0.0;
+ double geom_mean_of_scale = 0.0;
+ aom_clear_system_state();
+ for (row = mi_row / num_mi_w;
+ row < num_rows && row < mi_row / num_mi_w + num_brows; ++row) {
+ for (col = mi_col / num_mi_h;
+ col < num_cols && col < mi_col / num_mi_h + num_bcols; ++col) {
+ const int index = row * num_cols + col;
+ geom_mean_of_scale += log(cpi->tpl_sb_rdmult_scaling_factors[index]);
+ base_block_count += 1.0;
+ }
+ }
+ geom_mean_of_scale = exp(geom_mean_of_scale / base_block_count);
+ int rdmult = (int)((double)orig_rdmult * geom_mean_of_scale + 0.5);
+ rdmult = AOMMAX(rdmult, 0);
+ set_error_per_bit(x, rdmult);
+ aom_clear_system_state();
+ if (bsize == cm->seq_params.sb_size) {
+ const int rdmult_sb = set_deltaq_rdmult(cpi, xd);
+ assert(rdmult_sb == rdmult);
+ (void)rdmult_sb;
+ }
+ return rdmult;
+}
+
+static int set_segment_rdmult(const AV1_COMP *const cpi, MACROBLOCK *const x,
+ int8_t segment_id) {
+ const AV1_COMMON *const cm = &cpi->common;
+ av1_init_plane_quantizers(cpi, x, segment_id);
+ aom_clear_system_state();
+ const int segment_qindex =
+ av1_get_qindex(&cm->seg, segment_id, cm->quant_params.base_qindex);
+ return av1_compute_rd_mult(cpi,
+ segment_qindex + cm->quant_params.y_dc_delta_q);
+}
+
+static AOM_INLINE void setup_block_rdmult(const AV1_COMP *const cpi,
+ MACROBLOCK *const x, int mi_row,
+ int mi_col, BLOCK_SIZE bsize,
+ AQ_MODE aq_mode, MB_MODE_INFO *mbmi) {
+ x->rdmult = cpi->rd.RDMULT;
+
+ if (aq_mode != NO_AQ) {
+ assert(mbmi != NULL);
+ if (aq_mode == VARIANCE_AQ) {
+ if (cpi->vaq_refresh) {
+ const int energy = bsize <= BLOCK_16X16
+ ? x->mb_energy
+ : av1_log_block_var(cpi, x, bsize);
+ mbmi->segment_id = energy;
+ }
+ x->rdmult = set_segment_rdmult(cpi, x, mbmi->segment_id);
+ } else if (aq_mode == COMPLEXITY_AQ) {
+ x->rdmult = set_segment_rdmult(cpi, x, mbmi->segment_id);
+ } else if (aq_mode == CYCLIC_REFRESH_AQ) {
+ // If segment is boosted, use rdmult for that segment.
+ if (cyclic_refresh_segment_id_boosted(mbmi->segment_id))
+ x->rdmult = av1_cyclic_refresh_get_rdmult(cpi->cyclic_refresh);
+ }
+ }
+
+ const AV1_COMMON *const cm = &cpi->common;
+ if (cm->delta_q_info.delta_q_present_flag &&
+ !cpi->sf.rt_sf.use_nonrd_pick_mode) {
+ x->rdmult = get_hier_tpl_rdmult(cpi, x, bsize, mi_row, mi_col, x->rdmult);
+ }
+
+ if (cpi->oxcf.tuning == AOM_TUNE_SSIM) {
+ set_ssim_rdmult(cpi, x, bsize, mi_row, mi_col, &x->rdmult);
+ }
+#if CONFIG_TUNE_VMAF
+ if (cpi->oxcf.tuning == AOM_TUNE_VMAF_WITHOUT_PREPROCESSING ||
+ cpi->oxcf.tuning == AOM_TUNE_VMAF_MAX_GAIN) {
+ av1_set_vmaf_rdmult(cpi, x, bsize, mi_row, mi_col, &x->rdmult);
+ }
+#endif
+}
+
+static AOM_INLINE void set_offsets_without_segment_id(
+ const AV1_COMP *const cpi, const TileInfo *const tile, MACROBLOCK *const x,
+ int mi_row, int mi_col, BLOCK_SIZE bsize) {
+ const AV1_COMMON *const cm = &cpi->common;
+ const int num_planes = av1_num_planes(cm);
+ MACROBLOCKD *const xd = &x->e_mbd;
+ assert(bsize < BLOCK_SIZES_ALL);
+ const int mi_width = mi_size_wide[bsize];
+ const int mi_height = mi_size_high[bsize];
+
+ set_mode_info_offsets(&cpi->common.mi_params, &cpi->mbmi_ext_info, x, xd,
+ mi_row, mi_col);
+
+ set_entropy_context(xd, mi_row, mi_col, num_planes);
+ xd->above_txfm_context = cm->above_contexts.txfm[tile->tile_row] + mi_col;
+ xd->left_txfm_context =
+ xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK);
+
+ // Set up destination pointers.
+ av1_setup_dst_planes(xd->plane, bsize, &cm->cur_frame->buf, mi_row, mi_col, 0,
+ num_planes);
+
+ // Set up limit values for MV components.
+ // Mv beyond the range do not produce new/different prediction block.
+ av1_set_mv_limits(&cm->mi_params, &x->mv_limits, mi_row, mi_col, mi_height,
+ mi_width, cpi->oxcf.border_in_pixels);
+
+ set_plane_n4(xd, mi_width, mi_height, num_planes);
+
+ // Set up distance of MB to edge of frame in 1/8th pel units.
+ assert(!(mi_col & (mi_width - 1)) && !(mi_row & (mi_height - 1)));
+ set_mi_row_col(xd, tile, mi_row, mi_height, mi_col, mi_width,
+ cm->mi_params.mi_rows, cm->mi_params.mi_cols);
+
+ // Set up source buffers.
+ av1_setup_src_planes(x, cpi->source, mi_row, mi_col, num_planes, bsize);
+
+ // required by av1_append_sub8x8_mvs_for_idx() and av1_find_best_ref_mvs()
+ xd->tile = *tile;
+}
+
+static AOM_INLINE void set_offsets(const AV1_COMP *const cpi,
+ const TileInfo *const tile,
+ MACROBLOCK *const x, int mi_row, int mi_col,
+ BLOCK_SIZE bsize) {
+ const AV1_COMMON *const cm = &cpi->common;
+ const struct segmentation *const seg = &cm->seg;
+ MACROBLOCKD *const xd = &x->e_mbd;
+ MB_MODE_INFO *mbmi;
+
+ set_offsets_without_segment_id(cpi, tile, x, mi_row, mi_col, bsize);
+
+ // Setup segment ID.
+ mbmi = xd->mi[0];
+ mbmi->segment_id = 0;
+ if (seg->enabled) {
+ if (seg->enabled && !cpi->vaq_refresh) {
+ const uint8_t *const map =
+ seg->update_map ? cpi->enc_seg.map : cm->last_frame_seg_map;
+ mbmi->segment_id =
+ map ? get_segment_id(&cm->mi_params, map, bsize, mi_row, mi_col) : 0;
+ }
+ av1_init_plane_quantizers(cpi, x, mbmi->segment_id);
+ }
+}
+
+static AOM_INLINE void update_filter_type_count(FRAME_COUNTS *counts,
+ const MACROBLOCKD *xd,
+ const MB_MODE_INFO *mbmi) {
+ int dir;
+ for (dir = 0; dir < 2; ++dir) {
+ const int ctx = av1_get_pred_context_switchable_interp(xd, dir);
+ InterpFilter filter = av1_extract_interp_filter(mbmi->interp_filters, dir);
+ ++counts->switchable_interp[ctx][filter];
+ }
+}
+
+static AOM_INLINE void update_filter_type_cdf(const MACROBLOCKD *xd,
+ const MB_MODE_INFO *mbmi) {
+ int dir;
+ for (dir = 0; dir < 2; ++dir) {
+ const int ctx = av1_get_pred_context_switchable_interp(xd, dir);
+ InterpFilter filter = av1_extract_interp_filter(mbmi->interp_filters, dir);
+ update_cdf(xd->tile_ctx->switchable_interp_cdf[ctx], filter,
+ SWITCHABLE_FILTERS);
+ }
+}
+
+static AOM_INLINE void update_global_motion_used(PREDICTION_MODE mode,
+ BLOCK_SIZE bsize,
+ const MB_MODE_INFO *mbmi,
+ RD_COUNTS *rdc) {
+ if (mode == GLOBALMV || mode == GLOBAL_GLOBALMV) {
+ const int num_4x4s = mi_size_wide[bsize] * mi_size_high[bsize];
+ int ref;
+ for (ref = 0; ref < 1 + has_second_ref(mbmi); ++ref) {
+ rdc->global_motion_used[mbmi->ref_frame[ref]] += num_4x4s;
+ }
+ }
+}
+
+static AOM_INLINE void reset_tx_size(MACROBLOCK *x, MB_MODE_INFO *mbmi,
+ const TX_MODE tx_mode) {
+ MACROBLOCKD *const xd = &x->e_mbd;
+ if (xd->lossless[mbmi->segment_id]) {
+ mbmi->tx_size = TX_4X4;
+ } else if (tx_mode != TX_MODE_SELECT) {
+ mbmi->tx_size = tx_size_from_tx_mode(mbmi->sb_type, tx_mode);
+ } else {
+ BLOCK_SIZE bsize = mbmi->sb_type;
+ TX_SIZE min_tx_size = depth_to_tx_size(MAX_TX_DEPTH, bsize);
+ mbmi->tx_size = (TX_SIZE)TXSIZEMAX(mbmi->tx_size, min_tx_size);
+ }
+ if (is_inter_block(mbmi)) {
+ memset(mbmi->inter_tx_size, mbmi->tx_size, sizeof(mbmi->inter_tx_size));
+ }
+ const int stride = xd->tx_type_map_stride;
+ const int bw = mi_size_wide[mbmi->sb_type];
+ for (int row = 0; row < mi_size_high[mbmi->sb_type]; ++row) {
+ memset(xd->tx_type_map + row * stride, DCT_DCT,
+ bw * sizeof(xd->tx_type_map[0]));
+ }
+ av1_zero(x->blk_skip);
+ x->force_skip = 0;
+}
+
+// This function will copy the best reference mode information from
+// MB_MODE_INFO_EXT_FRAME to MB_MODE_INFO_EXT.
+static INLINE void copy_mbmi_ext_frame_to_mbmi_ext(
+ MB_MODE_INFO_EXT *mbmi_ext,
+ const MB_MODE_INFO_EXT_FRAME *const mbmi_ext_best, uint8_t ref_frame_type) {
+ memcpy(mbmi_ext->ref_mv_stack[ref_frame_type], mbmi_ext_best->ref_mv_stack,
+ sizeof(mbmi_ext->ref_mv_stack[USABLE_REF_MV_STACK_SIZE]));
+ memcpy(mbmi_ext->weight[ref_frame_type], mbmi_ext_best->weight,
+ sizeof(mbmi_ext->weight[USABLE_REF_MV_STACK_SIZE]));
+ mbmi_ext->mode_context[ref_frame_type] = mbmi_ext_best->mode_context;
+ mbmi_ext->ref_mv_count[ref_frame_type] = mbmi_ext_best->ref_mv_count;
+ memcpy(mbmi_ext->global_mvs, mbmi_ext_best->global_mvs,
+ sizeof(mbmi_ext->global_mvs));
+}
+
+static AOM_INLINE void update_state(const AV1_COMP *const cpi, ThreadData *td,
+ const PICK_MODE_CONTEXT *const ctx,
+ int mi_row, int mi_col, BLOCK_SIZE bsize,
+ RUN_TYPE dry_run) {
+ int i, x_idx, y;
+ const AV1_COMMON *const cm = &cpi->common;
+ const CommonModeInfoParams *const mi_params = &cm->mi_params;
+ const int num_planes = av1_num_planes(cm);
+ RD_COUNTS *const rdc = &td->rd_counts;
+ MACROBLOCK *const x = &td->mb;
+ MACROBLOCKD *const xd = &x->e_mbd;
+ struct macroblock_plane *const p = x->plane;
+ struct macroblockd_plane *const pd = xd->plane;
+ const MB_MODE_INFO *const mi = &ctx->mic;
+ MB_MODE_INFO *const mi_addr = xd->mi[0];
+ const struct segmentation *const seg = &cm->seg;
+ const int bw = mi_size_wide[mi->sb_type];
+ const int bh = mi_size_high[mi->sb_type];
+ const int mis = mi_params->mi_stride;
+ const int mi_width = mi_size_wide[bsize];
+ const int mi_height = mi_size_high[bsize];
+
+ assert(mi->sb_type == bsize);
+
+ *mi_addr = *mi;
+ copy_mbmi_ext_frame_to_mbmi_ext(x->mbmi_ext, &ctx->mbmi_ext_best,
+ av1_ref_frame_type(ctx->mic.ref_frame));
+
+ memcpy(x->blk_skip, ctx->blk_skip, sizeof(x->blk_skip[0]) * ctx->num_4x4_blk);
+
+ x->force_skip = ctx->rd_stats.skip;
+
+ xd->tx_type_map = ctx->tx_type_map;
+ xd->tx_type_map_stride = mi_size_wide[bsize];
+ // If not dry_run, copy the transform type data into the frame level buffer.
+ // Encoder will fetch tx types when writing bitstream.
+ if (!dry_run) {
+ const int grid_idx = get_mi_grid_idx(mi_params, mi_row, mi_col);
+ uint8_t *const tx_type_map = mi_params->tx_type_map + grid_idx;
+ const int mi_stride = mi_params->mi_stride;
+ for (int blk_row = 0; blk_row < bh; ++blk_row) {
+ av1_copy_array(tx_type_map + blk_row * mi_stride,
+ xd->tx_type_map + blk_row * xd->tx_type_map_stride, bw);
+ }
+ xd->tx_type_map = tx_type_map;
+ xd->tx_type_map_stride = mi_stride;
+ }
+
+ // If segmentation in use
+ if (seg->enabled) {
+ // For in frame complexity AQ copy the segment id from the segment map.
+ if (cpi->oxcf.aq_mode == COMPLEXITY_AQ) {
+ const uint8_t *const map =
+ seg->update_map ? cpi->enc_seg.map : cm->last_frame_seg_map;
+ mi_addr->segment_id =
+ map ? get_segment_id(mi_params, map, bsize, mi_row, mi_col) : 0;
+ reset_tx_size(x, mi_addr, x->tx_mode_search_type);
+ }
+ // Else for cyclic refresh mode update the segment map, set the segment id
+ // and then update the quantizer.
+ if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ) {
+ av1_cyclic_refresh_update_segment(cpi, mi_addr, mi_row, mi_col, bsize,
+ ctx->rd_stats.rate, ctx->rd_stats.dist,
+ x->force_skip);
+ }
+ if (mi_addr->uv_mode == UV_CFL_PRED && !is_cfl_allowed(xd))
+ mi_addr->uv_mode = UV_DC_PRED;
+ }
+
+ for (i = 0; i < num_planes; ++i) {
+ p[i].coeff = ctx->coeff[i];
+ p[i].qcoeff = ctx->qcoeff[i];
+ pd[i].dqcoeff = ctx->dqcoeff[i];
+ p[i].eobs = ctx->eobs[i];
+ p[i].txb_entropy_ctx = ctx->txb_entropy_ctx[i];
+ }
+ for (i = 0; i < 2; ++i) pd[i].color_index_map = ctx->color_index_map[i];
+ // Restore the coding context of the MB to that that was in place
+ // when the mode was picked for it
+ for (y = 0; y < mi_height; y++) {
+ for (x_idx = 0; x_idx < mi_width; x_idx++) {
+ if ((xd->mb_to_right_edge >> (3 + MI_SIZE_LOG2)) + mi_width > x_idx &&
+ (xd->mb_to_bottom_edge >> (3 + MI_SIZE_LOG2)) + mi_height > y) {
+ xd->mi[x_idx + y * mis] = mi_addr;
+ }
+ }
+ }
+
+ if (cpi->oxcf.aq_mode) av1_init_plane_quantizers(cpi, x, mi_addr->segment_id);
+
+ if (dry_run) return;
+
+#if CONFIG_INTERNAL_STATS
+ {
+ unsigned int *const mode_chosen_counts =
+ (unsigned int *)cpi->mode_chosen_counts; // Cast const away.
+ if (frame_is_intra_only(cm)) {
+ static const int kf_mode_index[] = {
+ THR_DC /*DC_PRED*/,
+ THR_V_PRED /*V_PRED*/,
+ THR_H_PRED /*H_PRED*/,
+ THR_D45_PRED /*D45_PRED*/,
+ THR_D135_PRED /*D135_PRED*/,
+ THR_D113_PRED /*D113_PRED*/,
+ THR_D157_PRED /*D157_PRED*/,
+ THR_D203_PRED /*D203_PRED*/,
+ THR_D67_PRED /*D67_PRED*/,
+ THR_SMOOTH, /*SMOOTH_PRED*/
+ THR_SMOOTH_V, /*SMOOTH_V_PRED*/
+ THR_SMOOTH_H, /*SMOOTH_H_PRED*/
+ THR_PAETH /*PAETH_PRED*/,
+ };
+ ++mode_chosen_counts[kf_mode_index[mi_addr->mode]];
+ } else {
+ // Note how often each mode chosen as best
+ ++mode_chosen_counts[ctx->best_mode_index];
+ }
+ }
+#endif
+ if (!frame_is_intra_only(cm)) {
+ if (is_inter_block(mi_addr)) {
+ // TODO(sarahparker): global motion stats need to be handled per-tile
+ // to be compatible with tile-based threading.
+ update_global_motion_used(mi_addr->mode, bsize, mi_addr, rdc);
+ }
+
+ if (cm->features.interp_filter == SWITCHABLE &&
+ mi_addr->motion_mode != WARPED_CAUSAL &&
+ !is_nontrans_global_motion(xd, xd->mi[0])) {
+ update_filter_type_count(td->counts, xd, mi_addr);
+ }
+
+ rdc->comp_pred_diff[SINGLE_REFERENCE] += ctx->single_pred_diff;
+ rdc->comp_pred_diff[COMPOUND_REFERENCE] += ctx->comp_pred_diff;
+ rdc->comp_pred_diff[REFERENCE_MODE_SELECT] += ctx->hybrid_pred_diff;
+ }
+
+ const int x_mis = AOMMIN(bw, mi_params->mi_cols - mi_col);
+ const int y_mis = AOMMIN(bh, mi_params->mi_rows - mi_row);
+ if (cm->seq_params.order_hint_info.enable_ref_frame_mvs)
+ av1_copy_frame_mvs(cm, mi, mi_row, mi_col, x_mis, y_mis);
+}
+
+void av1_setup_src_planes(MACROBLOCK *x, const YV12_BUFFER_CONFIG *src,
+ int mi_row, int mi_col, const int num_planes,
+ BLOCK_SIZE bsize) {
+ // Set current frame pointer.
+ x->e_mbd.cur_buf = src;
+
+ // We use AOMMIN(num_planes, MAX_MB_PLANE) instead of num_planes to quiet
+ // the static analysis warnings.
+ for (int i = 0; i < AOMMIN(num_planes, MAX_MB_PLANE); i++) {
+ const int is_uv = i > 0;
+ setup_pred_plane(
+ &x->plane[i].src, bsize, src->buffers[i], src->crop_widths[is_uv],
+ src->crop_heights[is_uv], src->strides[is_uv], mi_row, mi_col, NULL,
+ x->e_mbd.plane[i].subsampling_x, x->e_mbd.plane[i].subsampling_y);
+ }
+}
+
+static EdgeInfo edge_info(const struct buf_2d *ref, const BLOCK_SIZE bsize,
+ const bool high_bd, const int bd) {
+ const int width = block_size_wide[bsize];
+ const int height = block_size_high[bsize];
+ // Implementation requires width to be a multiple of 8. It also requires
+ // height to be a multiple of 4, but this is always the case.
+ assert(height % 4 == 0);
+ if (width % 8 != 0) {
+ EdgeInfo ei = { .magnitude = 0, .x = 0, .y = 0 };
+ return ei;
+ }
+ return av1_edge_exists(ref->buf, ref->stride, width, height, high_bd, bd);
+}
+
+static int use_pb_simple_motion_pred_sse(const AV1_COMP *const cpi) {
+ // TODO(debargha, yuec): Not in use, need to implement a speed feature
+ // utilizing this data point, and replace '0' by the corresponding speed
+ // feature flag.
+ return 0 && !frame_is_intra_only(&cpi->common);
+}
+
+static void hybrid_intra_mode_search(AV1_COMP *cpi, MACROBLOCK *const x,
+ RD_STATS *rd_cost, BLOCK_SIZE bsize,
+ PICK_MODE_CONTEXT *ctx) {
+ // TODO(jianj): Investigate the failure of ScalabilityTest in AOM_Q mode,
+ // which sets base_qindex to 0 on keyframe.
+ if (cpi->oxcf.rc_mode != AOM_CBR || !cpi->sf.rt_sf.hybrid_intra_pickmode ||
+ bsize < BLOCK_16X16)
+ av1_rd_pick_intra_mode_sb(cpi, x, rd_cost, bsize, ctx, INT64_MAX);
+ else
+ av1_pick_intra_mode(cpi, x, rd_cost, bsize, ctx);
+}
+
+static AOM_INLINE void pick_sb_modes(AV1_COMP *const cpi,
+ TileDataEnc *tile_data,
+ MACROBLOCK *const x, int mi_row,
+ int mi_col, RD_STATS *rd_cost,
+ PARTITION_TYPE partition, BLOCK_SIZE bsize,
+ PICK_MODE_CONTEXT *ctx, RD_STATS best_rd,
+ int pick_mode_type) {
+ if (best_rd.rdcost < 0) {
+ ctx->rd_stats.rdcost = INT64_MAX;
+ ctx->rd_stats.skip = 0;
+ av1_invalid_rd_stats(rd_cost);
+ return;
+ }
+
+ set_offsets(cpi, &tile_data->tile_info, x, mi_row, mi_col, bsize);
+
+ if (ctx->rd_mode_is_ready) {
+ assert(ctx->mic.sb_type == bsize);
+ assert(ctx->mic.partition == partition);
+ rd_cost->rate = ctx->rd_stats.rate;
+ rd_cost->dist = ctx->rd_stats.dist;
+ rd_cost->rdcost = ctx->rd_stats.rdcost;
+ return;
+ }
+
+ AV1_COMMON *const cm = &cpi->common;
+ const int num_planes = av1_num_planes(cm);
+ MACROBLOCKD *const xd = &x->e_mbd;
+ MB_MODE_INFO *mbmi;
+ struct macroblock_plane *const p = x->plane;
+ struct macroblockd_plane *const pd = xd->plane;
+ const AQ_MODE aq_mode = cpi->oxcf.aq_mode;
+ int i;
+
+#if CONFIG_COLLECT_COMPONENT_TIMING
+ start_timing(cpi, rd_pick_sb_modes_time);
+#endif
+
+ aom_clear_system_state();
+
+ mbmi = xd->mi[0];
+ mbmi->sb_type = bsize;
+ mbmi->partition = partition;
+
+#if CONFIG_RD_DEBUG
+ mbmi->mi_row = mi_row;
+ mbmi->mi_col = mi_col;
+#endif
+
+ xd->tx_type_map = x->tx_type_map;
+ xd->tx_type_map_stride = mi_size_wide[bsize];
+
+ for (i = 0; i < num_planes; ++i) {
+ p[i].coeff = ctx->coeff[i];
+ p[i].qcoeff = ctx->qcoeff[i];
+ pd[i].dqcoeff = ctx->dqcoeff[i];
+ p[i].eobs = ctx->eobs[i];
+ p[i].txb_entropy_ctx = ctx->txb_entropy_ctx[i];
+ }
+
+ for (i = 0; i < 2; ++i) pd[i].color_index_map = ctx->color_index_map[i];
+
+ ctx->skippable = 0;
+ // Set to zero to make sure we do not use the previous encoded frame stats
+ mbmi->skip = 0;
+ // Reset skip mode flag.
+ mbmi->skip_mode = 0;
+
+ if (is_cur_buf_hbd(xd)) {
+ x->source_variance = av1_high_get_sby_perpixel_variance(
+ cpi, &x->plane[0].src, bsize, xd->bd);
+ } else {
+ x->source_variance =
+ av1_get_sby_perpixel_variance(cpi, &x->plane[0].src, bsize);
+ }
+ if (use_pb_simple_motion_pred_sse(cpi)) {
+ const FULLPEL_MV start_mv = kZeroFullMv;
+ unsigned int var = 0;
+ av1_simple_motion_sse_var(cpi, x, mi_row, mi_col, bsize, start_mv, 0,
+ &x->simple_motion_pred_sse, &var);
+ }
+
+ // If the threshold for disabling wedge search is zero, it means the feature
+ // should not be used. Use a value that will always succeed in the check.
+ if (cpi->sf.inter_sf.disable_wedge_search_edge_thresh == 0) {
+ x->edge_strength = UINT16_MAX;
+ x->edge_strength_x = UINT16_MAX;
+ x->edge_strength_y = UINT16_MAX;
+ } else {
+ EdgeInfo ei =
+ edge_info(&x->plane[0].src, bsize, is_cur_buf_hbd(xd), xd->bd);
+ x->edge_strength = ei.magnitude;
+ x->edge_strength_x = ei.x;
+ x->edge_strength_y = ei.y;
+ }
+
+ // Initialize default mode evaluation params
+ set_mode_eval_params(cpi, x, DEFAULT_EVAL);
+
+ // Save rdmult before it might be changed, so it can be restored later.
+ const int orig_rdmult = x->rdmult;
+ setup_block_rdmult(cpi, x, mi_row, mi_col, bsize, aq_mode, mbmi);
+ // Set error per bit for current rdmult
+ set_error_per_bit(x, x->rdmult);
+ av1_rd_cost_update(x->rdmult, &best_rd);
+
+ // Find best coding mode & reconstruct the MB so it is available
+ // as a predictor for MBs that follow in the SB
+ if (frame_is_intra_only(cm)) {
+#if CONFIG_COLLECT_COMPONENT_TIMING
+ start_timing(cpi, av1_rd_pick_intra_mode_sb_time);
+#endif
+ switch (pick_mode_type) {
+ case PICK_MODE_RD:
+ av1_rd_pick_intra_mode_sb(cpi, x, rd_cost, bsize, ctx, best_rd.rdcost);
+ break;
+ case PICK_MODE_NONRD:
+ hybrid_intra_mode_search(cpi, x, rd_cost, bsize, ctx);
+ break;
+ default: assert(0 && "Unknown pick mode type.");
+ }
+#if CONFIG_COLLECT_COMPONENT_TIMING
+ end_timing(cpi, av1_rd_pick_intra_mode_sb_time);
+#endif
+ } else {
+#if CONFIG_COLLECT_COMPONENT_TIMING
+ start_timing(cpi, av1_rd_pick_inter_mode_sb_time);
+#endif
+ if (segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) {
+ av1_rd_pick_inter_mode_sb_seg_skip(cpi, tile_data, x, mi_row, mi_col,
+ rd_cost, bsize, ctx, best_rd.rdcost);
+ } else {
+ // TODO(kyslov): do the same for pick_inter_mode_sb_seg_skip
+ switch (pick_mode_type) {
+ case PICK_MODE_RD:
+ av1_rd_pick_inter_mode_sb(cpi, tile_data, x, rd_cost, bsize, ctx,
+ best_rd.rdcost);
+ break;
+ case PICK_MODE_NONRD:
+ av1_nonrd_pick_inter_mode_sb(cpi, tile_data, x, rd_cost, bsize, ctx,
+ best_rd.rdcost);
+ break;
+ default: assert(0 && "Unknown pick mode type.");
+ }
+ }
+#if CONFIG_COLLECT_COMPONENT_TIMING
+ end_timing(cpi, av1_rd_pick_inter_mode_sb_time);
+#endif
+ }
+
+ // Examine the resulting rate and for AQ mode 2 make a segment choice.
+ if (rd_cost->rate != INT_MAX && aq_mode == COMPLEXITY_AQ &&
+ bsize >= BLOCK_16X16) {
+ av1_caq_select_segment(cpi, x, bsize, mi_row, mi_col, rd_cost->rate);
+ }
+
+ x->rdmult = orig_rdmult;
+
+ // TODO(jingning) The rate-distortion optimization flow needs to be
+ // refactored to provide proper exit/return handle.
+ if (rd_cost->rate == INT_MAX) rd_cost->rdcost = INT64_MAX;
+
+ ctx->rd_stats.rate = rd_cost->rate;
+ ctx->rd_stats.dist = rd_cost->dist;
+ ctx->rd_stats.rdcost = rd_cost->rdcost;
+
+#if CONFIG_COLLECT_COMPONENT_TIMING
+ end_timing(cpi, rd_pick_sb_modes_time);
+#endif
+}
+
+static AOM_INLINE void update_inter_mode_stats(FRAME_CONTEXT *fc,
+ FRAME_COUNTS *counts,
+ PREDICTION_MODE mode,
+ int16_t mode_context) {
+ (void)counts;
+
+ int16_t mode_ctx = mode_context & NEWMV_CTX_MASK;
+ if (mode == NEWMV) {
+#if CONFIG_ENTROPY_STATS
+ ++counts->newmv_mode[mode_ctx][0];
+#endif
+ update_cdf(fc->newmv_cdf[mode_ctx], 0, 2);
+ return;
+ }
+
+#if CONFIG_ENTROPY_STATS
+ ++counts->newmv_mode[mode_ctx][1];
+#endif
+ update_cdf(fc->newmv_cdf[mode_ctx], 1, 2);
+
+ mode_ctx = (mode_context >> GLOBALMV_OFFSET) & GLOBALMV_CTX_MASK;
+ if (mode == GLOBALMV) {
+#if CONFIG_ENTROPY_STATS
+ ++counts->zeromv_mode[mode_ctx][0];
+#endif
+ update_cdf(fc->zeromv_cdf[mode_ctx], 0, 2);
+ return;
+ }
+
+#if CONFIG_ENTROPY_STATS
+ ++counts->zeromv_mode[mode_ctx][1];
+#endif
+ update_cdf(fc->zeromv_cdf[mode_ctx], 1, 2);
+
+ mode_ctx = (mode_context >> REFMV_OFFSET) & REFMV_CTX_MASK;
+#if CONFIG_ENTROPY_STATS
+ ++counts->refmv_mode[mode_ctx][mode != NEARESTMV];
+#endif
+ update_cdf(fc->refmv_cdf[mode_ctx], mode != NEARESTMV, 2);
+}
+
+static AOM_INLINE void update_palette_cdf(MACROBLOCKD *xd,
+ const MB_MODE_INFO *const mbmi,
+ FRAME_COUNTS *counts) {
+ FRAME_CONTEXT *fc = xd->tile_ctx;
+ const BLOCK_SIZE bsize = mbmi->sb_type;
+ const PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info;
+ const int palette_bsize_ctx = av1_get_palette_bsize_ctx(bsize);
+
+ (void)counts;
+
+ if (mbmi->mode == DC_PRED) {
+ const int n = pmi->palette_size[0];
+ const int palette_mode_ctx = av1_get_palette_mode_ctx(xd);
+
+#if CONFIG_ENTROPY_STATS
+ ++counts->palette_y_mode[palette_bsize_ctx][palette_mode_ctx][n > 0];
+#endif
+ update_cdf(fc->palette_y_mode_cdf[palette_bsize_ctx][palette_mode_ctx],
+ n > 0, 2);
+ if (n > 0) {
+#if CONFIG_ENTROPY_STATS
+ ++counts->palette_y_size[palette_bsize_ctx][n - PALETTE_MIN_SIZE];
+#endif
+ update_cdf(fc->palette_y_size_cdf[palette_bsize_ctx],
+ n - PALETTE_MIN_SIZE, PALETTE_SIZES);
+ }
+ }
+
+ if (mbmi->uv_mode == UV_DC_PRED) {
+ const int n = pmi->palette_size[1];
+ const int palette_uv_mode_ctx = (pmi->palette_size[0] > 0);
+
+#if CONFIG_ENTROPY_STATS
+ ++counts->palette_uv_mode[palette_uv_mode_ctx][n > 0];
+#endif
+ update_cdf(fc->palette_uv_mode_cdf[palette_uv_mode_ctx], n > 0, 2);
+
+ if (n > 0) {
+#if CONFIG_ENTROPY_STATS
+ ++counts->palette_uv_size[palette_bsize_ctx][n - PALETTE_MIN_SIZE];
+#endif
+ update_cdf(fc->palette_uv_size_cdf[palette_bsize_ctx],
+ n - PALETTE_MIN_SIZE, PALETTE_SIZES);
+ }
+ }
+}
+
+static AOM_INLINE void sum_intra_stats(const AV1_COMMON *const cm,
+ FRAME_COUNTS *counts, MACROBLOCKD *xd,
+ const MB_MODE_INFO *const mbmi,
+ const MB_MODE_INFO *above_mi,
+ const MB_MODE_INFO *left_mi,
+ const int intraonly) {
+ FRAME_CONTEXT *fc = xd->tile_ctx;
+ const PREDICTION_MODE y_mode = mbmi->mode;
+ (void)counts;
+ const BLOCK_SIZE bsize = mbmi->sb_type;
+
+ if (intraonly) {
+#if CONFIG_ENTROPY_STATS
+ const PREDICTION_MODE above = av1_above_block_mode(above_mi);
+ const PREDICTION_MODE left = av1_left_block_mode(left_mi);
+ const int above_ctx = intra_mode_context[above];
+ const int left_ctx = intra_mode_context[left];
+ ++counts->kf_y_mode[above_ctx][left_ctx][y_mode];
+#endif // CONFIG_ENTROPY_STATS
+ update_cdf(get_y_mode_cdf(fc, above_mi, left_mi), y_mode, INTRA_MODES);
+ } else {
+#if CONFIG_ENTROPY_STATS
+ ++counts->y_mode[size_group_lookup[bsize]][y_mode];
+#endif // CONFIG_ENTROPY_STATS
+ update_cdf(fc->y_mode_cdf[size_group_lookup[bsize]], y_mode, INTRA_MODES);
+ }
+
+ if (av1_filter_intra_allowed(cm, mbmi)) {
+ const int use_filter_intra_mode =
+ mbmi->filter_intra_mode_info.use_filter_intra;
+#if CONFIG_ENTROPY_STATS
+ ++counts->filter_intra[mbmi->sb_type][use_filter_intra_mode];
+ if (use_filter_intra_mode) {
+ ++counts
+ ->filter_intra_mode[mbmi->filter_intra_mode_info.filter_intra_mode];
+ }
+#endif // CONFIG_ENTROPY_STATS
+ update_cdf(fc->filter_intra_cdfs[mbmi->sb_type], use_filter_intra_mode, 2);
+ if (use_filter_intra_mode) {
+ update_cdf(fc->filter_intra_mode_cdf,
+ mbmi->filter_intra_mode_info.filter_intra_mode,
+ FILTER_INTRA_MODES);
+ }
+ }
+ if (av1_is_directional_mode(mbmi->mode) && av1_use_angle_delta(bsize)) {
+#if CONFIG_ENTROPY_STATS
+ ++counts->angle_delta[mbmi->mode - V_PRED]
+ [mbmi->angle_delta[PLANE_TYPE_Y] + MAX_ANGLE_DELTA];
+#endif
+ update_cdf(fc->angle_delta_cdf[mbmi->mode - V_PRED],
+ mbmi->angle_delta[PLANE_TYPE_Y] + MAX_ANGLE_DELTA,
+ 2 * MAX_ANGLE_DELTA + 1);
+ }
+
+ if (!xd->is_chroma_ref) return;
+
+ const UV_PREDICTION_MODE uv_mode = mbmi->uv_mode;
+ const CFL_ALLOWED_TYPE cfl_allowed = is_cfl_allowed(xd);
+#if CONFIG_ENTROPY_STATS
+ ++counts->uv_mode[cfl_allowed][y_mode][uv_mode];
+#endif // CONFIG_ENTROPY_STATS
+ update_cdf(fc->uv_mode_cdf[cfl_allowed][y_mode], uv_mode,
+ UV_INTRA_MODES - !cfl_allowed);
+ if (uv_mode == UV_CFL_PRED) {
+ const int8_t joint_sign = mbmi->cfl_alpha_signs;
+ const uint8_t idx = mbmi->cfl_alpha_idx;
+
+#if CONFIG_ENTROPY_STATS
+ ++counts->cfl_sign[joint_sign];
+#endif
+ update_cdf(fc->cfl_sign_cdf, joint_sign, CFL_JOINT_SIGNS);
+ if (CFL_SIGN_U(joint_sign) != CFL_SIGN_ZERO) {
+ aom_cdf_prob *cdf_u = fc->cfl_alpha_cdf[CFL_CONTEXT_U(joint_sign)];
+
+#if CONFIG_ENTROPY_STATS
+ ++counts->cfl_alpha[CFL_CONTEXT_U(joint_sign)][CFL_IDX_U(idx)];
+#endif
+ update_cdf(cdf_u, CFL_IDX_U(idx), CFL_ALPHABET_SIZE);
+ }
+ if (CFL_SIGN_V(joint_sign) != CFL_SIGN_ZERO) {
+ aom_cdf_prob *cdf_v = fc->cfl_alpha_cdf[CFL_CONTEXT_V(joint_sign)];
+
+#if CONFIG_ENTROPY_STATS
+ ++counts->cfl_alpha[CFL_CONTEXT_V(joint_sign)][CFL_IDX_V(idx)];
+#endif
+ update_cdf(cdf_v, CFL_IDX_V(idx), CFL_ALPHABET_SIZE);
+ }
+ }
+ if (av1_is_directional_mode(get_uv_mode(uv_mode)) &&
+ av1_use_angle_delta(bsize)) {
+#if CONFIG_ENTROPY_STATS
+ ++counts->angle_delta[uv_mode - UV_V_PRED]
+ [mbmi->angle_delta[PLANE_TYPE_UV] + MAX_ANGLE_DELTA];
+#endif
+ update_cdf(fc->angle_delta_cdf[uv_mode - UV_V_PRED],
+ mbmi->angle_delta[PLANE_TYPE_UV] + MAX_ANGLE_DELTA,
+ 2 * MAX_ANGLE_DELTA + 1);
+ }
+ if (av1_allow_palette(cm->features.allow_screen_content_tools, bsize)) {
+ update_palette_cdf(xd, mbmi, counts);
+ }
+}
+
+static AOM_INLINE void update_stats(const AV1_COMMON *const cm,
+ ThreadData *td) {
+ MACROBLOCK *x = &td->mb;
+ MACROBLOCKD *const xd = &x->e_mbd;
+ const MB_MODE_INFO *const mbmi = xd->mi[0];
+ const MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext;
+ const CurrentFrame *const current_frame = &cm->current_frame;
+ const BLOCK_SIZE bsize = mbmi->sb_type;
+ FRAME_CONTEXT *fc = xd->tile_ctx;
+ const int seg_ref_active =
+ segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_REF_FRAME);
+
+ if (current_frame->skip_mode_info.skip_mode_flag && !seg_ref_active &&
+ is_comp_ref_allowed(bsize)) {
+ const int skip_mode_ctx = av1_get_skip_mode_context(xd);
+#if CONFIG_ENTROPY_STATS
+ td->counts->skip_mode[skip_mode_ctx][mbmi->skip_mode]++;
+#endif
+ update_cdf(fc->skip_mode_cdfs[skip_mode_ctx], mbmi->skip_mode, 2);
+ }
+
+ if (!mbmi->skip_mode && !seg_ref_active) {
+ const int skip_ctx = av1_get_skip_context(xd);
+#if CONFIG_ENTROPY_STATS
+ td->counts->skip[skip_ctx][mbmi->skip]++;
+#endif
+ update_cdf(fc->skip_cdfs[skip_ctx], mbmi->skip, 2);
+ }
+
+#if CONFIG_ENTROPY_STATS
+ // delta quant applies to both intra and inter
+ const int super_block_upper_left =
+ ((xd->mi_row & (cm->seq_params.mib_size - 1)) == 0) &&
+ ((xd->mi_col & (cm->seq_params.mib_size - 1)) == 0);
+ const DeltaQInfo *const delta_q_info = &cm->delta_q_info;
+ if (delta_q_info->delta_q_present_flag &&
+ (bsize != cm->seq_params.sb_size || !mbmi->skip) &&
+ super_block_upper_left) {
+ const int dq =
+ (mbmi->current_qindex - xd->current_qindex) / delta_q_info->delta_q_res;
+ const int absdq = abs(dq);
+ for (int i = 0; i < AOMMIN(absdq, DELTA_Q_SMALL); ++i) {
+ td->counts->delta_q[i][1]++;
+ }
+ if (absdq < DELTA_Q_SMALL) td->counts->delta_q[absdq][0]++;
+ if (delta_q_info->delta_lf_present_flag) {
+ if (delta_q_info->delta_lf_multi) {
+ const int frame_lf_count =
+ av1_num_planes(cm) > 1 ? FRAME_LF_COUNT : FRAME_LF_COUNT - 2;
+ for (int lf_id = 0; lf_id < frame_lf_count; ++lf_id) {
+ const int delta_lf = (mbmi->delta_lf[lf_id] - xd->delta_lf[lf_id]) /
+ delta_q_info->delta_lf_res;
+ const int abs_delta_lf = abs(delta_lf);
+ for (int i = 0; i < AOMMIN(abs_delta_lf, DELTA_LF_SMALL); ++i) {
+ td->counts->delta_lf_multi[lf_id][i][1]++;
+ }
+ if (abs_delta_lf < DELTA_LF_SMALL)
+ td->counts->delta_lf_multi[lf_id][abs_delta_lf][0]++;
+ }
+ } else {
+ const int delta_lf =
+ (mbmi->delta_lf_from_base - xd->delta_lf_from_base) /
+ delta_q_info->delta_lf_res;
+ const int abs_delta_lf = abs(delta_lf);
+ for (int i = 0; i < AOMMIN(abs_delta_lf, DELTA_LF_SMALL); ++i) {
+ td->counts->delta_lf[i][1]++;
+ }
+ if (abs_delta_lf < DELTA_LF_SMALL)
+ td->counts->delta_lf[abs_delta_lf][0]++;
+ }
+ }
+ }
+#endif
+
+ if (!is_inter_block(mbmi)) {
+ sum_intra_stats(cm, td->counts, xd, mbmi, xd->above_mbmi, xd->left_mbmi,
+ frame_is_intra_only(cm));
+ }
+
+ if (av1_allow_intrabc(cm)) {
+ update_cdf(fc->intrabc_cdf, is_intrabc_block(mbmi), 2);
+#if CONFIG_ENTROPY_STATS
+ ++td->counts->intrabc[is_intrabc_block(mbmi)];
+#endif // CONFIG_ENTROPY_STATS
+ }
+
+ if (frame_is_intra_only(cm) || mbmi->skip_mode) return;
+
+ FRAME_COUNTS *const counts = td->counts;
+ const int inter_block = is_inter_block(mbmi);
+
+ if (!seg_ref_active) {
+#if CONFIG_ENTROPY_STATS
+ counts->intra_inter[av1_get_intra_inter_context(xd)][inter_block]++;
+#endif
+ update_cdf(fc->intra_inter_cdf[av1_get_intra_inter_context(xd)],
+ inter_block, 2);
+ // If the segment reference feature is enabled we have only a single
+ // reference frame allowed for the segment so exclude it from
+ // the reference frame counts used to work out probabilities.
+ if (inter_block) {
+ const MV_REFERENCE_FRAME ref0 = mbmi->ref_frame[0];
+ const MV_REFERENCE_FRAME ref1 = mbmi->ref_frame[1];
+ if (current_frame->reference_mode == REFERENCE_MODE_SELECT) {
+ if (is_comp_ref_allowed(bsize)) {
+#if CONFIG_ENTROPY_STATS
+ counts->comp_inter[av1_get_reference_mode_context(xd)]
+ [has_second_ref(mbmi)]++;
+#endif // CONFIG_ENTROPY_STATS
+ update_cdf(av1_get_reference_mode_cdf(xd), has_second_ref(mbmi), 2);
+ }
+ }
+
+ if (has_second_ref(mbmi)) {
+ const COMP_REFERENCE_TYPE comp_ref_type = has_uni_comp_refs(mbmi)
+ ? UNIDIR_COMP_REFERENCE
+ : BIDIR_COMP_REFERENCE;
+ update_cdf(av1_get_comp_reference_type_cdf(xd), comp_ref_type,
+ COMP_REFERENCE_TYPES);
+#if CONFIG_ENTROPY_STATS
+ counts->comp_ref_type[av1_get_comp_reference_type_context(xd)]
+ [comp_ref_type]++;
+#endif // CONFIG_ENTROPY_STATS
+
+ if (comp_ref_type == UNIDIR_COMP_REFERENCE) {
+ const int bit = (ref0 == BWDREF_FRAME);
+ update_cdf(av1_get_pred_cdf_uni_comp_ref_p(xd), bit, 2);
+#if CONFIG_ENTROPY_STATS
+ counts
+ ->uni_comp_ref[av1_get_pred_context_uni_comp_ref_p(xd)][0][bit]++;
+#endif // CONFIG_ENTROPY_STATS
+ if (!bit) {
+ const int bit1 = (ref1 == LAST3_FRAME || ref1 == GOLDEN_FRAME);
+ update_cdf(av1_get_pred_cdf_uni_comp_ref_p1(xd), bit1, 2);
+#if CONFIG_ENTROPY_STATS
+ counts->uni_comp_ref[av1_get_pred_context_uni_comp_ref_p1(xd)][1]
+ [bit1]++;
+#endif // CONFIG_ENTROPY_STATS
+ if (bit1) {
+ update_cdf(av1_get_pred_cdf_uni_comp_ref_p2(xd),
+ ref1 == GOLDEN_FRAME, 2);
+#if CONFIG_ENTROPY_STATS
+ counts->uni_comp_ref[av1_get_pred_context_uni_comp_ref_p2(xd)][2]
+ [ref1 == GOLDEN_FRAME]++;
+#endif // CONFIG_ENTROPY_STATS
+ }
+ }
+ } else {
+ const int bit = (ref0 == GOLDEN_FRAME || ref0 == LAST3_FRAME);
+ update_cdf(av1_get_pred_cdf_comp_ref_p(xd), bit, 2);
+#if CONFIG_ENTROPY_STATS
+ counts->comp_ref[av1_get_pred_context_comp_ref_p(xd)][0][bit]++;
+#endif // CONFIG_ENTROPY_STATS
+ if (!bit) {
+ update_cdf(av1_get_pred_cdf_comp_ref_p1(xd), ref0 == LAST2_FRAME,
+ 2);
+#if CONFIG_ENTROPY_STATS
+ counts->comp_ref[av1_get_pred_context_comp_ref_p1(xd)][1]
+ [ref0 == LAST2_FRAME]++;
+#endif // CONFIG_ENTROPY_STATS
+ } else {
+ update_cdf(av1_get_pred_cdf_comp_ref_p2(xd), ref0 == GOLDEN_FRAME,
+ 2);
+#if CONFIG_ENTROPY_STATS
+ counts->comp_ref[av1_get_pred_context_comp_ref_p2(xd)][2]
+ [ref0 == GOLDEN_FRAME]++;
+#endif // CONFIG_ENTROPY_STATS
+ }
+ update_cdf(av1_get_pred_cdf_comp_bwdref_p(xd), ref1 == ALTREF_FRAME,
+ 2);
+#if CONFIG_ENTROPY_STATS
+ counts->comp_bwdref[av1_get_pred_context_comp_bwdref_p(xd)][0]
+ [ref1 == ALTREF_FRAME]++;
+#endif // CONFIG_ENTROPY_STATS
+ if (ref1 != ALTREF_FRAME) {
+ update_cdf(av1_get_pred_cdf_comp_bwdref_p1(xd),
+ ref1 == ALTREF2_FRAME, 2);
+#if CONFIG_ENTROPY_STATS
+ counts->comp_bwdref[av1_get_pred_context_comp_bwdref_p1(xd)][1]
+ [ref1 == ALTREF2_FRAME]++;
+#endif // CONFIG_ENTROPY_STATS
+ }
+ }
+ } else {
+ const int bit = (ref0 >= BWDREF_FRAME);
+ update_cdf(av1_get_pred_cdf_single_ref_p1(xd), bit, 2);
+#if CONFIG_ENTROPY_STATS
+ counts->single_ref[av1_get_pred_context_single_ref_p1(xd)][0][bit]++;
+#endif // CONFIG_ENTROPY_STATS
+ if (bit) {
+ assert(ref0 <= ALTREF_FRAME);
+ update_cdf(av1_get_pred_cdf_single_ref_p2(xd), ref0 == ALTREF_FRAME,
+ 2);
+#if CONFIG_ENTROPY_STATS
+ counts->single_ref[av1_get_pred_context_single_ref_p2(xd)][1]
+ [ref0 == ALTREF_FRAME]++;
+#endif // CONFIG_ENTROPY_STATS
+ if (ref0 != ALTREF_FRAME) {
+ update_cdf(av1_get_pred_cdf_single_ref_p6(xd),
+ ref0 == ALTREF2_FRAME, 2);
+#if CONFIG_ENTROPY_STATS
+ counts->single_ref[av1_get_pred_context_single_ref_p6(xd)][5]
+ [ref0 == ALTREF2_FRAME]++;
+#endif // CONFIG_ENTROPY_STATS
+ }
+ } else {
+ const int bit1 = !(ref0 == LAST2_FRAME || ref0 == LAST_FRAME);
+ update_cdf(av1_get_pred_cdf_single_ref_p3(xd), bit1, 2);
+#if CONFIG_ENTROPY_STATS
+ counts->single_ref[av1_get_pred_context_single_ref_p3(xd)][2][bit1]++;
+#endif // CONFIG_ENTROPY_STATS
+ if (!bit1) {
+ update_cdf(av1_get_pred_cdf_single_ref_p4(xd), ref0 != LAST_FRAME,
+ 2);
+#if CONFIG_ENTROPY_STATS
+ counts->single_ref[av1_get_pred_context_single_ref_p4(xd)][3]
+ [ref0 != LAST_FRAME]++;
+#endif // CONFIG_ENTROPY_STATS
+ } else {
+ update_cdf(av1_get_pred_cdf_single_ref_p5(xd), ref0 != LAST3_FRAME,
+ 2);
+#if CONFIG_ENTROPY_STATS
+ counts->single_ref[av1_get_pred_context_single_ref_p5(xd)][4]
+ [ref0 != LAST3_FRAME]++;
+#endif // CONFIG_ENTROPY_STATS
+ }
+ }
+ }
+
+ if (cm->seq_params.enable_interintra_compound &&
+ is_interintra_allowed(mbmi)) {
+ const int bsize_group = size_group_lookup[bsize];
+ if (mbmi->ref_frame[1] == INTRA_FRAME) {
+#if CONFIG_ENTROPY_STATS
+ counts->interintra[bsize_group][1]++;
+#endif
+ update_cdf(fc->interintra_cdf[bsize_group], 1, 2);
+#if CONFIG_ENTROPY_STATS
+ counts->interintra_mode[bsize_group][mbmi->interintra_mode]++;
+#endif
+ update_cdf(fc->interintra_mode_cdf[bsize_group],
+ mbmi->interintra_mode, INTERINTRA_MODES);
+ if (av1_is_wedge_used(bsize)) {
+#if CONFIG_ENTROPY_STATS
+ counts->wedge_interintra[bsize][mbmi->use_wedge_interintra]++;
+#endif
+ update_cdf(fc->wedge_interintra_cdf[bsize],
+ mbmi->use_wedge_interintra, 2);
+ if (mbmi->use_wedge_interintra) {
+#if CONFIG_ENTROPY_STATS
+ counts->wedge_idx[bsize][mbmi->interintra_wedge_index]++;
+#endif
+ update_cdf(fc->wedge_idx_cdf[bsize], mbmi->interintra_wedge_index,
+ 16);
+ }
+ }
+ } else {
+#if CONFIG_ENTROPY_STATS
+ counts->interintra[bsize_group][0]++;
+#endif
+ update_cdf(fc->interintra_cdf[bsize_group], 0, 2);
+ }
+ }
+
+ const MOTION_MODE motion_allowed =
+ cm->features.switchable_motion_mode
+ ? motion_mode_allowed(xd->global_motion, xd, mbmi,
+ cm->features.allow_warped_motion)
+ : SIMPLE_TRANSLATION;
+ if (mbmi->ref_frame[1] != INTRA_FRAME) {
+ if (motion_allowed == WARPED_CAUSAL) {
+#if CONFIG_ENTROPY_STATS
+ counts->motion_mode[bsize][mbmi->motion_mode]++;
+#endif
+ update_cdf(fc->motion_mode_cdf[bsize], mbmi->motion_mode,
+ MOTION_MODES);
+ } else if (motion_allowed == OBMC_CAUSAL) {
+#if CONFIG_ENTROPY_STATS
+ counts->obmc[bsize][mbmi->motion_mode == OBMC_CAUSAL]++;
+#endif
+ update_cdf(fc->obmc_cdf[bsize], mbmi->motion_mode == OBMC_CAUSAL, 2);
+ }
+ }
+
+ if (has_second_ref(mbmi)) {
+ assert(current_frame->reference_mode != SINGLE_REFERENCE &&
+ is_inter_compound_mode(mbmi->mode) &&
+ mbmi->motion_mode == SIMPLE_TRANSLATION);
+
+ const int masked_compound_used = is_any_masked_compound_used(bsize) &&
+ cm->seq_params.enable_masked_compound;
+ if (masked_compound_used) {
+ const int comp_group_idx_ctx = get_comp_group_idx_context(xd);
+#if CONFIG_ENTROPY_STATS
+ ++counts->comp_group_idx[comp_group_idx_ctx][mbmi->comp_group_idx];
+#endif
+ update_cdf(fc->comp_group_idx_cdf[comp_group_idx_ctx],
+ mbmi->comp_group_idx, 2);
+ }
+
+ if (mbmi->comp_group_idx == 0) {
+ const int comp_index_ctx = get_comp_index_context(cm, xd);
+#if CONFIG_ENTROPY_STATS
+ ++counts->compound_index[comp_index_ctx][mbmi->compound_idx];
+#endif
+ update_cdf(fc->compound_index_cdf[comp_index_ctx], mbmi->compound_idx,
+ 2);
+ } else {
+ assert(masked_compound_used);
+ if (is_interinter_compound_used(COMPOUND_WEDGE, bsize)) {
+#if CONFIG_ENTROPY_STATS
+ ++counts->compound_type[bsize][mbmi->interinter_comp.type -
+ COMPOUND_WEDGE];
+#endif
+ update_cdf(fc->compound_type_cdf[bsize],
+ mbmi->interinter_comp.type - COMPOUND_WEDGE,
+ MASKED_COMPOUND_TYPES);
+ }
+ }
+ }
+ if (mbmi->interinter_comp.type == COMPOUND_WEDGE) {
+ if (is_interinter_compound_used(COMPOUND_WEDGE, bsize)) {
+#if CONFIG_ENTROPY_STATS
+ counts->wedge_idx[bsize][mbmi->interinter_comp.wedge_index]++;
+#endif
+ update_cdf(fc->wedge_idx_cdf[bsize],
+ mbmi->interinter_comp.wedge_index, 16);
+ }
+ }
+ }
+ }
+
+ if (inter_block && cm->features.interp_filter == SWITCHABLE &&
+ mbmi->motion_mode != WARPED_CAUSAL &&
+ !is_nontrans_global_motion(xd, mbmi)) {
+ update_filter_type_cdf(xd, mbmi);
+ }
+ if (inter_block &&
+ !segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) {
+ const PREDICTION_MODE mode = mbmi->mode;
+ const int16_t mode_ctx =
+ av1_mode_context_analyzer(mbmi_ext->mode_context, mbmi->ref_frame);
+ if (has_second_ref(mbmi)) {
+#if CONFIG_ENTROPY_STATS
+ ++counts->inter_compound_mode[mode_ctx][INTER_COMPOUND_OFFSET(mode)];
+#endif
+ update_cdf(fc->inter_compound_mode_cdf[mode_ctx],
+ INTER_COMPOUND_OFFSET(mode), INTER_COMPOUND_MODES);
+ } else {
+ update_inter_mode_stats(fc, counts, mode, mode_ctx);
+ }
+
+ const int new_mv = mbmi->mode == NEWMV || mbmi->mode == NEW_NEWMV;
+ if (new_mv) {
+ const uint8_t ref_frame_type = av1_ref_frame_type(mbmi->ref_frame);
+ for (int idx = 0; idx < 2; ++idx) {
+ if (mbmi_ext->ref_mv_count[ref_frame_type] > idx + 1) {
+ const uint8_t drl_ctx =
+ av1_drl_ctx(mbmi_ext->weight[ref_frame_type], idx);
+ update_cdf(fc->drl_cdf[drl_ctx], mbmi->ref_mv_idx != idx, 2);
+#if CONFIG_ENTROPY_STATS
+ ++counts->drl_mode[drl_ctx][mbmi->ref_mv_idx != idx];
+#endif
+ if (mbmi->ref_mv_idx == idx) break;
+ }
+ }
+ }
+
+ if (have_nearmv_in_inter_mode(mbmi->mode)) {
+ const uint8_t ref_frame_type = av1_ref_frame_type(mbmi->ref_frame);
+ for (int idx = 1; idx < 3; ++idx) {
+ if (mbmi_ext->ref_mv_count[ref_frame_type] > idx + 1) {
+ const uint8_t drl_ctx =
+ av1_drl_ctx(mbmi_ext->weight[ref_frame_type], idx);
+ update_cdf(fc->drl_cdf[drl_ctx], mbmi->ref_mv_idx != idx - 1, 2);
+#if CONFIG_ENTROPY_STATS
+ ++counts->drl_mode[drl_ctx][mbmi->ref_mv_idx != idx - 1];
+#endif
+ if (mbmi->ref_mv_idx == idx - 1) break;
+ }
+ }
+ }
+ if (have_newmv_in_inter_mode(mbmi->mode)) {
+ const int allow_hp = cm->features.cur_frame_force_integer_mv
+ ? MV_SUBPEL_NONE
+ : cm->features.allow_high_precision_mv;
+ if (new_mv) {
+ for (int ref = 0; ref < 1 + has_second_ref(mbmi); ++ref) {
+ const int_mv ref_mv = av1_get_ref_mv(x, ref);
+ av1_update_mv_stats(&mbmi->mv[ref].as_mv, &ref_mv.as_mv, &fc->nmvc,
+ allow_hp);
+ }
+ } else if (mbmi->mode == NEAREST_NEWMV || mbmi->mode == NEAR_NEWMV) {
+ const int ref = 1;
+ const int_mv ref_mv = av1_get_ref_mv(x, ref);
+ av1_update_mv_stats(&mbmi->mv[ref].as_mv, &ref_mv.as_mv, &fc->nmvc,
+ allow_hp);
+ } else if (mbmi->mode == NEW_NEARESTMV || mbmi->mode == NEW_NEARMV) {
+ const int ref = 0;
+ const int_mv ref_mv = av1_get_ref_mv(x, ref);
+ av1_update_mv_stats(&mbmi->mv[ref].as_mv, &ref_mv.as_mv, &fc->nmvc,
+ allow_hp);
+ }
+ }
+ }
+}
+
+static AOM_INLINE void restore_context(MACROBLOCK *x,
+ const RD_SEARCH_MACROBLOCK_CONTEXT *ctx,
+ int mi_row, int mi_col, BLOCK_SIZE bsize,
+ const int num_planes) {
+ MACROBLOCKD *xd = &x->e_mbd;
+ int p;
+ const int num_4x4_blocks_wide = mi_size_wide[bsize];
+ const int num_4x4_blocks_high = mi_size_high[bsize];
+ int mi_width = mi_size_wide[bsize];
+ int mi_height = mi_size_high[bsize];
+ for (p = 0; p < num_planes; p++) {
+ int tx_col = mi_col;
+ int tx_row = mi_row & MAX_MIB_MASK;
+ memcpy(
+ xd->above_entropy_context[p] + (tx_col >> xd->plane[p].subsampling_x),
+ ctx->a + num_4x4_blocks_wide * p,
+ (sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_wide) >>
+ xd->plane[p].subsampling_x);
+ memcpy(xd->left_entropy_context[p] + (tx_row >> xd->plane[p].subsampling_y),
+ ctx->l + num_4x4_blocks_high * p,
+ (sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_high) >>
+ xd->plane[p].subsampling_y);
+ }
+ memcpy(xd->above_partition_context + mi_col, ctx->sa,
+ sizeof(*xd->above_partition_context) * mi_width);
+ memcpy(xd->left_partition_context + (mi_row & MAX_MIB_MASK), ctx->sl,
+ sizeof(xd->left_partition_context[0]) * mi_height);
+ xd->above_txfm_context = ctx->p_ta;
+ xd->left_txfm_context = ctx->p_tl;
+ memcpy(xd->above_txfm_context, ctx->ta,
+ sizeof(*xd->above_txfm_context) * mi_width);
+ memcpy(xd->left_txfm_context, ctx->tl,
+ sizeof(*xd->left_txfm_context) * mi_height);
+}
+
+static AOM_INLINE void save_context(const MACROBLOCK *x,
+ RD_SEARCH_MACROBLOCK_CONTEXT *ctx,
+ int mi_row, int mi_col, BLOCK_SIZE bsize,
+ const int num_planes) {
+ const MACROBLOCKD *xd = &x->e_mbd;
+ int p;
+ int mi_width = mi_size_wide[bsize];
+ int mi_height = mi_size_high[bsize];
+
+ // buffer the above/left context information of the block in search.
+ for (p = 0; p < num_planes; ++p) {
+ int tx_col = mi_col;
+ int tx_row = mi_row & MAX_MIB_MASK;
+ memcpy(
+ ctx->a + mi_width * p,
+ xd->above_entropy_context[p] + (tx_col >> xd->plane[p].subsampling_x),
+ (sizeof(ENTROPY_CONTEXT) * mi_width) >> xd->plane[p].subsampling_x);
+ memcpy(ctx->l + mi_height * p,
+ xd->left_entropy_context[p] + (tx_row >> xd->plane[p].subsampling_y),
+ (sizeof(ENTROPY_CONTEXT) * mi_height) >> xd->plane[p].subsampling_y);
+ }
+ memcpy(ctx->sa, xd->above_partition_context + mi_col,
+ sizeof(*xd->above_partition_context) * mi_width);
+ memcpy(ctx->sl, xd->left_partition_context + (mi_row & MAX_MIB_MASK),
+ sizeof(xd->left_partition_context[0]) * mi_height);
+ memcpy(ctx->ta, xd->above_txfm_context,
+ sizeof(*xd->above_txfm_context) * mi_width);
+ memcpy(ctx->tl, xd->left_txfm_context,
+ sizeof(*xd->left_txfm_context) * mi_height);
+ ctx->p_ta = xd->above_txfm_context;
+ ctx->p_tl = xd->left_txfm_context;
+}
+
+static AOM_INLINE void encode_b(const AV1_COMP *const cpi,
+ TileDataEnc *tile_data, ThreadData *td,
+ TOKENEXTRA **tp, int mi_row, int mi_col,
+ RUN_TYPE dry_run, BLOCK_SIZE bsize,
+ PARTITION_TYPE partition,
+ PICK_MODE_CONTEXT *const ctx, int *rate) {
+ TileInfo *const tile = &tile_data->tile_info;
+ MACROBLOCK *const x = &td->mb;
+ MACROBLOCKD *xd = &x->e_mbd;
+
+ set_offsets_without_segment_id(cpi, tile, x, mi_row, mi_col, bsize);
+ const int origin_mult = x->rdmult;
+ setup_block_rdmult(cpi, x, mi_row, mi_col, bsize, NO_AQ, NULL);
+ MB_MODE_INFO *mbmi = xd->mi[0];
+ mbmi->partition = partition;
+ update_state(cpi, td, ctx, mi_row, mi_col, bsize, dry_run);
+
+ if (!dry_run) {
+ x->mbmi_ext_frame->cb_offset = x->cb_offset;
+ assert(x->cb_offset <
+ (1 << num_pels_log2_lookup[cpi->common.seq_params.sb_size]));
+ }
+
+ encode_superblock(cpi, tile_data, td, tp, dry_run, bsize, rate);
+
+ if (!dry_run) {
+ const AV1_COMMON *const cm = &cpi->common;
+ x->cb_offset += block_size_wide[bsize] * block_size_high[bsize];
+ if (bsize == cpi->common.seq_params.sb_size && mbmi->skip == 1 &&
+ cm->delta_q_info.delta_lf_present_flag) {
+ const int frame_lf_count =
+ av1_num_planes(cm) > 1 ? FRAME_LF_COUNT : FRAME_LF_COUNT - 2;
+ for (int lf_id = 0; lf_id < frame_lf_count; ++lf_id)
+ mbmi->delta_lf[lf_id] = xd->delta_lf[lf_id];
+ mbmi->delta_lf_from_base = xd->delta_lf_from_base;
+ }
+ if (has_second_ref(mbmi)) {
+ if (mbmi->compound_idx == 0 ||
+ mbmi->interinter_comp.type == COMPOUND_AVERAGE)
+ mbmi->comp_group_idx = 0;
+ else
+ mbmi->comp_group_idx = 1;
+ }
+
+ // delta quant applies to both intra and inter
+ const int super_block_upper_left =
+ ((mi_row & (cm->seq_params.mib_size - 1)) == 0) &&
+ ((mi_col & (cm->seq_params.mib_size - 1)) == 0);
+ const DeltaQInfo *const delta_q_info = &cm->delta_q_info;
+ if (delta_q_info->delta_q_present_flag &&
+ (bsize != cm->seq_params.sb_size || !mbmi->skip) &&
+ super_block_upper_left) {
+ xd->current_qindex = mbmi->current_qindex;
+ if (delta_q_info->delta_lf_present_flag) {
+ if (delta_q_info->delta_lf_multi) {
+ const int frame_lf_count =
+ av1_num_planes(cm) > 1 ? FRAME_LF_COUNT : FRAME_LF_COUNT - 2;
+ for (int lf_id = 0; lf_id < frame_lf_count; ++lf_id) {
+ xd->delta_lf[lf_id] = mbmi->delta_lf[lf_id];
+ }
+ } else {
+ xd->delta_lf_from_base = mbmi->delta_lf_from_base;
+ }
+ }
+ }
+
+ RD_COUNTS *rdc = &td->rd_counts;
+ if (mbmi->skip_mode) {
+ assert(!frame_is_intra_only(cm));
+ rdc->skip_mode_used_flag = 1;
+ if (cm->current_frame.reference_mode == REFERENCE_MODE_SELECT) {
+ assert(has_second_ref(mbmi));
+ rdc->compound_ref_used_flag = 1;
+ }
+ set_ref_ptrs(cm, xd, mbmi->ref_frame[0], mbmi->ref_frame[1]);
+ } else {
+ const int seg_ref_active =
+ segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_REF_FRAME);
+ if (!seg_ref_active) {
+ // If the segment reference feature is enabled we have only a single
+ // reference frame allowed for the segment so exclude it from
+ // the reference frame counts used to work out probabilities.
+ if (is_inter_block(mbmi)) {
+ av1_collect_neighbors_ref_counts(xd);
+ if (cm->current_frame.reference_mode == REFERENCE_MODE_SELECT) {
+ if (has_second_ref(mbmi)) {
+ // This flag is also updated for 4x4 blocks
+ rdc->compound_ref_used_flag = 1;
+ }
+ }
+ set_ref_ptrs(cm, xd, mbmi->ref_frame[0], mbmi->ref_frame[1]);
+ }
+ }
+ }
+
+ if (tile_data->allow_update_cdf) update_stats(&cpi->common, td);
+
+ // Gather obmc and warped motion count to update the probability.
+ if ((!cpi->sf.inter_sf.disable_obmc &&
+ cpi->sf.inter_sf.prune_obmc_prob_thresh > 0) ||
+ (cm->features.allow_warped_motion &&
+ cpi->sf.inter_sf.prune_warped_prob_thresh > 0)) {
+ const int inter_block = is_inter_block(mbmi);
+ const int seg_ref_active =
+ segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_REF_FRAME);
+ if (!seg_ref_active && inter_block) {
+ const MOTION_MODE motion_allowed =
+ cm->features.switchable_motion_mode
+ ? motion_mode_allowed(xd->global_motion, xd, mbmi,
+ cm->features.allow_warped_motion)
+ : SIMPLE_TRANSLATION;
+
+ if (mbmi->ref_frame[1] != INTRA_FRAME) {
+ if (motion_allowed >= OBMC_CAUSAL) {
+ td->rd_counts.obmc_used[bsize][mbmi->motion_mode == OBMC_CAUSAL]++;
+ }
+ if (motion_allowed == WARPED_CAUSAL) {
+ td->rd_counts.warped_used[mbmi->motion_mode == WARPED_CAUSAL]++;
+ }
+ }
+ }
+ }
+ }
+ // TODO(Ravi/Remya): Move this copy function to a better logical place
+ // This function will copy the best mode information from block
+ // level (x->mbmi_ext) to frame level (cpi->mbmi_ext_info.frame_base). This
+ // frame level buffer (cpi->mbmi_ext_info.frame_base) will be used during
+ // bitstream preparation.
+ av1_copy_mbmi_ext_to_mbmi_ext_frame(x->mbmi_ext_frame, x->mbmi_ext,
+ av1_ref_frame_type(xd->mi[0]->ref_frame));
+ x->rdmult = origin_mult;
+}
+
+static AOM_INLINE void encode_sb(const AV1_COMP *const cpi, ThreadData *td,
+ TileDataEnc *tile_data, TOKENEXTRA **tp,
+ int mi_row, int mi_col, RUN_TYPE dry_run,
+ BLOCK_SIZE bsize, PC_TREE *pc_tree,
+ int *rate) {
+ assert(bsize < BLOCK_SIZES_ALL);
+ const AV1_COMMON *const cm = &cpi->common;
+ const CommonModeInfoParams *const mi_params = &cm->mi_params;
+ MACROBLOCK *const x = &td->mb;
+ MACROBLOCKD *const xd = &x->e_mbd;
+ assert(bsize < BLOCK_SIZES_ALL);
+ const int hbs = mi_size_wide[bsize] / 2;
+ const int is_partition_root = bsize >= BLOCK_8X8;
+ const int ctx = is_partition_root
+ ? partition_plane_context(xd, mi_row, mi_col, bsize)
+ : -1;
+ const PARTITION_TYPE partition = pc_tree->partitioning;
+ const BLOCK_SIZE subsize = get_partition_subsize(bsize, partition);
+ int quarter_step = mi_size_wide[bsize] / 4;
+ int i;
+ BLOCK_SIZE bsize2 = get_partition_subsize(bsize, PARTITION_SPLIT);
+
+ if (mi_row >= mi_params->mi_rows || mi_col >= mi_params->mi_cols) return;
+
+ if (!dry_run && ctx >= 0) {
+ const int has_rows = (mi_row + hbs) < mi_params->mi_rows;
+ const int has_cols = (mi_col + hbs) < mi_params->mi_cols;
+
+ if (has_rows && has_cols) {
+#if CONFIG_ENTROPY_STATS
+ td->counts->partition[ctx][partition]++;
+#endif
+
+ if (tile_data->allow_update_cdf) {
+ FRAME_CONTEXT *fc = xd->tile_ctx;
+ update_cdf(fc->partition_cdf[ctx], partition,
+ partition_cdf_length(bsize));
+ }
+ }
+ }
+
+ switch (partition) {
+ case PARTITION_NONE:
+ encode_b(cpi, tile_data, td, tp, mi_row, mi_col, dry_run, subsize,
+ partition, &pc_tree->none, rate);
+ break;
+ case PARTITION_VERT:
+ encode_b(cpi, tile_data, td, tp, mi_row, mi_col, dry_run, subsize,
+ partition, &pc_tree->vertical[0], rate);
+ if (mi_col + hbs < mi_params->mi_cols) {
+ encode_b(cpi, tile_data, td, tp, mi_row, mi_col + hbs, dry_run, subsize,
+ partition, &pc_tree->vertical[1], rate);
+ }
+ break;
+ case PARTITION_HORZ:
+ encode_b(cpi, tile_data, td, tp, mi_row, mi_col, dry_run, subsize,
+ partition, &pc_tree->horizontal[0], rate);
+ if (mi_row + hbs < mi_params->mi_rows) {
+ encode_b(cpi, tile_data, td, tp, mi_row + hbs, mi_col, dry_run, subsize,
+ partition, &pc_tree->horizontal[1], rate);
+ }
+ break;
+ case PARTITION_SPLIT:
+ encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, dry_run, subsize,
+ pc_tree->split[0], rate);
+ encode_sb(cpi, td, tile_data, tp, mi_row, mi_col + hbs, dry_run, subsize,
+ pc_tree->split[1], rate);
+ encode_sb(cpi, td, tile_data, tp, mi_row + hbs, mi_col, dry_run, subsize,
+ pc_tree->split[2], rate);
+ encode_sb(cpi, td, tile_data, tp, mi_row + hbs, mi_col + hbs, dry_run,
+ subsize, pc_tree->split[3], rate);
+ break;
+
+ case PARTITION_HORZ_A:
+ encode_b(cpi, tile_data, td, tp, mi_row, mi_col, dry_run, bsize2,
+ partition, &pc_tree->horizontala[0], rate);
+ encode_b(cpi, tile_data, td, tp, mi_row, mi_col + hbs, dry_run, bsize2,
+ partition, &pc_tree->horizontala[1], rate);
+ encode_b(cpi, tile_data, td, tp, mi_row + hbs, mi_col, dry_run, subsize,
+ partition, &pc_tree->horizontala[2], rate);
+ break;
+ case PARTITION_HORZ_B:
+ encode_b(cpi, tile_data, td, tp, mi_row, mi_col, dry_run, subsize,
+ partition, &pc_tree->horizontalb[0], rate);
+ encode_b(cpi, tile_data, td, tp, mi_row + hbs, mi_col, dry_run, bsize2,
+ partition, &pc_tree->horizontalb[1], rate);
+ encode_b(cpi, tile_data, td, tp, mi_row + hbs, mi_col + hbs, dry_run,
+ bsize2, partition, &pc_tree->horizontalb[2], rate);
+ break;
+ case PARTITION_VERT_A:
+ encode_b(cpi, tile_data, td, tp, mi_row, mi_col, dry_run, bsize2,
+ partition, &pc_tree->verticala[0], rate);
+ encode_b(cpi, tile_data, td, tp, mi_row + hbs, mi_col, dry_run, bsize2,
+ partition, &pc_tree->verticala[1], rate);
+ encode_b(cpi, tile_data, td, tp, mi_row, mi_col + hbs, dry_run, subsize,
+ partition, &pc_tree->verticala[2], rate);
+
+ break;
+ case PARTITION_VERT_B:
+ encode_b(cpi, tile_data, td, tp, mi_row, mi_col, dry_run, subsize,
+ partition, &pc_tree->verticalb[0], rate);
+ encode_b(cpi, tile_data, td, tp, mi_row, mi_col + hbs, dry_run, bsize2,
+ partition, &pc_tree->verticalb[1], rate);
+ encode_b(cpi, tile_data, td, tp, mi_row + hbs, mi_col + hbs, dry_run,
+ bsize2, partition, &pc_tree->verticalb[2], rate);
+ break;
+ case PARTITION_HORZ_4:
+ for (i = 0; i < 4; ++i) {
+ int this_mi_row = mi_row + i * quarter_step;
+ if (i > 0 && this_mi_row >= mi_params->mi_rows) break;
+
+ encode_b(cpi, tile_data, td, tp, this_mi_row, mi_col, dry_run, subsize,
+ partition, &pc_tree->horizontal4[i], rate);
+ }
+ break;
+ case PARTITION_VERT_4:
+ for (i = 0; i < 4; ++i) {
+ int this_mi_col = mi_col + i * quarter_step;
+ if (i > 0 && this_mi_col >= mi_params->mi_cols) break;
+ encode_b(cpi, tile_data, td, tp, mi_row, this_mi_col, dry_run, subsize,
+ partition, &pc_tree->vertical4[i], rate);
+ }
+ break;
+ default: assert(0 && "Invalid partition type."); break;
+ }
+
+ update_ext_partition_context(xd, mi_row, mi_col, subsize, bsize, partition);
+}
+
+static AOM_INLINE void set_partial_sb_partition(
+ const AV1_COMMON *const cm, MB_MODE_INFO *mi, int bh_in, int bw_in,
+ int mi_rows_remaining, int mi_cols_remaining, BLOCK_SIZE bsize,
+ MB_MODE_INFO **mib) {
+ int bh = bh_in;
+ int r, c;
+ for (r = 0; r < cm->seq_params.mib_size; r += bh) {
+ int bw = bw_in;
+ for (c = 0; c < cm->seq_params.mib_size; c += bw) {
+ const int grid_index = get_mi_grid_idx(&cm->mi_params, r, c);
+ const int mi_index = get_alloc_mi_idx(&cm->mi_params, r, c);
+ mib[grid_index] = mi + mi_index;
+ mib[grid_index]->sb_type = find_partition_size(
+ bsize, mi_rows_remaining - r, mi_cols_remaining - c, &bh, &bw);
+ }
+ }
+}
+
+// This function attempts to set all mode info entries in a given superblock
+// to the same block partition size.
+// However, at the bottom and right borders of the image the requested size
+// may not be allowed in which case this code attempts to choose the largest
+// allowable partition.
+static AOM_INLINE void set_fixed_partitioning(AV1_COMP *cpi,
+ const TileInfo *const tile,
+ MB_MODE_INFO **mib, int mi_row,
+ int mi_col, BLOCK_SIZE bsize) {
+ AV1_COMMON *const cm = &cpi->common;
+ const CommonModeInfoParams *const mi_params = &cm->mi_params;
+ const int mi_rows_remaining = tile->mi_row_end - mi_row;
+ const int mi_cols_remaining = tile->mi_col_end - mi_col;
+ MB_MODE_INFO *const mi_upper_left =
+ mi_params->mi_alloc + get_alloc_mi_idx(mi_params, mi_row, mi_col);
+ int bh = mi_size_high[bsize];
+ int bw = mi_size_wide[bsize];
+
+ assert(bsize >= mi_params->mi_alloc_bsize &&
+ "Attempted to use bsize < mi_params->mi_alloc_bsize");
+ assert((mi_rows_remaining > 0) && (mi_cols_remaining > 0));
+
+ // Apply the requested partition size to the SB if it is all "in image"
+ if ((mi_cols_remaining >= cm->seq_params.mib_size) &&
+ (mi_rows_remaining >= cm->seq_params.mib_size)) {
+ for (int block_row = 0; block_row < cm->seq_params.mib_size;
+ block_row += bh) {
+ for (int block_col = 0; block_col < cm->seq_params.mib_size;
+ block_col += bw) {
+ const int grid_index = get_mi_grid_idx(mi_params, block_row, block_col);
+ const int mi_index = get_alloc_mi_idx(mi_params, block_row, block_col);
+ mib[grid_index] = mi_upper_left + mi_index;
+ mib[grid_index]->sb_type = bsize;
+ }
+ }
+ } else {
+ // Else this is a partial SB.
+ set_partial_sb_partition(cm, mi_upper_left, bh, bw, mi_rows_remaining,
+ mi_cols_remaining, bsize, mib);
+ }
+}
+
+static AOM_INLINE void rd_use_partition(
+ AV1_COMP *cpi, ThreadData *td, TileDataEnc *tile_data, MB_MODE_INFO **mib,
+ TOKENEXTRA **tp, int mi_row, int mi_col, BLOCK_SIZE bsize, int *rate,
+ int64_t *dist, int do_recon, PC_TREE *pc_tree) {
+ AV1_COMMON *const cm = &cpi->common;
+ const CommonModeInfoParams *const mi_params = &cm->mi_params;
+ const int num_planes = av1_num_planes(cm);
+ TileInfo *const tile_info = &tile_data->tile_info;
+ MACROBLOCK *const x = &td->mb;
+ MACROBLOCKD *const xd = &x->e_mbd;
+ const int bs = mi_size_wide[bsize];
+ const int hbs = bs / 2;
+ int i;
+ const int pl = (bsize >= BLOCK_8X8)
+ ? partition_plane_context(xd, mi_row, mi_col, bsize)
+ : 0;
+ const PARTITION_TYPE partition =
+ (bsize >= BLOCK_8X8) ? get_partition(cm, mi_row, mi_col, bsize)
+ : PARTITION_NONE;
+ const BLOCK_SIZE subsize = get_partition_subsize(bsize, partition);
+ RD_SEARCH_MACROBLOCK_CONTEXT x_ctx;
+ RD_STATS last_part_rdc, none_rdc, chosen_rdc, invalid_rdc;
+ BLOCK_SIZE sub_subsize = BLOCK_4X4;
+ int splits_below = 0;
+ BLOCK_SIZE bs_type = mib[0]->sb_type;
+ PICK_MODE_CONTEXT *ctx_none = &pc_tree->none;
+
+ if (mi_row >= mi_params->mi_rows || mi_col >= mi_params->mi_cols) return;
+
+ assert(mi_size_wide[bsize] == mi_size_high[bsize]);
+
+ av1_invalid_rd_stats(&last_part_rdc);
+ av1_invalid_rd_stats(&none_rdc);
+ av1_invalid_rd_stats(&chosen_rdc);
+ av1_invalid_rd_stats(&invalid_rdc);
+
+ pc_tree->partitioning = partition;
+
+ xd->above_txfm_context =
+ cm->above_contexts.txfm[tile_info->tile_row] + mi_col;
+ xd->left_txfm_context =
+ xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK);
+ save_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes);
+
+ if (bsize == BLOCK_16X16 && cpi->vaq_refresh) {
+ set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize);
+ x->mb_energy = av1_log_block_var(cpi, x, bsize);
+ }
+
+ // Save rdmult before it might be changed, so it can be restored later.
+ const int orig_rdmult = x->rdmult;
+ setup_block_rdmult(cpi, x, mi_row, mi_col, bsize, NO_AQ, NULL);
+
+ if (cpi->sf.part_sf.partition_search_type == VAR_BASED_PARTITION &&
+ (cpi->sf.part_sf.adjust_var_based_rd_partitioning == 2 ||
+ (cpi->sf.part_sf.adjust_var_based_rd_partitioning == 1 &&
+ cm->quant_params.base_qindex > 190 && bsize <= BLOCK_32X32 &&
+ !frame_is_intra_only(cm)))) {
+ // Check if any of the sub blocks are further split.
+ if (partition == PARTITION_SPLIT && subsize > BLOCK_8X8) {
+ sub_subsize = get_partition_subsize(subsize, PARTITION_SPLIT);
+ splits_below = 1;
+ for (i = 0; i < 4; i++) {
+ int jj = i >> 1, ii = i & 0x01;
+ MB_MODE_INFO *this_mi = mib[jj * hbs * mi_params->mi_stride + ii * hbs];
+ if (this_mi && this_mi->sb_type >= sub_subsize) {
+ splits_below = 0;
+ }
+ }
+ }
+
+ // If partition is not none try none unless each of the 4 splits are split
+ // even further..
+ if (partition != PARTITION_NONE && !splits_below &&
+ mi_row + hbs < mi_params->mi_rows &&
+ mi_col + hbs < mi_params->mi_cols) {
+ pc_tree->partitioning = PARTITION_NONE;
+ pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &none_rdc,
+ PARTITION_NONE, bsize, ctx_none, invalid_rdc, PICK_MODE_RD);
+
+ if (none_rdc.rate < INT_MAX) {
+ none_rdc.rate += x->partition_cost[pl][PARTITION_NONE];
+ none_rdc.rdcost = RDCOST(x->rdmult, none_rdc.rate, none_rdc.dist);
+ }
+
+ restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes);
+ mib[0]->sb_type = bs_type;
+ pc_tree->partitioning = partition;
+ }
+ }
+
+ switch (partition) {
+ case PARTITION_NONE:
+ pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &last_part_rdc,
+ PARTITION_NONE, bsize, ctx_none, invalid_rdc, PICK_MODE_RD);
+ break;
+ case PARTITION_HORZ:
+ pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &last_part_rdc,
+ PARTITION_HORZ, subsize, &pc_tree->horizontal[0],
+ invalid_rdc, PICK_MODE_RD);
+ if (last_part_rdc.rate != INT_MAX && bsize >= BLOCK_8X8 &&
+ mi_row + hbs < mi_params->mi_rows) {
+ RD_STATS tmp_rdc;
+ const PICK_MODE_CONTEXT *const ctx_h = &pc_tree->horizontal[0];
+ av1_init_rd_stats(&tmp_rdc);
+ update_state(cpi, td, ctx_h, mi_row, mi_col, subsize, 1);
+ encode_superblock(cpi, tile_data, td, tp, DRY_RUN_NORMAL, subsize,
+ NULL);
+ pick_sb_modes(cpi, tile_data, x, mi_row + hbs, mi_col, &tmp_rdc,
+ PARTITION_HORZ, subsize, &pc_tree->horizontal[1],
+ invalid_rdc, PICK_MODE_RD);
+ if (tmp_rdc.rate == INT_MAX || tmp_rdc.dist == INT64_MAX) {
+ av1_invalid_rd_stats(&last_part_rdc);
+ break;
+ }
+ last_part_rdc.rate += tmp_rdc.rate;
+ last_part_rdc.dist += tmp_rdc.dist;
+ last_part_rdc.rdcost += tmp_rdc.rdcost;
+ }
+ break;
+ case PARTITION_VERT:
+ pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &last_part_rdc,
+ PARTITION_VERT, subsize, &pc_tree->vertical[0], invalid_rdc,
+ PICK_MODE_RD);
+ if (last_part_rdc.rate != INT_MAX && bsize >= BLOCK_8X8 &&
+ mi_col + hbs < mi_params->mi_cols) {
+ RD_STATS tmp_rdc;
+ const PICK_MODE_CONTEXT *const ctx_v = &pc_tree->vertical[0];
+ av1_init_rd_stats(&tmp_rdc);
+ update_state(cpi, td, ctx_v, mi_row, mi_col, subsize, 1);
+ encode_superblock(cpi, tile_data, td, tp, DRY_RUN_NORMAL, subsize,
+ NULL);
+ pick_sb_modes(cpi, tile_data, x, mi_row, mi_col + hbs, &tmp_rdc,
+ PARTITION_VERT, subsize,
+ &pc_tree->vertical[bsize > BLOCK_8X8], invalid_rdc,
+ PICK_MODE_RD);
+ if (tmp_rdc.rate == INT_MAX || tmp_rdc.dist == INT64_MAX) {
+ av1_invalid_rd_stats(&last_part_rdc);
+ break;
+ }
+ last_part_rdc.rate += tmp_rdc.rate;
+ last_part_rdc.dist += tmp_rdc.dist;
+ last_part_rdc.rdcost += tmp_rdc.rdcost;
+ }
+ break;
+ case PARTITION_SPLIT:
+ if (cpi->sf.part_sf.adjust_var_based_rd_partitioning == 1 &&
+ none_rdc.rate < INT_MAX && none_rdc.skip == 1) {
+ av1_invalid_rd_stats(&last_part_rdc);
+ break;
+ }
+ last_part_rdc.rate = 0;
+ last_part_rdc.dist = 0;
+ last_part_rdc.rdcost = 0;
+ for (i = 0; i < 4; i++) {
+ int x_idx = (i & 1) * hbs;
+ int y_idx = (i >> 1) * hbs;
+ int jj = i >> 1, ii = i & 0x01;
+ RD_STATS tmp_rdc;
+ if ((mi_row + y_idx >= mi_params->mi_rows) ||
+ (mi_col + x_idx >= mi_params->mi_cols))
+ continue;
+
+ av1_init_rd_stats(&tmp_rdc);
+ rd_use_partition(cpi, td, tile_data,
+ mib + jj * hbs * mi_params->mi_stride + ii * hbs, tp,
+ mi_row + y_idx, mi_col + x_idx, subsize, &tmp_rdc.rate,
+ &tmp_rdc.dist, i != 3, pc_tree->split[i]);
+ if (tmp_rdc.rate == INT_MAX || tmp_rdc.dist == INT64_MAX) {
+ av1_invalid_rd_stats(&last_part_rdc);
+ break;
+ }
+ last_part_rdc.rate += tmp_rdc.rate;
+ last_part_rdc.dist += tmp_rdc.dist;
+ }
+ break;
+ case PARTITION_VERT_A:
+ case PARTITION_VERT_B:
+ case PARTITION_HORZ_A:
+ case PARTITION_HORZ_B:
+ case PARTITION_HORZ_4:
+ case PARTITION_VERT_4:
+ assert(0 && "Cannot handle extended partition types");
+ default: assert(0); break;
+ }
+
+ if (last_part_rdc.rate < INT_MAX) {
+ last_part_rdc.rate += x->partition_cost[pl][partition];
+ last_part_rdc.rdcost =
+ RDCOST(x->rdmult, last_part_rdc.rate, last_part_rdc.dist);
+ }
+
+ if ((cpi->sf.part_sf.partition_search_type == VAR_BASED_PARTITION &&
+ cpi->sf.part_sf.adjust_var_based_rd_partitioning > 2) &&
+ partition != PARTITION_SPLIT && bsize > BLOCK_8X8 &&
+ (mi_row + bs < mi_params->mi_rows ||
+ mi_row + hbs == mi_params->mi_rows) &&
+ (mi_col + bs < mi_params->mi_cols ||
+ mi_col + hbs == mi_params->mi_cols)) {
+ BLOCK_SIZE split_subsize = get_partition_subsize(bsize, PARTITION_SPLIT);
+ chosen_rdc.rate = 0;
+ chosen_rdc.dist = 0;
+
+ restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes);
+ pc_tree->partitioning = PARTITION_SPLIT;
+
+ // Split partition.
+ for (i = 0; i < 4; i++) {
+ int x_idx = (i & 1) * hbs;
+ int y_idx = (i >> 1) * hbs;
+ RD_STATS tmp_rdc;
+
+ if ((mi_row + y_idx >= mi_params->mi_rows) ||
+ (mi_col + x_idx >= mi_params->mi_cols))
+ continue;
+
+ save_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes);
+ pc_tree->split[i]->partitioning = PARTITION_NONE;
+ pick_sb_modes(cpi, tile_data, x, mi_row + y_idx, mi_col + x_idx, &tmp_rdc,
+ PARTITION_SPLIT, split_subsize, &pc_tree->split[i]->none,
+ invalid_rdc, PICK_MODE_RD);
+
+ restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes);
+ if (tmp_rdc.rate == INT_MAX || tmp_rdc.dist == INT64_MAX) {
+ av1_invalid_rd_stats(&chosen_rdc);
+ break;
+ }
+
+ chosen_rdc.rate += tmp_rdc.rate;
+ chosen_rdc.dist += tmp_rdc.dist;
+
+ if (i != 3)
+ encode_sb(cpi, td, tile_data, tp, mi_row + y_idx, mi_col + x_idx,
+ OUTPUT_ENABLED, split_subsize, pc_tree->split[i], NULL);
+
+ chosen_rdc.rate += x->partition_cost[pl][PARTITION_NONE];
+ }
+ if (chosen_rdc.rate < INT_MAX) {
+ chosen_rdc.rate += x->partition_cost[pl][PARTITION_SPLIT];
+ chosen_rdc.rdcost = RDCOST(x->rdmult, chosen_rdc.rate, chosen_rdc.dist);
+ }
+ }
+
+ // If last_part is better set the partitioning to that.
+ if (last_part_rdc.rdcost < chosen_rdc.rdcost) {
+ mib[0]->sb_type = bsize;
+ if (bsize >= BLOCK_8X8) pc_tree->partitioning = partition;
+ chosen_rdc = last_part_rdc;
+ }
+ // If none was better set the partitioning to that.
+ if (none_rdc.rdcost < chosen_rdc.rdcost) {
+ if (bsize >= BLOCK_8X8) pc_tree->partitioning = PARTITION_NONE;
+ chosen_rdc = none_rdc;
+ }
+
+ restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes);
+
+ // We must have chosen a partitioning and encoding or we'll fail later on.
+ // No other opportunities for success.
+ if (bsize == cm->seq_params.sb_size)
+ assert(chosen_rdc.rate < INT_MAX && chosen_rdc.dist < INT64_MAX);
+
+ if (do_recon) {
+ if (bsize == cm->seq_params.sb_size) {
+ // NOTE: To get estimate for rate due to the tokens, use:
+ // int rate_coeffs = 0;
+ // encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, DRY_RUN_COSTCOEFFS,
+ // bsize, pc_tree, &rate_coeffs);
+ x->cb_offset = 0;
+ encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, OUTPUT_ENABLED, bsize,
+ pc_tree, NULL);
+ } else {
+ encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, DRY_RUN_NORMAL, bsize,
+ pc_tree, NULL);
+ }
+ }
+
+ *rate = chosen_rdc.rate;
+ *dist = chosen_rdc.dist;
+ x->rdmult = orig_rdmult;
+}
+
+static int is_leaf_split_partition(AV1_COMMON *cm, int mi_row, int mi_col,
+ BLOCK_SIZE bsize) {
+ const int bs = mi_size_wide[bsize];
+ const int hbs = bs / 2;
+ assert(bsize >= BLOCK_8X8);
+ const BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_SPLIT);
+
+ for (int i = 0; i < 4; i++) {
+ int x_idx = (i & 1) * hbs;
+ int y_idx = (i >> 1) * hbs;
+ if ((mi_row + y_idx >= cm->mi_params.mi_rows) ||
+ (mi_col + x_idx >= cm->mi_params.mi_cols))
+ return 0;
+ if (get_partition(cm, mi_row + y_idx, mi_col + x_idx, subsize) !=
+ PARTITION_NONE &&
+ subsize != BLOCK_8X8)
+ return 0;
+ }
+ return 1;
+}
+
+static AOM_INLINE int do_slipt_check(BLOCK_SIZE bsize) {
+ return (bsize == BLOCK_16X16 || bsize == BLOCK_32X32);
+}
+
+static AOM_INLINE void nonrd_use_partition(AV1_COMP *cpi, ThreadData *td,
+ TileDataEnc *tile_data,
+ MB_MODE_INFO **mib, TOKENEXTRA **tp,
+ int mi_row, int mi_col,
+ BLOCK_SIZE bsize, PC_TREE *pc_tree) {
+ AV1_COMMON *const cm = &cpi->common;
+ const CommonModeInfoParams *const mi_params = &cm->mi_params;
+ TileInfo *const tile_info = &tile_data->tile_info;
+ MACROBLOCK *const x = &td->mb;
+ MACROBLOCKD *const xd = &x->e_mbd;
+ // Only square blocks from 8x8 to 128x128 are supported
+ assert(bsize >= BLOCK_8X8 && bsize <= BLOCK_128X128);
+ const int bs = mi_size_wide[bsize];
+ const int hbs = bs / 2;
+ const PARTITION_TYPE partition =
+ (bsize >= BLOCK_8X8) ? get_partition(cm, mi_row, mi_col, bsize)
+ : PARTITION_NONE;
+ BLOCK_SIZE subsize = get_partition_subsize(bsize, partition);
+ assert(subsize <= BLOCK_LARGEST);
+ const int pl = (bsize >= BLOCK_8X8)
+ ? partition_plane_context(xd, mi_row, mi_col, bsize)
+ : 0;
+
+ RD_STATS dummy_cost;
+ av1_invalid_rd_stats(&dummy_cost);
+ RD_STATS invalid_rd;
+ av1_invalid_rd_stats(&invalid_rd);
+
+ if (mi_row >= mi_params->mi_rows || mi_col >= mi_params->mi_cols) return;
+
+ assert(mi_size_wide[bsize] == mi_size_high[bsize]);
+
+ pc_tree->partitioning = partition;
+
+ xd->above_txfm_context =
+ cm->above_contexts.txfm[tile_info->tile_row] + mi_col;
+ xd->left_txfm_context =
+ xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK);
+
+ switch (partition) {
+ case PARTITION_NONE:
+ if (cpi->sf.rt_sf.nonrd_check_partition_split && do_slipt_check(bsize) &&
+ !frame_is_intra_only(cm)) {
+ RD_STATS split_rdc, none_rdc, block_rdc;
+ RD_SEARCH_MACROBLOCK_CONTEXT x_ctx;
+
+ av1_init_rd_stats(&split_rdc);
+ av1_invalid_rd_stats(&none_rdc);
+
+ save_context(x, &x_ctx, mi_row, mi_col, bsize, 3);
+ subsize = get_partition_subsize(bsize, PARTITION_SPLIT);
+ pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &none_rdc,
+ PARTITION_NONE, bsize, &pc_tree->none, invalid_rd,
+ PICK_MODE_NONRD);
+ none_rdc.rate += x->partition_cost[pl][PARTITION_NONE];
+ none_rdc.rdcost = RDCOST(x->rdmult, none_rdc.rate, none_rdc.dist);
+ restore_context(x, &x_ctx, mi_row, mi_col, bsize, 3);
+
+ for (int i = 0; i < 4; i++) {
+ av1_invalid_rd_stats(&block_rdc);
+ const int x_idx = (i & 1) * hbs;
+ const int y_idx = (i >> 1) * hbs;
+ if (mi_row + y_idx >= mi_params->mi_rows ||
+ mi_col + x_idx >= mi_params->mi_cols)
+ continue;
+ xd->above_txfm_context =
+ cm->above_contexts.txfm[tile_info->tile_row] + mi_col + x_idx;
+ xd->left_txfm_context =
+ xd->left_txfm_context_buffer + ((mi_row + y_idx) & MAX_MIB_MASK);
+ pc_tree->split[i]->partitioning = PARTITION_NONE;
+ pick_sb_modes(cpi, tile_data, x, mi_row + y_idx, mi_col + x_idx,
+ &block_rdc, PARTITION_NONE, subsize,
+ &pc_tree->split[i]->none, invalid_rd, PICK_MODE_NONRD);
+ split_rdc.rate += block_rdc.rate;
+ split_rdc.dist += block_rdc.dist;
+
+ encode_b(cpi, tile_data, td, tp, mi_row + y_idx, mi_col + x_idx, 1,
+ subsize, PARTITION_NONE, &pc_tree->split[i]->none, NULL);
+ }
+ split_rdc.rate += x->partition_cost[pl][PARTITION_SPLIT];
+ split_rdc.rdcost = RDCOST(x->rdmult, split_rdc.rate, split_rdc.dist);
+ restore_context(x, &x_ctx, mi_row, mi_col, bsize, 3);
+
+ if (none_rdc.rdcost < split_rdc.rdcost) {
+ mib[0]->sb_type = bsize;
+ pc_tree->partitioning = PARTITION_NONE;
+ encode_b(cpi, tile_data, td, tp, mi_row, mi_col, 0, bsize, partition,
+ &pc_tree->none, NULL);
+ } else {
+ mib[0]->sb_type = subsize;
+ pc_tree->partitioning = PARTITION_SPLIT;
+ for (int i = 0; i < 4; i++) {
+ const int x_idx = (i & 1) * hbs;
+ const int y_idx = (i >> 1) * hbs;
+ if (mi_row + y_idx >= mi_params->mi_rows ||
+ mi_col + x_idx >= mi_params->mi_cols)
+ continue;
+
+ encode_b(cpi, tile_data, td, tp, mi_row + y_idx, mi_col + x_idx, 0,
+ subsize, PARTITION_NONE, &pc_tree->split[i]->none, NULL);
+ }
+ }
+
+ } else {
+ pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &dummy_cost,
+ PARTITION_NONE, bsize, &pc_tree->none, invalid_rd,
+ PICK_MODE_NONRD);
+ encode_b(cpi, tile_data, td, tp, mi_row, mi_col, 0, bsize, partition,
+ &pc_tree->none, NULL);
+ }
+ break;
+ case PARTITION_VERT:
+ pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &dummy_cost,
+ PARTITION_VERT, subsize, &pc_tree->vertical[0], invalid_rd,
+ PICK_MODE_NONRD);
+ encode_b(cpi, tile_data, td, tp, mi_row, mi_col, 0, subsize,
+ PARTITION_VERT, &pc_tree->vertical[0], NULL);
+ if (mi_col + hbs < mi_params->mi_cols && bsize > BLOCK_8X8) {
+ pick_sb_modes(cpi, tile_data, x, mi_row, mi_col + hbs, &dummy_cost,
+ PARTITION_VERT, subsize, &pc_tree->vertical[1],
+ invalid_rd, PICK_MODE_NONRD);
+ encode_b(cpi, tile_data, td, tp, mi_row, mi_col + hbs, 0, subsize,
+ PARTITION_VERT, &pc_tree->vertical[1], NULL);
+ }
+ break;
+ case PARTITION_HORZ:
+ pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &dummy_cost,
+ PARTITION_HORZ, subsize, &pc_tree->horizontal[0],
+ invalid_rd, PICK_MODE_NONRD);
+ encode_b(cpi, tile_data, td, tp, mi_row, mi_col, 0, subsize,
+ PARTITION_HORZ, &pc_tree->horizontal[0], NULL);
+
+ if (mi_row + hbs < mi_params->mi_rows && bsize > BLOCK_8X8) {
+ pick_sb_modes(cpi, tile_data, x, mi_row + hbs, mi_col, &dummy_cost,
+ PARTITION_HORZ, subsize, &pc_tree->horizontal[1],
+ invalid_rd, PICK_MODE_NONRD);
+ encode_b(cpi, tile_data, td, tp, mi_row + hbs, mi_col, 0, subsize,
+ PARTITION_HORZ, &pc_tree->horizontal[1], NULL);
+ }
+ break;
+ case PARTITION_SPLIT:
+ if (cpi->sf.rt_sf.nonrd_check_partition_merge_mode &&
+ is_leaf_split_partition(cm, mi_row, mi_col, bsize) &&
+ !frame_is_intra_only(cm) && bsize <= BLOCK_32X32) {
+ RD_SEARCH_MACROBLOCK_CONTEXT x_ctx;
+ RD_STATS split_rdc, none_rdc;
+ av1_invalid_rd_stats(&split_rdc);
+ av1_invalid_rd_stats(&none_rdc);
+ save_context(x, &x_ctx, mi_row, mi_col, bsize, 3);
+ xd->above_txfm_context =
+ cm->above_contexts.txfm[tile_info->tile_row] + mi_col;
+ xd->left_txfm_context =
+ xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK);
+ pc_tree->partitioning = PARTITION_NONE;
+ pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &none_rdc,
+ PARTITION_NONE, bsize, &pc_tree->none, invalid_rd,
+ PICK_MODE_NONRD);
+ none_rdc.rate += x->partition_cost[pl][PARTITION_NONE];
+ none_rdc.rdcost = RDCOST(x->rdmult, none_rdc.rate, none_rdc.dist);
+ restore_context(x, &x_ctx, mi_row, mi_col, bsize, 3);
+ if (cpi->sf.rt_sf.nonrd_check_partition_merge_mode != 2 ||
+ none_rdc.skip != 1 || pc_tree->none.mic.mode == NEWMV) {
+ av1_init_rd_stats(&split_rdc);
+ for (int i = 0; i < 4; i++) {
+ RD_STATS block_rdc;
+ av1_invalid_rd_stats(&block_rdc);
+ int x_idx = (i & 1) * hbs;
+ int y_idx = (i >> 1) * hbs;
+ if ((mi_row + y_idx >= mi_params->mi_rows) ||
+ (mi_col + x_idx >= mi_params->mi_cols))
+ continue;
+ xd->above_txfm_context =
+ cm->above_contexts.txfm[tile_info->tile_row] + mi_col + x_idx;
+ xd->left_txfm_context = xd->left_txfm_context_buffer +
+ ((mi_row + y_idx) & MAX_MIB_MASK);
+ pc_tree->split[i]->partitioning = PARTITION_NONE;
+ pick_sb_modes(cpi, tile_data, x, mi_row + y_idx, mi_col + x_idx,
+ &block_rdc, PARTITION_NONE, subsize,
+ &pc_tree->split[i]->none, invalid_rd,
+ PICK_MODE_NONRD);
+ split_rdc.rate += block_rdc.rate;
+ split_rdc.dist += block_rdc.dist;
+
+ encode_b(cpi, tile_data, td, tp, mi_row + y_idx, mi_col + x_idx, 1,
+ subsize, PARTITION_NONE, &pc_tree->split[i]->none, NULL);
+ }
+ restore_context(x, &x_ctx, mi_row, mi_col, bsize, 3);
+ split_rdc.rate += x->partition_cost[pl][PARTITION_SPLIT];
+ split_rdc.rdcost = RDCOST(x->rdmult, split_rdc.rate, split_rdc.dist);
+ }
+ if (none_rdc.rdcost < split_rdc.rdcost) {
+ mib[0]->sb_type = bsize;
+ pc_tree->partitioning = PARTITION_NONE;
+ encode_b(cpi, tile_data, td, tp, mi_row, mi_col, 0, bsize, partition,
+ &pc_tree->none, NULL);
+ } else {
+ mib[0]->sb_type = subsize;
+ pc_tree->partitioning = PARTITION_SPLIT;
+ for (int i = 0; i < 4; i++) {
+ int x_idx = (i & 1) * hbs;
+ int y_idx = (i >> 1) * hbs;
+ if ((mi_row + y_idx >= mi_params->mi_rows) ||
+ (mi_col + x_idx >= mi_params->mi_cols))
+ continue;
+
+ encode_b(cpi, tile_data, td, tp, mi_row + y_idx, mi_col + x_idx, 0,
+ subsize, PARTITION_NONE, &pc_tree->split[i]->none, NULL);
+ }
+ }
+ } else {
+ for (int i = 0; i < 4; i++) {
+ int x_idx = (i & 1) * hbs;
+ int y_idx = (i >> 1) * hbs;
+ int jj = i >> 1, ii = i & 0x01;
+ if ((mi_row + y_idx >= mi_params->mi_rows) ||
+ (mi_col + x_idx >= mi_params->mi_cols))
+ continue;
+ nonrd_use_partition(cpi, td, tile_data,
+ mib + jj * hbs * mi_params->mi_stride + ii * hbs,
+ tp, mi_row + y_idx, mi_col + x_idx, subsize,
+ pc_tree->split[i]);
+ }
+ }
+ break;
+ case PARTITION_VERT_A:
+ case PARTITION_VERT_B:
+ case PARTITION_HORZ_A:
+ case PARTITION_HORZ_B:
+ case PARTITION_HORZ_4:
+ case PARTITION_VERT_4:
+ assert(0 && "Cannot handle extended partition types");
+ default: assert(0); break;
+ }
+}
+
+#if !CONFIG_REALTIME_ONLY
+static const FIRSTPASS_STATS *read_one_frame_stats(const TWO_PASS *p, int frm) {
+ assert(frm >= 0);
+ if (frm < 0 ||
+ p->stats_buf_ctx->stats_in_start + frm > p->stats_buf_ctx->stats_in_end) {
+ return NULL;
+ }
+
+ return &p->stats_buf_ctx->stats_in_start[frm];
+}
+// Checks to see if a super block is on a horizontal image edge.
+// In most cases this is the "real" edge unless there are formatting
+// bars embedded in the stream.
+static int active_h_edge(const AV1_COMP *cpi, int mi_row, int mi_step) {
+ int top_edge = 0;
+ int bottom_edge = cpi->common.mi_params.mi_rows;
+ int is_active_h_edge = 0;
+
+ // For two pass account for any formatting bars detected.
+ if (is_stat_consumption_stage_twopass(cpi)) {
+ const AV1_COMMON *const cm = &cpi->common;
+ const FIRSTPASS_STATS *const this_frame_stats = read_one_frame_stats(
+ &cpi->twopass, cm->current_frame.display_order_hint);
+ if (this_frame_stats == NULL) return AOM_CODEC_ERROR;
+
+ // The inactive region is specified in MBs not mi units.
+ // The image edge is in the following MB row.
+ top_edge += (int)(this_frame_stats->inactive_zone_rows * 4);
+
+ bottom_edge -= (int)(this_frame_stats->inactive_zone_rows * 4);
+ bottom_edge = AOMMAX(top_edge, bottom_edge);
+ }
+
+ if (((top_edge >= mi_row) && (top_edge < (mi_row + mi_step))) ||
+ ((bottom_edge >= mi_row) && (bottom_edge < (mi_row + mi_step)))) {
+ is_active_h_edge = 1;
+ }
+ return is_active_h_edge;
+}
+
+// Checks to see if a super block is on a vertical image edge.
+// In most cases this is the "real" edge unless there are formatting
+// bars embedded in the stream.
+static int active_v_edge(const AV1_COMP *cpi, int mi_col, int mi_step) {
+ int left_edge = 0;
+ int right_edge = cpi->common.mi_params.mi_cols;
+ int is_active_v_edge = 0;
+
+ // For two pass account for any formatting bars detected.
+ if (is_stat_consumption_stage_twopass(cpi)) {
+ const AV1_COMMON *const cm = &cpi->common;
+ const FIRSTPASS_STATS *const this_frame_stats = read_one_frame_stats(
+ &cpi->twopass, cm->current_frame.display_order_hint);
+ if (this_frame_stats == NULL) return AOM_CODEC_ERROR;
+
+ // The inactive region is specified in MBs not mi units.
+ // The image edge is in the following MB row.
+ left_edge += (int)(this_frame_stats->inactive_zone_cols * 4);
+
+ right_edge -= (int)(this_frame_stats->inactive_zone_cols * 4);
+ right_edge = AOMMAX(left_edge, right_edge);
+ }
+
+ if (((left_edge >= mi_col) && (left_edge < (mi_col + mi_step))) ||
+ ((right_edge >= mi_col) && (right_edge < (mi_col + mi_step)))) {
+ is_active_v_edge = 1;
+ }
+ return is_active_v_edge;
+}
+#endif // !CONFIG_REALTIME_ONLY
+
+static INLINE void store_pred_mv(MACROBLOCK *x, PICK_MODE_CONTEXT *ctx) {
+ memcpy(ctx->pred_mv, x->pred_mv, sizeof(x->pred_mv));
+}
+
+static INLINE void load_pred_mv(MACROBLOCK *x,
+ const PICK_MODE_CONTEXT *const ctx) {
+ memcpy(x->pred_mv, ctx->pred_mv, sizeof(x->pred_mv));
+}
+
+#if !CONFIG_REALTIME_ONLY
+// Try searching for an encoding for the given subblock. Returns zero if the
+// rdcost is already too high (to tell the caller not to bother searching for
+// encodings of further subblocks)
+static int rd_try_subblock(AV1_COMP *const cpi, ThreadData *td,
+ TileDataEnc *tile_data, TOKENEXTRA **tp, int is_last,
+ int mi_row, int mi_col, BLOCK_SIZE subsize,
+ RD_STATS best_rdcost, RD_STATS *sum_rdc,
+ PARTITION_TYPE partition,
+ PICK_MODE_CONTEXT *prev_ctx,
+ PICK_MODE_CONTEXT *this_ctx) {
+ MACROBLOCK *const x = &td->mb;
+ const int orig_mult = x->rdmult;
+ setup_block_rdmult(cpi, x, mi_row, mi_col, subsize, NO_AQ, NULL);
+
+ av1_rd_cost_update(x->rdmult, &best_rdcost);
+ if (cpi->sf.mv_sf.adaptive_motion_search) load_pred_mv(x, prev_ctx);
+
+ RD_STATS rdcost_remaining;
+ av1_rd_stats_subtraction(x->rdmult, &best_rdcost, sum_rdc, &rdcost_remaining);
+ RD_STATS this_rdc;
+ pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &this_rdc, partition,
+ subsize, this_ctx, rdcost_remaining, PICK_MODE_RD);
+
+ if (this_rdc.rate == INT_MAX) {
+ sum_rdc->rdcost = INT64_MAX;
+ } else {
+ sum_rdc->rate += this_rdc.rate;
+ sum_rdc->dist += this_rdc.dist;
+ av1_rd_cost_update(x->rdmult, sum_rdc);
+ }
+
+ if (sum_rdc->rdcost >= best_rdcost.rdcost) {
+ x->rdmult = orig_mult;
+ return 0;
+ }
+
+ if (!is_last) {
+ update_state(cpi, td, this_ctx, mi_row, mi_col, subsize, 1);
+ encode_superblock(cpi, tile_data, td, tp, DRY_RUN_NORMAL, subsize, NULL);
+ }
+
+ x->rdmult = orig_mult;
+ return 1;
+}
+
+static bool rd_test_partition3(AV1_COMP *const cpi, ThreadData *td,
+ TileDataEnc *tile_data, TOKENEXTRA **tp,
+ PC_TREE *pc_tree, RD_STATS *best_rdc,
+ PICK_MODE_CONTEXT ctxs[3],
+ PICK_MODE_CONTEXT *ctx, int mi_row, int mi_col,
+ BLOCK_SIZE bsize, PARTITION_TYPE partition,
+ int mi_row0, int mi_col0, BLOCK_SIZE subsize0,
+ int mi_row1, int mi_col1, BLOCK_SIZE subsize1,
+ int mi_row2, int mi_col2, BLOCK_SIZE subsize2) {
+ const MACROBLOCK *const x = &td->mb;
+ const MACROBLOCKD *const xd = &x->e_mbd;
+ const int pl = partition_plane_context(xd, mi_row, mi_col, bsize);
+ RD_STATS sum_rdc;
+ av1_init_rd_stats(&sum_rdc);
+ sum_rdc.rate = x->partition_cost[pl][partition];
+ sum_rdc.rdcost = RDCOST(x->rdmult, sum_rdc.rate, 0);
+ if (!rd_try_subblock(cpi, td, tile_data, tp, 0, mi_row0, mi_col0, subsize0,
+ *best_rdc, &sum_rdc, partition, ctx, &ctxs[0]))
+ return false;
+
+ if (!rd_try_subblock(cpi, td, tile_data, tp, 0, mi_row1, mi_col1, subsize1,
+ *best_rdc, &sum_rdc, partition, &ctxs[0], &ctxs[1]))
+ return false;
+
+ if (!rd_try_subblock(cpi, td, tile_data, tp, 1, mi_row2, mi_col2, subsize2,
+ *best_rdc, &sum_rdc, partition, &ctxs[1], &ctxs[2]))
+ return false;
+
+ av1_rd_cost_update(x->rdmult, &sum_rdc);
+ if (sum_rdc.rdcost >= best_rdc->rdcost) return false;
+ sum_rdc.rdcost = RDCOST(x->rdmult, sum_rdc.rate, sum_rdc.dist);
+ if (sum_rdc.rdcost >= best_rdc->rdcost) return false;
+
+ *best_rdc = sum_rdc;
+ pc_tree->partitioning = partition;
+ return true;
+}
+
+static AOM_INLINE void reset_partition(PC_TREE *pc_tree, BLOCK_SIZE bsize) {
+ pc_tree->partitioning = PARTITION_NONE;
+ pc_tree->none.rd_stats.skip = 0;
+
+ if (bsize >= BLOCK_8X8) {
+ BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_SPLIT);
+ for (int idx = 0; idx < 4; ++idx)
+ reset_partition(pc_tree->split[idx], subsize);
+ }
+}
+
+// Record the ref frames that have been selected by square partition blocks.
+static AOM_INLINE void update_picked_ref_frames_mask(MACROBLOCK *const x,
+ int ref_type,
+ BLOCK_SIZE bsize,
+ int mib_size, int mi_row,
+ int mi_col) {
+ assert(mi_size_wide[bsize] == mi_size_high[bsize]);
+ const int sb_size_mask = mib_size - 1;
+ const int mi_row_in_sb = mi_row & sb_size_mask;
+ const int mi_col_in_sb = mi_col & sb_size_mask;
+ const int mi_size = mi_size_wide[bsize];
+ for (int i = mi_row_in_sb; i < mi_row_in_sb + mi_size; ++i) {
+ for (int j = mi_col_in_sb; j < mi_col_in_sb + mi_size; ++j) {
+ x->picked_ref_frames_mask[i * 32 + j] |= 1 << ref_type;
+ }
+ }
+}
+
+// Structure to keep win flags for HORZ and VERT partition evaluations
+typedef struct {
+ bool horz_win;
+ bool vert_win;
+} RD_RECT_PART_WIN_INFO;
+
+// Decide whether to evaluate the AB partition specified by part_type based on
+// split and HORZ/VERT info
+int evaluate_ab_partition_based_on_split(
+ PC_TREE *pc_tree, PARTITION_TYPE rect_part,
+ RD_RECT_PART_WIN_INFO *rect_part_win_info, int qindex, int split_idx1,
+ int split_idx2) {
+ int num_win = 0;
+ // Threshold for number of winners
+ // Conservative pruning for high quantizers
+ const int num_win_thresh = AOMMIN(3 * (2 * (MAXQ - qindex) / MAXQ), 3);
+ bool sub_part_win = (rect_part_win_info == NULL)
+ ? (pc_tree->partitioning == rect_part)
+ : (rect_part == PARTITION_HORZ)
+ ? rect_part_win_info->horz_win
+ : rect_part_win_info->vert_win;
+ num_win += (sub_part_win) ? 1 : 0;
+ num_win +=
+ (pc_tree->split[split_idx1]->partitioning == PARTITION_NONE) ? 1 : 0;
+ num_win +=
+ (pc_tree->split[split_idx2]->partitioning == PARTITION_NONE) ? 1 : 0;
+ if (num_win < num_win_thresh) {
+ return 0;
+ }
+ return 1;
+}
+
+// Searches for the best partition pattern for a block based on the
+// rate-distortion cost, and returns a bool value to indicate whether a valid
+// partition pattern is found. The partition can recursively go down to
+// the smallest block size.
+//
+// Inputs:
+// cpi: the global compressor setting
+// td: thread data
+// tile_data: tile data
+// tp: the pointer to the start token
+// mi_row: row coordinate of the block in a step size of MI_SIZE
+// mi_col: column coordinate of the block in a step size of MI_SIZE
+// bsize: block size
+// max_sq_part: the largest square block size for prediction blocks
+// min_sq_part: the smallest square block size for prediction blocks
+// rd_cost: the pointer to the final rd cost of the current block
+// best_rdc: the upper bound of rd cost for a valid partition
+// pc_tree: the pointer to the PC_TREE node storing the picked partitions
+// and mode info for the current block
+// none_rd: the pointer to the rd cost in the case of not splitting the
+// current block
+// multi_pass_mode: SB_SINGLE_PASS/SB_DRY_PASS/SB_WET_PASS
+// rect_part_win_info: the pointer to a struct storing whether horz/vert
+// partition outperforms previously tested partitions
+//
+// Output:
+// a bool value indicating whether a valid partition is found
+static bool rd_pick_partition(AV1_COMP *const cpi, ThreadData *td,
+ TileDataEnc *tile_data, TOKENEXTRA **tp,
+ int mi_row, int mi_col, BLOCK_SIZE bsize,
+ BLOCK_SIZE max_sq_part, BLOCK_SIZE min_sq_part,
+ RD_STATS *rd_cost, RD_STATS best_rdc,
+ PC_TREE *pc_tree, int64_t *none_rd,
+ SB_MULTI_PASS_MODE multi_pass_mode,
+ RD_RECT_PART_WIN_INFO *rect_part_win_info) {
+ const AV1_COMMON *const cm = &cpi->common;
+ const CommonModeInfoParams *const mi_params = &cm->mi_params;
+ const int num_planes = av1_num_planes(cm);
+ TileInfo *const tile_info = &tile_data->tile_info;
+ MACROBLOCK *const x = &td->mb;
+ MACROBLOCKD *const xd = &x->e_mbd;
+ const int mi_step = mi_size_wide[bsize] / 2;
+ RD_SEARCH_MACROBLOCK_CONTEXT x_ctx;
+ const TOKENEXTRA *const tp_orig = *tp;
+ PICK_MODE_CONTEXT *ctx_none = &pc_tree->none;
+ int tmp_partition_cost[PARTITION_TYPES];
+ BLOCK_SIZE subsize;
+ RD_STATS this_rdc, sum_rdc;
+ const int bsize_at_least_8x8 = (bsize >= BLOCK_8X8);
+ int do_square_split = bsize_at_least_8x8;
+ const int pl = bsize_at_least_8x8
+ ? partition_plane_context(xd, mi_row, mi_col, bsize)
+ : 0;
+ const int *partition_cost = x->partition_cost[pl];
+
+ int do_rectangular_split = cpi->oxcf.enable_rect_partitions;
+ int64_t cur_none_rd = 0;
+ int64_t split_rd[4] = { 0, 0, 0, 0 };
+ int64_t horz_rd[2] = { 0, 0 };
+ int64_t vert_rd[2] = { 0, 0 };
+ int prune_horz = 0;
+ int prune_vert = 0;
+ int terminate_partition_search = 0;
+
+ int split_ctx_is_ready[2] = { 0, 0 };
+ int horz_ctx_is_ready = 0;
+ int vert_ctx_is_ready = 0;
+ BLOCK_SIZE bsize2 = get_partition_subsize(bsize, PARTITION_SPLIT);
+ // Initialise HORZ and VERT win flags as true for all split partitions
+ RD_RECT_PART_WIN_INFO split_part_rect_win[4] = {
+ { true, true }, { true, true }, { true, true }, { true, true }
+ };
+
+ bool found_best_partition = false;
+ if (best_rdc.rdcost < 0) {
+ av1_invalid_rd_stats(rd_cost);
+ return found_best_partition;
+ }
+
+ if (frame_is_intra_only(cm) && bsize == BLOCK_64X64) {
+ x->quad_tree_idx = 0;
+ x->cnn_output_valid = 0;
+ }
+
+ if (bsize == cm->seq_params.sb_size) x->must_find_valid_partition = 0;
+
+ // Override skipping rectangular partition operations for edge blocks
+ const int has_rows = (mi_row + mi_step < mi_params->mi_rows);
+ const int has_cols = (mi_col + mi_step < mi_params->mi_cols);
+ const int xss = x->e_mbd.plane[1].subsampling_x;
+ const int yss = x->e_mbd.plane[1].subsampling_y;
+
+ if (none_rd) *none_rd = 0;
+ int partition_none_allowed = has_rows && has_cols;
+ int partition_horz_allowed =
+ has_cols && bsize_at_least_8x8 && cpi->oxcf.enable_rect_partitions &&
+ get_plane_block_size(get_partition_subsize(bsize, PARTITION_HORZ), xss,
+ yss) != BLOCK_INVALID;
+ int partition_vert_allowed =
+ has_rows && bsize_at_least_8x8 && cpi->oxcf.enable_rect_partitions &&
+ get_plane_block_size(get_partition_subsize(bsize, PARTITION_VERT), xss,
+ yss) != BLOCK_INVALID;
+
+ (void)*tp_orig;
+
+#if CONFIG_COLLECT_PARTITION_STATS
+ int partition_decisions[EXT_PARTITION_TYPES] = { 0 };
+ int partition_attempts[EXT_PARTITION_TYPES] = { 0 };
+ int64_t partition_times[EXT_PARTITION_TYPES] = { 0 };
+ struct aom_usec_timer partition_timer = { 0 };
+ int partition_timer_on = 0;
+#if CONFIG_COLLECT_PARTITION_STATS == 2
+ PartitionStats *part_stats = &cpi->partition_stats;
+#endif
+#endif
+
+ // Override partition costs at the edges of the frame in the same
+ // way as in read_partition (see decodeframe.c)
+ if (!(has_rows && has_cols)) {
+ assert(bsize_at_least_8x8 && pl >= 0);
+ const aom_cdf_prob *partition_cdf = cm->fc->partition_cdf[pl];
+ const int max_cost = av1_cost_symbol(0);
+ for (int i = 0; i < PARTITION_TYPES; ++i) tmp_partition_cost[i] = max_cost;
+ if (has_cols) {
+ // At the bottom, the two possibilities are HORZ and SPLIT
+ aom_cdf_prob bot_cdf[2];
+ partition_gather_vert_alike(bot_cdf, partition_cdf, bsize);
+ static const int bot_inv_map[2] = { PARTITION_HORZ, PARTITION_SPLIT };
+ av1_cost_tokens_from_cdf(tmp_partition_cost, bot_cdf, bot_inv_map);
+ } else if (has_rows) {
+ // At the right, the two possibilities are VERT and SPLIT
+ aom_cdf_prob rhs_cdf[2];
+ partition_gather_horz_alike(rhs_cdf, partition_cdf, bsize);
+ static const int rhs_inv_map[2] = { PARTITION_VERT, PARTITION_SPLIT };
+ av1_cost_tokens_from_cdf(tmp_partition_cost, rhs_cdf, rhs_inv_map);
+ } else {
+ // At the bottom right, we always split
+ tmp_partition_cost[PARTITION_SPLIT] = 0;
+ }
+
+ partition_cost = tmp_partition_cost;
+ }
+
+#ifndef NDEBUG
+ // Nothing should rely on the default value of this array (which is just
+ // leftover from encoding the previous block. Setting it to fixed pattern
+ // when debugging.
+ // bit 0, 1, 2 are blk_skip of each plane
+ // bit 4, 5, 6 are initialization checking of each plane
+ memset(x->blk_skip, 0x77, sizeof(x->blk_skip));
+#endif // NDEBUG
+
+ assert(mi_size_wide[bsize] == mi_size_high[bsize]);
+
+ av1_init_rd_stats(&this_rdc);
+
+ set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize);
+
+ // Save rdmult before it might be changed, so it can be restored later.
+ const int orig_rdmult = x->rdmult;
+ setup_block_rdmult(cpi, x, mi_row, mi_col, bsize, NO_AQ, NULL);
+
+ av1_rd_cost_update(x->rdmult, &best_rdc);
+
+ if (bsize == BLOCK_16X16 && cpi->vaq_refresh)
+ x->mb_energy = av1_log_block_var(cpi, x, bsize);
+
+ if (bsize > cpi->sf.part_sf.use_square_partition_only_threshold) {
+ partition_horz_allowed &= !has_rows;
+ partition_vert_allowed &= !has_cols;
+ }
+
+ xd->above_txfm_context =
+ cm->above_contexts.txfm[tile_info->tile_row] + mi_col;
+ xd->left_txfm_context =
+ xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK);
+ save_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes);
+
+ const int try_intra_cnn_split =
+ !cpi->is_screen_content_type && frame_is_intra_only(cm) &&
+ cpi->sf.part_sf.intra_cnn_split &&
+ cm->seq_params.sb_size >= BLOCK_64X64 && bsize <= BLOCK_64X64 &&
+ bsize >= BLOCK_8X8 &&
+ mi_row + mi_size_high[bsize] <= mi_params->mi_rows &&
+ mi_col + mi_size_wide[bsize] <= mi_params->mi_cols;
+
+ if (try_intra_cnn_split) {
+ av1_intra_mode_cnn_partition(
+ &cpi->common, x, bsize, x->quad_tree_idx, &partition_none_allowed,
+ &partition_horz_allowed, &partition_vert_allowed, &do_rectangular_split,
+ &do_square_split);
+ }
+
+ // Use simple_motion_search to prune partitions. This must be done prior to
+ // PARTITION_SPLIT to propagate the initial mvs to a smaller blocksize.
+ const int try_split_only =
+ !cpi->is_screen_content_type &&
+ cpi->sf.part_sf.simple_motion_search_split && do_square_split &&
+ bsize >= BLOCK_8X8 &&
+ mi_row + mi_size_high[bsize] <= mi_params->mi_rows &&
+ mi_col + mi_size_wide[bsize] <= mi_params->mi_cols &&
+ !frame_is_intra_only(cm) && !av1_superres_scaled(cm);
+
+ if (try_split_only) {
+ av1_simple_motion_search_based_split(
+ cpi, x, pc_tree, mi_row, mi_col, bsize, &partition_none_allowed,
+ &partition_horz_allowed, &partition_vert_allowed, &do_rectangular_split,
+ &do_square_split);
+ }
+
+ const int try_prune_rect =
+ !cpi->is_screen_content_type &&
+ cpi->sf.part_sf.simple_motion_search_prune_rect &&
+ !frame_is_intra_only(cm) && do_rectangular_split &&
+ (do_square_split || partition_none_allowed ||
+ (prune_horz && prune_vert)) &&
+ (partition_horz_allowed || partition_vert_allowed) && bsize >= BLOCK_8X8;
+
+ if (try_prune_rect) {
+ av1_simple_motion_search_prune_rect(
+ cpi, x, pc_tree, mi_row, mi_col, bsize, &partition_horz_allowed,
+ &partition_vert_allowed, &prune_horz, &prune_vert);
+ }
+
+ // Max and min square partition levels are defined as the partition nodes that
+ // the recursive function rd_pick_partition() can reach. To implement this:
+ // only PARTITION_NONE is allowed if the current node equals min_sq_part,
+ // only PARTITION_SPLIT is allowed if the current node exceeds max_sq_part.
+ assert(block_size_wide[min_sq_part] == block_size_high[min_sq_part]);
+ assert(block_size_wide[max_sq_part] == block_size_high[max_sq_part]);
+ assert(min_sq_part <= max_sq_part);
+ assert(block_size_wide[bsize] == block_size_high[bsize]);
+ const int max_partition_size = block_size_wide[max_sq_part];
+ const int min_partition_size = block_size_wide[min_sq_part];
+ const int blksize = block_size_wide[bsize];
+ assert(min_partition_size <= max_partition_size);
+ const int is_le_min_sq_part = blksize <= min_partition_size;
+ const int is_gt_max_sq_part = blksize > max_partition_size;
+ if (is_gt_max_sq_part) {
+ // If current block size is larger than max, only allow split.
+ partition_none_allowed = 0;
+ partition_horz_allowed = 0;
+ partition_vert_allowed = 0;
+ do_square_split = 1;
+ } else if (is_le_min_sq_part) {
+ // If current block size is less or equal to min, only allow none if valid
+ // block large enough; only allow split otherwise.
+ partition_horz_allowed = 0;
+ partition_vert_allowed = 0;
+ // only disable square split when current block is not at the picture
+ // boundary. otherwise, inherit the square split flag from previous logic
+ if (has_rows && has_cols) do_square_split = 0;
+ partition_none_allowed = !do_square_split;
+ }
+
+BEGIN_PARTITION_SEARCH:
+ if (x->must_find_valid_partition) {
+ do_square_split = bsize_at_least_8x8 && (blksize > min_partition_size);
+ partition_none_allowed =
+ has_rows && has_cols && (blksize >= min_partition_size);
+ partition_horz_allowed =
+ has_cols && bsize_at_least_8x8 && cpi->oxcf.enable_rect_partitions &&
+ (blksize > min_partition_size) &&
+ get_plane_block_size(get_partition_subsize(bsize, PARTITION_HORZ), xss,
+ yss) != BLOCK_INVALID;
+ partition_vert_allowed =
+ has_rows && bsize_at_least_8x8 && cpi->oxcf.enable_rect_partitions &&
+ (blksize > min_partition_size) &&
+ get_plane_block_size(get_partition_subsize(bsize, PARTITION_VERT), xss,
+ yss) != BLOCK_INVALID;
+ terminate_partition_search = 0;
+ }
+
+ // Partition block source pixel variance.
+ unsigned int pb_source_variance = UINT_MAX;
+
+ // Partition block sse after simple motion compensation, not in use now,
+ // but will be used for upcoming speed features
+ unsigned int pb_simple_motion_pred_sse = UINT_MAX;
+ (void)pb_simple_motion_pred_sse;
+
+ // PARTITION_NONE
+ if (is_le_min_sq_part && has_rows && has_cols) partition_none_allowed = 1;
+ assert(terminate_partition_search == 0);
+ int64_t part_none_rd = INT64_MAX;
+ if (cpi->is_screen_content_type)
+ partition_none_allowed = has_rows && has_cols;
+ if (partition_none_allowed && !is_gt_max_sq_part) {
+ int pt_cost = 0;
+ if (bsize_at_least_8x8) {
+ pt_cost = partition_cost[PARTITION_NONE] < INT_MAX
+ ? partition_cost[PARTITION_NONE]
+ : 0;
+ }
+ RD_STATS partition_rdcost;
+ av1_init_rd_stats(&partition_rdcost);
+ partition_rdcost.rate = pt_cost;
+ av1_rd_cost_update(x->rdmult, &partition_rdcost);
+ RD_STATS best_remain_rdcost;
+ av1_rd_stats_subtraction(x->rdmult, &best_rdc, &partition_rdcost,
+ &best_remain_rdcost);
+#if CONFIG_COLLECT_PARTITION_STATS
+ if (best_remain_rdcost >= 0) {
+ partition_attempts[PARTITION_NONE] += 1;
+ aom_usec_timer_start(&partition_timer);
+ partition_timer_on = 1;
+ }
+#endif
+ pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &this_rdc, PARTITION_NONE,
+ bsize, ctx_none, best_remain_rdcost, PICK_MODE_RD);
+ av1_rd_cost_update(x->rdmult, &this_rdc);
+#if CONFIG_COLLECT_PARTITION_STATS
+ if (partition_timer_on) {
+ aom_usec_timer_mark(&partition_timer);
+ int64_t time = aom_usec_timer_elapsed(&partition_timer);
+ partition_times[PARTITION_NONE] += time;
+ partition_timer_on = 0;
+ }
+#endif
+ pb_source_variance = x->source_variance;
+ pb_simple_motion_pred_sse = x->simple_motion_pred_sse;
+ if (none_rd) *none_rd = this_rdc.rdcost;
+ cur_none_rd = this_rdc.rdcost;
+ if (this_rdc.rate != INT_MAX) {
+ if (cpi->sf.inter_sf.prune_ref_frame_for_rect_partitions) {
+ const int ref_type = av1_ref_frame_type(ctx_none->mic.ref_frame);
+ update_picked_ref_frames_mask(x, ref_type, bsize,
+ cm->seq_params.mib_size, mi_row, mi_col);
+ }
+ if (bsize_at_least_8x8) {
+ this_rdc.rate += pt_cost;
+ this_rdc.rdcost = RDCOST(x->rdmult, this_rdc.rate, this_rdc.dist);
+ }
+
+ part_none_rd = this_rdc.rdcost;
+ if (this_rdc.rdcost < best_rdc.rdcost) {
+ // Adjust dist breakout threshold according to the partition size.
+ const int64_t dist_breakout_thr =
+ cpi->sf.part_sf.partition_search_breakout_dist_thr >>
+ ((2 * (MAX_SB_SIZE_LOG2 - 2)) -
+ (mi_size_wide_log2[bsize] + mi_size_high_log2[bsize]));
+ const int rate_breakout_thr =
+ cpi->sf.part_sf.partition_search_breakout_rate_thr *
+ num_pels_log2_lookup[bsize];
+
+ best_rdc = this_rdc;
+ found_best_partition = true;
+ if (bsize_at_least_8x8) pc_tree->partitioning = PARTITION_NONE;
+
+ if (!frame_is_intra_only(cm) &&
+ (do_square_split || do_rectangular_split) &&
+ !x->e_mbd.lossless[xd->mi[0]->segment_id] && ctx_none->skippable) {
+ const int use_ml_based_breakout =
+ bsize <= cpi->sf.part_sf.use_square_partition_only_threshold &&
+ bsize > BLOCK_4X4 && xd->bd == 8;
+ if (use_ml_based_breakout) {
+ if (av1_ml_predict_breakout(cpi, bsize, x, &this_rdc,
+ pb_source_variance)) {
+ do_square_split = 0;
+ do_rectangular_split = 0;
+ }
+ }
+
+ // If all y, u, v transform blocks in this partition are skippable,
+ // and the dist & rate are within the thresholds, the partition
+ // search is terminated for current branch of the partition search
+ // tree. The dist & rate thresholds are set to 0 at speed 0 to
+ // disable the early termination at that speed.
+ if (best_rdc.dist < dist_breakout_thr &&
+ best_rdc.rate < rate_breakout_thr) {
+ do_square_split = 0;
+ do_rectangular_split = 0;
+ }
+ }
+
+ if (cpi->sf.part_sf.simple_motion_search_early_term_none &&
+ cm->show_frame && !frame_is_intra_only(cm) &&
+ bsize >= BLOCK_16X16 && mi_row + mi_step < mi_params->mi_rows &&
+ mi_col + mi_step < mi_params->mi_cols &&
+ this_rdc.rdcost < INT64_MAX && this_rdc.rdcost >= 0 &&
+ this_rdc.rate < INT_MAX && this_rdc.rate >= 0 &&
+ (do_square_split || do_rectangular_split)) {
+ av1_simple_motion_search_early_term_none(cpi, x, pc_tree, mi_row,
+ mi_col, bsize, &this_rdc,
+ &terminate_partition_search);
+ }
+ }
+ }
+
+ restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes);
+ }
+
+ // store estimated motion vector
+ if (cpi->sf.mv_sf.adaptive_motion_search) store_pred_mv(x, ctx_none);
+
+ // PARTITION_SPLIT
+ int64_t part_split_rd = INT64_MAX;
+ if ((!terminate_partition_search && do_square_split) || is_gt_max_sq_part) {
+ av1_init_rd_stats(&sum_rdc);
+ subsize = get_partition_subsize(bsize, PARTITION_SPLIT);
+ sum_rdc.rate = partition_cost[PARTITION_SPLIT];
+ sum_rdc.rdcost = RDCOST(x->rdmult, sum_rdc.rate, 0);
+
+ int idx;
+#if CONFIG_COLLECT_PARTITION_STATS
+ if (best_rdc.rdcost - sum_rdc.rdcost >= 0) {
+ partition_attempts[PARTITION_SPLIT] += 1;
+ aom_usec_timer_start(&partition_timer);
+ partition_timer_on = 1;
+ }
+#endif
+ for (idx = 0; idx < 4 && sum_rdc.rdcost < best_rdc.rdcost; ++idx) {
+ const int x_idx = (idx & 1) * mi_step;
+ const int y_idx = (idx >> 1) * mi_step;
+
+ if (mi_row + y_idx >= mi_params->mi_rows ||
+ mi_col + x_idx >= mi_params->mi_cols)
+ continue;
+
+ if (cpi->sf.mv_sf.adaptive_motion_search) load_pred_mv(x, ctx_none);
+
+ pc_tree->split[idx]->index = idx;
+ int64_t *p_split_rd = &split_rd[idx];
+
+ RD_STATS best_remain_rdcost;
+ av1_rd_stats_subtraction(x->rdmult, &best_rdc, &sum_rdc,
+ &best_remain_rdcost);
+
+ int curr_quad_tree_idx = 0;
+ if (frame_is_intra_only(cm) && bsize <= BLOCK_64X64) {
+ curr_quad_tree_idx = x->quad_tree_idx;
+ x->quad_tree_idx = 4 * curr_quad_tree_idx + idx + 1;
+ }
+ if (!rd_pick_partition(cpi, td, tile_data, tp, mi_row + y_idx,
+ mi_col + x_idx, subsize, max_sq_part, min_sq_part,
+ &this_rdc, best_remain_rdcost, pc_tree->split[idx],
+ p_split_rd, multi_pass_mode,
+ &split_part_rect_win[idx])) {
+ av1_invalid_rd_stats(&sum_rdc);
+ break;
+ }
+ if (frame_is_intra_only(cm) && bsize <= BLOCK_64X64) {
+ x->quad_tree_idx = curr_quad_tree_idx;
+ }
+
+ sum_rdc.rate += this_rdc.rate;
+ sum_rdc.dist += this_rdc.dist;
+ av1_rd_cost_update(x->rdmult, &sum_rdc);
+ if (idx <= 1 && (bsize <= BLOCK_8X8 ||
+ pc_tree->split[idx]->partitioning == PARTITION_NONE)) {
+ const MB_MODE_INFO *const mbmi = &pc_tree->split[idx]->none.mic;
+ const PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info;
+ // Neither palette mode nor cfl predicted
+ if (pmi->palette_size[0] == 0 && pmi->palette_size[1] == 0) {
+ if (mbmi->uv_mode != UV_CFL_PRED) split_ctx_is_ready[idx] = 1;
+ }
+ }
+ }
+#if CONFIG_COLLECT_PARTITION_STATS
+ if (partition_timer_on) {
+ aom_usec_timer_mark(&partition_timer);
+ int64_t time = aom_usec_timer_elapsed(&partition_timer);
+ partition_times[PARTITION_SPLIT] += time;
+ partition_timer_on = 0;
+ }
+#endif
+ const int reached_last_index = (idx == 4);
+
+ part_split_rd = sum_rdc.rdcost;
+ if (reached_last_index && sum_rdc.rdcost < best_rdc.rdcost) {
+ sum_rdc.rdcost = RDCOST(x->rdmult, sum_rdc.rate, sum_rdc.dist);
+ if (sum_rdc.rdcost < best_rdc.rdcost) {
+ best_rdc = sum_rdc;
+ found_best_partition = true;
+ pc_tree->partitioning = PARTITION_SPLIT;
+ }
+ } else if (cpi->sf.part_sf.less_rectangular_check_level > 0) {
+ // Skip rectangular partition test when partition type none gives better
+ // rd than partition type split.
+ if (cpi->sf.part_sf.less_rectangular_check_level == 2 || idx <= 2) {
+ const int partition_none_valid = cur_none_rd > 0;
+ const int partition_none_better = cur_none_rd < sum_rdc.rdcost;
+ do_rectangular_split &=
+ !(partition_none_valid && partition_none_better);
+ }
+ }
+
+ restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes);
+ } // if (do_split)
+
+ if (cpi->sf.part_sf.ml_early_term_after_part_split_level &&
+ !frame_is_intra_only(cm) && !terminate_partition_search &&
+ do_rectangular_split &&
+ (partition_horz_allowed || partition_vert_allowed)) {
+ av1_ml_early_term_after_split(cpi, x, pc_tree, bsize, best_rdc.rdcost,
+ part_none_rd, part_split_rd, split_rd, mi_row,
+ mi_col, &terminate_partition_search);
+ }
+
+ if (!cpi->sf.part_sf.ml_early_term_after_part_split_level &&
+ cpi->sf.part_sf.ml_prune_rect_partition && !frame_is_intra_only(cm) &&
+ (partition_horz_allowed || partition_vert_allowed) &&
+ !(prune_horz || prune_vert) && !terminate_partition_search) {
+ av1_setup_src_planes(x, cpi->source, mi_row, mi_col, num_planes, bsize);
+ av1_ml_prune_rect_partition(cpi, x, bsize, best_rdc.rdcost, cur_none_rd,
+ split_rd, &prune_horz, &prune_vert);
+ }
+
+ // PARTITION_HORZ
+ assert(IMPLIES(!cpi->oxcf.enable_rect_partitions, !partition_horz_allowed));
+ if (!terminate_partition_search && partition_horz_allowed && !prune_horz &&
+ (do_rectangular_split || active_h_edge(cpi, mi_row, mi_step)) &&
+ !is_gt_max_sq_part) {
+ av1_init_rd_stats(&sum_rdc);
+ subsize = get_partition_subsize(bsize, PARTITION_HORZ);
+ if (cpi->sf.mv_sf.adaptive_motion_search) load_pred_mv(x, ctx_none);
+ sum_rdc.rate = partition_cost[PARTITION_HORZ];
+ sum_rdc.rdcost = RDCOST(x->rdmult, sum_rdc.rate, 0);
+ RD_STATS best_remain_rdcost;
+ av1_rd_stats_subtraction(x->rdmult, &best_rdc, &sum_rdc,
+ &best_remain_rdcost);
+#if CONFIG_COLLECT_PARTITION_STATS
+ if (best_remain_rdcost >= 0) {
+ partition_attempts[PARTITION_HORZ] += 1;
+ aom_usec_timer_start(&partition_timer);
+ partition_timer_on = 1;
+ }
+#endif
+ pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &this_rdc, PARTITION_HORZ,
+ subsize, &pc_tree->horizontal[0], best_remain_rdcost,
+ PICK_MODE_RD);
+ av1_rd_cost_update(x->rdmult, &this_rdc);
+
+ if (this_rdc.rate == INT_MAX) {
+ sum_rdc.rdcost = INT64_MAX;
+ } else {
+ sum_rdc.rate += this_rdc.rate;
+ sum_rdc.dist += this_rdc.dist;
+ av1_rd_cost_update(x->rdmult, &sum_rdc);
+ }
+ horz_rd[0] = this_rdc.rdcost;
+
+ if (sum_rdc.rdcost < best_rdc.rdcost && has_rows) {
+ const PICK_MODE_CONTEXT *const ctx_h = &pc_tree->horizontal[0];
+ const MB_MODE_INFO *const mbmi = &pc_tree->horizontal[0].mic;
+ const PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info;
+ // Neither palette mode nor cfl predicted
+ if (pmi->palette_size[0] == 0 && pmi->palette_size[1] == 0) {
+ if (mbmi->uv_mode != UV_CFL_PRED) horz_ctx_is_ready = 1;
+ }
+ update_state(cpi, td, ctx_h, mi_row, mi_col, subsize, 1);
+ encode_superblock(cpi, tile_data, td, tp, DRY_RUN_NORMAL, subsize, NULL);
+
+ if (cpi->sf.mv_sf.adaptive_motion_search) load_pred_mv(x, ctx_h);
+
+ av1_rd_stats_subtraction(x->rdmult, &best_rdc, &sum_rdc,
+ &best_remain_rdcost);
+
+ pick_sb_modes(cpi, tile_data, x, mi_row + mi_step, mi_col, &this_rdc,
+ PARTITION_HORZ, subsize, &pc_tree->horizontal[1],
+ best_remain_rdcost, PICK_MODE_RD);
+ av1_rd_cost_update(x->rdmult, &this_rdc);
+ horz_rd[1] = this_rdc.rdcost;
+
+ if (this_rdc.rate == INT_MAX) {
+ sum_rdc.rdcost = INT64_MAX;
+ } else {
+ sum_rdc.rate += this_rdc.rate;
+ sum_rdc.dist += this_rdc.dist;
+ av1_rd_cost_update(x->rdmult, &sum_rdc);
+ }
+ }
+#if CONFIG_COLLECT_PARTITION_STATS
+ if (partition_timer_on) {
+ aom_usec_timer_mark(&partition_timer);
+ int64_t time = aom_usec_timer_elapsed(&partition_timer);
+ partition_times[PARTITION_HORZ] += time;
+ partition_timer_on = 0;
+ }
+#endif
+
+ if (sum_rdc.rdcost < best_rdc.rdcost) {
+ sum_rdc.rdcost = RDCOST(x->rdmult, sum_rdc.rate, sum_rdc.dist);
+ if (sum_rdc.rdcost < best_rdc.rdcost) {
+ best_rdc = sum_rdc;
+ found_best_partition = true;
+ pc_tree->partitioning = PARTITION_HORZ;
+ }
+ } else {
+ // Update HORZ win flag
+ if (rect_part_win_info != NULL) {
+ rect_part_win_info->horz_win = false;
+ }
+ }
+
+ restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes);
+ }
+
+ // PARTITION_VERT
+ assert(IMPLIES(!cpi->oxcf.enable_rect_partitions, !partition_vert_allowed));
+ if (!terminate_partition_search && partition_vert_allowed && !prune_vert &&
+ (do_rectangular_split || active_v_edge(cpi, mi_col, mi_step)) &&
+ !is_gt_max_sq_part) {
+ av1_init_rd_stats(&sum_rdc);
+ subsize = get_partition_subsize(bsize, PARTITION_VERT);
+
+ if (cpi->sf.mv_sf.adaptive_motion_search) load_pred_mv(x, ctx_none);
+
+ sum_rdc.rate = partition_cost[PARTITION_VERT];
+ sum_rdc.rdcost = RDCOST(x->rdmult, sum_rdc.rate, 0);
+ RD_STATS best_remain_rdcost;
+ av1_rd_stats_subtraction(x->rdmult, &best_rdc, &sum_rdc,
+ &best_remain_rdcost);
+#if CONFIG_COLLECT_PARTITION_STATS
+ if (best_remain_rdcost >= 0) {
+ partition_attempts[PARTITION_VERT] += 1;
+ aom_usec_timer_start(&partition_timer);
+ partition_timer_on = 1;
+ }
+#endif
+ pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &this_rdc, PARTITION_VERT,
+ subsize, &pc_tree->vertical[0], best_remain_rdcost,
+ PICK_MODE_RD);
+ av1_rd_cost_update(x->rdmult, &this_rdc);
+
+ if (this_rdc.rate == INT_MAX) {
+ sum_rdc.rdcost = INT64_MAX;
+ } else {
+ sum_rdc.rate += this_rdc.rate;
+ sum_rdc.dist += this_rdc.dist;
+ av1_rd_cost_update(x->rdmult, &sum_rdc);
+ }
+ vert_rd[0] = this_rdc.rdcost;
+ if (sum_rdc.rdcost < best_rdc.rdcost && has_cols) {
+ const MB_MODE_INFO *const mbmi = &pc_tree->vertical[0].mic;
+ const PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info;
+ // Neither palette mode nor cfl predicted
+ if (pmi->palette_size[0] == 0 && pmi->palette_size[1] == 0) {
+ if (mbmi->uv_mode != UV_CFL_PRED) vert_ctx_is_ready = 1;
+ }
+ update_state(cpi, td, &pc_tree->vertical[0], mi_row, mi_col, subsize, 1);
+ encode_superblock(cpi, tile_data, td, tp, DRY_RUN_NORMAL, subsize, NULL);
+
+ if (cpi->sf.mv_sf.adaptive_motion_search) load_pred_mv(x, ctx_none);
+
+ av1_rd_stats_subtraction(x->rdmult, &best_rdc, &sum_rdc,
+ &best_remain_rdcost);
+ pick_sb_modes(cpi, tile_data, x, mi_row, mi_col + mi_step, &this_rdc,
+ PARTITION_VERT, subsize, &pc_tree->vertical[1],
+ best_remain_rdcost, PICK_MODE_RD);
+ av1_rd_cost_update(x->rdmult, &this_rdc);
+ vert_rd[1] = this_rdc.rdcost;
+
+ if (this_rdc.rate == INT_MAX) {
+ sum_rdc.rdcost = INT64_MAX;
+ } else {
+ sum_rdc.rate += this_rdc.rate;
+ sum_rdc.dist += this_rdc.dist;
+ av1_rd_cost_update(x->rdmult, &sum_rdc);
+ }
+ }
+#if CONFIG_COLLECT_PARTITION_STATS
+ if (partition_timer_on) {
+ aom_usec_timer_mark(&partition_timer);
+ int64_t time = aom_usec_timer_elapsed(&partition_timer);
+ partition_times[PARTITION_VERT] += time;
+ partition_timer_on = 0;
+ }
+#endif
+
+ av1_rd_cost_update(x->rdmult, &sum_rdc);
+ if (sum_rdc.rdcost < best_rdc.rdcost) {
+ best_rdc = sum_rdc;
+ found_best_partition = true;
+ pc_tree->partitioning = PARTITION_VERT;
+ } else {
+ // Update VERT win flag
+ if (rect_part_win_info != NULL) {
+ rect_part_win_info->vert_win = false;
+ }
+ }
+
+ restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes);
+ }
+
+ if (pb_source_variance == UINT_MAX) {
+ av1_setup_src_planes(x, cpi->source, mi_row, mi_col, num_planes, bsize);
+ if (is_cur_buf_hbd(xd)) {
+ pb_source_variance = av1_high_get_sby_perpixel_variance(
+ cpi, &x->plane[0].src, bsize, xd->bd);
+ } else {
+ pb_source_variance =
+ av1_get_sby_perpixel_variance(cpi, &x->plane[0].src, bsize);
+ }
+ }
+
+ if (use_pb_simple_motion_pred_sse(cpi) &&
+ pb_simple_motion_pred_sse == UINT_MAX) {
+ const FULLPEL_MV start_mv = kZeroFullMv;
+ unsigned int var = 0;
+
+ av1_simple_motion_sse_var(cpi, x, mi_row, mi_col, bsize, start_mv, 0,
+ &pb_simple_motion_pred_sse, &var);
+ }
+
+ assert(IMPLIES(!cpi->oxcf.enable_rect_partitions, !do_rectangular_split));
+
+ const int ext_partition_allowed =
+ do_rectangular_split &&
+ bsize > cpi->sf.part_sf.ext_partition_eval_thresh && has_rows && has_cols;
+
+ // The standard AB partitions are allowed whenever ext-partition-types are
+ // allowed
+ int horzab_partition_allowed =
+ ext_partition_allowed & cpi->oxcf.enable_ab_partitions;
+ int vertab_partition_allowed =
+ ext_partition_allowed & cpi->oxcf.enable_ab_partitions;
+
+ if (cpi->sf.part_sf.prune_ext_partition_types_search_level) {
+ if (cpi->sf.part_sf.prune_ext_partition_types_search_level == 1) {
+ // TODO(debargha,huisu@google.com): may need to tune the threshold for
+ // pb_source_variance.
+ horzab_partition_allowed &= (pc_tree->partitioning == PARTITION_HORZ ||
+ (pc_tree->partitioning == PARTITION_NONE &&
+ pb_source_variance < 32) ||
+ pc_tree->partitioning == PARTITION_SPLIT);
+ vertab_partition_allowed &= (pc_tree->partitioning == PARTITION_VERT ||
+ (pc_tree->partitioning == PARTITION_NONE &&
+ pb_source_variance < 32) ||
+ pc_tree->partitioning == PARTITION_SPLIT);
+ } else {
+ horzab_partition_allowed &= (pc_tree->partitioning == PARTITION_HORZ ||
+ pc_tree->partitioning == PARTITION_SPLIT);
+ vertab_partition_allowed &= (pc_tree->partitioning == PARTITION_VERT ||
+ pc_tree->partitioning == PARTITION_SPLIT);
+ }
+ horz_rd[0] = (horz_rd[0] < INT64_MAX ? horz_rd[0] : 0);
+ horz_rd[1] = (horz_rd[1] < INT64_MAX ? horz_rd[1] : 0);
+ vert_rd[0] = (vert_rd[0] < INT64_MAX ? vert_rd[0] : 0);
+ vert_rd[1] = (vert_rd[1] < INT64_MAX ? vert_rd[1] : 0);
+ split_rd[0] = (split_rd[0] < INT64_MAX ? split_rd[0] : 0);
+ split_rd[1] = (split_rd[1] < INT64_MAX ? split_rd[1] : 0);
+ split_rd[2] = (split_rd[2] < INT64_MAX ? split_rd[2] : 0);
+ split_rd[3] = (split_rd[3] < INT64_MAX ? split_rd[3] : 0);
+ }
+ int horza_partition_allowed = horzab_partition_allowed;
+ int horzb_partition_allowed = horzab_partition_allowed;
+ if (cpi->sf.part_sf.prune_ext_partition_types_search_level) {
+ const int64_t horz_a_rd = horz_rd[1] + split_rd[0] + split_rd[1];
+ const int64_t horz_b_rd = horz_rd[0] + split_rd[2] + split_rd[3];
+ switch (cpi->sf.part_sf.prune_ext_partition_types_search_level) {
+ case 1:
+ horza_partition_allowed &= (horz_a_rd / 16 * 14 < best_rdc.rdcost);
+ horzb_partition_allowed &= (horz_b_rd / 16 * 14 < best_rdc.rdcost);
+ break;
+ case 2:
+ default:
+ horza_partition_allowed &= (horz_a_rd / 16 * 15 < best_rdc.rdcost);
+ horzb_partition_allowed &= (horz_b_rd / 16 * 15 < best_rdc.rdcost);
+ break;
+ }
+ }
+
+ int verta_partition_allowed = vertab_partition_allowed;
+ int vertb_partition_allowed = vertab_partition_allowed;
+ if (cpi->sf.part_sf.prune_ext_partition_types_search_level) {
+ const int64_t vert_a_rd = vert_rd[1] + split_rd[0] + split_rd[2];
+ const int64_t vert_b_rd = vert_rd[0] + split_rd[1] + split_rd[3];
+ switch (cpi->sf.part_sf.prune_ext_partition_types_search_level) {
+ case 1:
+ verta_partition_allowed &= (vert_a_rd / 16 * 14 < best_rdc.rdcost);
+ vertb_partition_allowed &= (vert_b_rd / 16 * 14 < best_rdc.rdcost);
+ break;
+ case 2:
+ default:
+ verta_partition_allowed &= (vert_a_rd / 16 * 15 < best_rdc.rdcost);
+ vertb_partition_allowed &= (vert_b_rd / 16 * 15 < best_rdc.rdcost);
+ break;
+ }
+ }
+
+ if (cpi->sf.part_sf.ml_prune_ab_partition && ext_partition_allowed &&
+ partition_horz_allowed && partition_vert_allowed) {
+ // TODO(huisu@google.com): x->source_variance may not be the current
+ // block's variance. The correct one to use is pb_source_variance. Need to
+ // re-train the model to fix it.
+ av1_ml_prune_ab_partition(
+ bsize, pc_tree->partitioning, get_unsigned_bits(x->source_variance),
+ best_rdc.rdcost, horz_rd, vert_rd, split_rd, &horza_partition_allowed,
+ &horzb_partition_allowed, &verta_partition_allowed,
+ &vertb_partition_allowed);
+ }
+
+ horza_partition_allowed &= cpi->oxcf.enable_ab_partitions;
+ horzb_partition_allowed &= cpi->oxcf.enable_ab_partitions;
+ verta_partition_allowed &= cpi->oxcf.enable_ab_partitions;
+ vertb_partition_allowed &= cpi->oxcf.enable_ab_partitions;
+
+ if (cpi->sf.part_sf.prune_ab_partition_using_split_info &&
+ horza_partition_allowed) {
+ horza_partition_allowed &= evaluate_ab_partition_based_on_split(
+ pc_tree, PARTITION_HORZ, rect_part_win_info, x->qindex, 0, 1);
+ }
+
+ // PARTITION_HORZ_A
+ if (!terminate_partition_search && partition_horz_allowed &&
+ horza_partition_allowed && !is_gt_max_sq_part) {
+ subsize = get_partition_subsize(bsize, PARTITION_HORZ_A);
+ pc_tree->horizontala[0].rd_mode_is_ready = 0;
+ pc_tree->horizontala[1].rd_mode_is_ready = 0;
+ pc_tree->horizontala[2].rd_mode_is_ready = 0;
+ if (split_ctx_is_ready[0]) {
+ av1_copy_tree_context(&pc_tree->horizontala[0], &pc_tree->split[0]->none);
+ pc_tree->horizontala[0].mic.partition = PARTITION_HORZ_A;
+ pc_tree->horizontala[0].rd_mode_is_ready = 1;
+ if (split_ctx_is_ready[1]) {
+ av1_copy_tree_context(&pc_tree->horizontala[1],
+ &pc_tree->split[1]->none);
+ pc_tree->horizontala[1].mic.partition = PARTITION_HORZ_A;
+ pc_tree->horizontala[1].rd_mode_is_ready = 1;
+ }
+ }
+#if CONFIG_COLLECT_PARTITION_STATS
+ {
+ RD_STATS tmp_sum_rdc;
+ av1_init_rd_stats(&tmp_sum_rdc);
+ tmp_sum_rdc.rate = x->partition_cost[pl][PARTITION_HORZ_A];
+ tmp_sum_rdc.rdcost = RDCOST(x->rdmult, tmp_sum_rdc.rate, 0);
+ if (best_rdc.rdcost - tmp_sum_rdc.rdcost >= 0) {
+ partition_attempts[PARTITION_HORZ_A] += 1;
+ aom_usec_timer_start(&partition_timer);
+ partition_timer_on = 1;
+ }
+ }
+#endif
+ found_best_partition |= rd_test_partition3(
+ cpi, td, tile_data, tp, pc_tree, &best_rdc, pc_tree->horizontala,
+ ctx_none, mi_row, mi_col, bsize, PARTITION_HORZ_A, mi_row, mi_col,
+ bsize2, mi_row, mi_col + mi_step, bsize2, mi_row + mi_step, mi_col,
+ subsize);
+#if CONFIG_COLLECT_PARTITION_STATS
+ if (partition_timer_on) {
+ aom_usec_timer_mark(&partition_timer);
+ int64_t time = aom_usec_timer_elapsed(&partition_timer);
+ partition_times[PARTITION_HORZ_A] += time;
+ partition_timer_on = 0;
+ }
+#endif
+ restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes);
+ }
+
+ if (cpi->sf.part_sf.prune_ab_partition_using_split_info &&
+ horzb_partition_allowed) {
+ horzb_partition_allowed &= evaluate_ab_partition_based_on_split(
+ pc_tree, PARTITION_HORZ, rect_part_win_info, x->qindex, 2, 3);
+ }
+
+ // PARTITION_HORZ_B
+ if (!terminate_partition_search && partition_horz_allowed &&
+ horzb_partition_allowed && !is_gt_max_sq_part) {
+ subsize = get_partition_subsize(bsize, PARTITION_HORZ_B);
+ pc_tree->horizontalb[0].rd_mode_is_ready = 0;
+ pc_tree->horizontalb[1].rd_mode_is_ready = 0;
+ pc_tree->horizontalb[2].rd_mode_is_ready = 0;
+ if (horz_ctx_is_ready) {
+ av1_copy_tree_context(&pc_tree->horizontalb[0], &pc_tree->horizontal[0]);
+ pc_tree->horizontalb[0].mic.partition = PARTITION_HORZ_B;
+ pc_tree->horizontalb[0].rd_mode_is_ready = 1;
+ }
+#if CONFIG_COLLECT_PARTITION_STATS
+ {
+ RD_STATS tmp_sum_rdc;
+ av1_init_rd_stats(&tmp_sum_rdc);
+ tmp_sum_rdc.rate = x->partition_cost[pl][PARTITION_HORZ_B];
+ tmp_sum_rdc.rdcost = RDCOST(x->rdmult, tmp_sum_rdc.rate, 0);
+ if (best_rdc.rdcost - tmp_sum_rdc.rdcost >= 0) {
+ partition_attempts[PARTITION_HORZ_B] += 1;
+ aom_usec_timer_start(&partition_timer);
+ partition_timer_on = 1;
+ }
+ }
+#endif
+ found_best_partition |= rd_test_partition3(
+ cpi, td, tile_data, tp, pc_tree, &best_rdc, pc_tree->horizontalb,
+ ctx_none, mi_row, mi_col, bsize, PARTITION_HORZ_B, mi_row, mi_col,
+ subsize, mi_row + mi_step, mi_col, bsize2, mi_row + mi_step,
+ mi_col + mi_step, bsize2);
+
+#if CONFIG_COLLECT_PARTITION_STATS
+ if (partition_timer_on) {
+ aom_usec_timer_mark(&partition_timer);
+ int64_t time = aom_usec_timer_elapsed(&partition_timer);
+ partition_times[PARTITION_HORZ_B] += time;
+ partition_timer_on = 0;
+ }
+#endif
+ restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes);
+ }
+
+ if (cpi->sf.part_sf.prune_ab_partition_using_split_info &&
+ verta_partition_allowed) {
+ verta_partition_allowed &= evaluate_ab_partition_based_on_split(
+ pc_tree, PARTITION_VERT, rect_part_win_info, x->qindex, 0, 2);
+ }
+
+ // PARTITION_VERT_A
+ if (!terminate_partition_search && partition_vert_allowed &&
+ verta_partition_allowed && !is_gt_max_sq_part) {
+ subsize = get_partition_subsize(bsize, PARTITION_VERT_A);
+ pc_tree->verticala[0].rd_mode_is_ready = 0;
+ pc_tree->verticala[1].rd_mode_is_ready = 0;
+ pc_tree->verticala[2].rd_mode_is_ready = 0;
+ if (split_ctx_is_ready[0]) {
+ av1_copy_tree_context(&pc_tree->verticala[0], &pc_tree->split[0]->none);
+ pc_tree->verticala[0].mic.partition = PARTITION_VERT_A;
+ pc_tree->verticala[0].rd_mode_is_ready = 1;
+ }
+#if CONFIG_COLLECT_PARTITION_STATS
+ {
+ RD_STATS tmp_sum_rdc;
+ av1_init_rd_stats(&tmp_sum_rdc);
+ tmp_sum_rdc.rate = x->partition_cost[pl][PARTITION_VERT_A];
+ tmp_sum_rdc.rdcost = RDCOST(x->rdmult, tmp_sum_rdc.rate, 0);
+ if (best_rdc.rdcost - tmp_sum_rdc.rdcost >= 0) {
+ partition_attempts[PARTITION_VERT_A] += 1;
+ aom_usec_timer_start(&partition_timer);
+ partition_timer_on = 1;
+ }
+ }
+#endif
+ found_best_partition |= rd_test_partition3(
+ cpi, td, tile_data, tp, pc_tree, &best_rdc, pc_tree->verticala,
+ ctx_none, mi_row, mi_col, bsize, PARTITION_VERT_A, mi_row, mi_col,
+ bsize2, mi_row + mi_step, mi_col, bsize2, mi_row, mi_col + mi_step,
+ subsize);
+#if CONFIG_COLLECT_PARTITION_STATS
+ if (partition_timer_on) {
+ aom_usec_timer_mark(&partition_timer);
+ int64_t time = aom_usec_timer_elapsed(&partition_timer);
+ partition_times[PARTITION_VERT_A] += time;
+ partition_timer_on = 0;
+ }
+#endif
+ restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes);
+ }
+
+ if (cpi->sf.part_sf.prune_ab_partition_using_split_info &&
+ vertb_partition_allowed) {
+ vertb_partition_allowed &= evaluate_ab_partition_based_on_split(
+ pc_tree, PARTITION_VERT, rect_part_win_info, x->qindex, 1, 3);
+ }
+
+ // PARTITION_VERT_B
+ if (!terminate_partition_search && partition_vert_allowed &&
+ vertb_partition_allowed && !is_gt_max_sq_part) {
+ subsize = get_partition_subsize(bsize, PARTITION_VERT_B);
+ pc_tree->verticalb[0].rd_mode_is_ready = 0;
+ pc_tree->verticalb[1].rd_mode_is_ready = 0;
+ pc_tree->verticalb[2].rd_mode_is_ready = 0;
+ if (vert_ctx_is_ready) {
+ av1_copy_tree_context(&pc_tree->verticalb[0], &pc_tree->vertical[0]);
+ pc_tree->verticalb[0].mic.partition = PARTITION_VERT_B;
+ pc_tree->verticalb[0].rd_mode_is_ready = 1;
+ }
+#if CONFIG_COLLECT_PARTITION_STATS
+ {
+ RD_STATS tmp_sum_rdc;
+ av1_init_rd_stats(&tmp_sum_rdc);
+ tmp_sum_rdc.rate = x->partition_cost[pl][PARTITION_VERT_B];
+ tmp_sum_rdc.rdcost = RDCOST(x->rdmult, tmp_sum_rdc.rate, 0);
+ if (!frame_is_intra_only(cm) &&
+ best_rdc.rdcost - tmp_sum_rdc.rdcost >= 0) {
+ partition_attempts[PARTITION_VERT_B] += 1;
+ aom_usec_timer_start(&partition_timer);
+ partition_timer_on = 1;
+ }
+ }
+#endif
+ found_best_partition |= rd_test_partition3(
+ cpi, td, tile_data, tp, pc_tree, &best_rdc, pc_tree->verticalb,
+ ctx_none, mi_row, mi_col, bsize, PARTITION_VERT_B, mi_row, mi_col,
+ subsize, mi_row, mi_col + mi_step, bsize2, mi_row + mi_step,
+ mi_col + mi_step, bsize2);
+#if CONFIG_COLLECT_PARTITION_STATS
+ if (partition_timer_on) {
+ aom_usec_timer_mark(&partition_timer);
+ int64_t time = aom_usec_timer_elapsed(&partition_timer);
+ partition_times[PARTITION_VERT_B] += time;
+ partition_timer_on = 0;
+ }
+#endif
+ restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes);
+ }
+
+ // partition4_allowed is 1 if we can use a PARTITION_HORZ_4 or
+ // PARTITION_VERT_4 for this block. This is almost the same as
+ // ext_partition_allowed, except that we don't allow 128x32 or 32x128
+ // blocks, so we require that bsize is not BLOCK_128X128.
+ const int partition4_allowed = cpi->oxcf.enable_1to4_partitions &&
+ ext_partition_allowed &&
+ bsize != BLOCK_128X128;
+
+ int partition_horz4_allowed =
+ partition4_allowed && partition_horz_allowed &&
+ get_plane_block_size(get_partition_subsize(bsize, PARTITION_HORZ_4), xss,
+ yss) != BLOCK_INVALID;
+ int partition_vert4_allowed =
+ partition4_allowed && partition_vert_allowed &&
+ get_plane_block_size(get_partition_subsize(bsize, PARTITION_VERT_4), xss,
+ yss) != BLOCK_INVALID;
+ if (cpi->sf.part_sf.prune_ext_partition_types_search_level == 2) {
+ partition_horz4_allowed &= (pc_tree->partitioning == PARTITION_HORZ ||
+ pc_tree->partitioning == PARTITION_HORZ_A ||
+ pc_tree->partitioning == PARTITION_HORZ_B ||
+ pc_tree->partitioning == PARTITION_SPLIT ||
+ pc_tree->partitioning == PARTITION_NONE);
+ partition_vert4_allowed &= (pc_tree->partitioning == PARTITION_VERT ||
+ pc_tree->partitioning == PARTITION_VERT_A ||
+ pc_tree->partitioning == PARTITION_VERT_B ||
+ pc_tree->partitioning == PARTITION_SPLIT ||
+ pc_tree->partitioning == PARTITION_NONE);
+ }
+ if (cpi->sf.part_sf.ml_prune_4_partition && partition4_allowed &&
+ partition_horz_allowed && partition_vert_allowed) {
+ av1_ml_prune_4_partition(cpi, x, bsize, pc_tree->partitioning,
+ best_rdc.rdcost, horz_rd, vert_rd, split_rd,
+ &partition_horz4_allowed, &partition_vert4_allowed,
+ pb_source_variance, mi_row, mi_col);
+ }
+
+ if (blksize < (min_partition_size << 2)) {
+ partition_horz4_allowed = 0;
+ partition_vert4_allowed = 0;
+ }
+
+ if (cpi->sf.part_sf.prune_4_partition_using_split_info &&
+ (partition_horz4_allowed || partition_vert4_allowed)) {
+ // Count of child blocks in which HORZ or VERT partition has won
+ int num_child_horz_win = 0, num_child_vert_win = 0;
+ for (int idx = 0; idx < 4; idx++) {
+ num_child_horz_win += (split_part_rect_win[idx].horz_win) ? 1 : 0;
+ num_child_vert_win += (split_part_rect_win[idx].vert_win) ? 1 : 0;
+ }
+
+ // Prune HORZ4/VERT4 partitions based on number of HORZ/VERT winners of
+ // split partiitons.
+ // Conservative pruning for high quantizers
+ const int num_win_thresh = AOMMIN(3 * (MAXQ - x->qindex) / MAXQ + 1, 3);
+ if (num_child_horz_win < num_win_thresh) {
+ partition_horz4_allowed = 0;
+ }
+ if (num_child_vert_win < num_win_thresh) {
+ partition_vert4_allowed = 0;
+ }
+ }
+
+ // PARTITION_HORZ_4
+ assert(IMPLIES(!cpi->oxcf.enable_rect_partitions, !partition_horz4_allowed));
+ if (!terminate_partition_search && partition_horz4_allowed && has_rows &&
+ (do_rectangular_split || active_h_edge(cpi, mi_row, mi_step)) &&
+ !is_gt_max_sq_part) {
+ av1_init_rd_stats(&sum_rdc);
+ const int quarter_step = mi_size_high[bsize] / 4;
+ PICK_MODE_CONTEXT *ctx_prev = ctx_none;
+
+ subsize = get_partition_subsize(bsize, PARTITION_HORZ_4);
+ sum_rdc.rate = partition_cost[PARTITION_HORZ_4];
+ sum_rdc.rdcost = RDCOST(x->rdmult, sum_rdc.rate, 0);
+
+#if CONFIG_COLLECT_PARTITION_STATS
+ if (best_rdc.rdcost - sum_rdc.rdcost >= 0) {
+ partition_attempts[PARTITION_HORZ_4] += 1;
+ aom_usec_timer_start(&partition_timer);
+ partition_timer_on = 1;
+ }
+#endif
+ for (int i = 0; i < 4; ++i) {
+ const int this_mi_row = mi_row + i * quarter_step;
+
+ if (i > 0 && this_mi_row >= mi_params->mi_rows) break;
+
+ PICK_MODE_CONTEXT *ctx_this = &pc_tree->horizontal4[i];
+
+ ctx_this->rd_mode_is_ready = 0;
+ if (!rd_try_subblock(cpi, td, tile_data, tp, (i == 3), this_mi_row,
+ mi_col, subsize, best_rdc, &sum_rdc,
+ PARTITION_HORZ_4, ctx_prev, ctx_this)) {
+ av1_invalid_rd_stats(&sum_rdc);
+ break;
+ }
+
+ ctx_prev = ctx_this;
+ }
+
+ av1_rd_cost_update(x->rdmult, &sum_rdc);
+ if (sum_rdc.rdcost < best_rdc.rdcost) {
+ best_rdc = sum_rdc;
+ found_best_partition = true;
+ pc_tree->partitioning = PARTITION_HORZ_4;
+ }
+
+#if CONFIG_COLLECT_PARTITION_STATS
+ if (partition_timer_on) {
+ aom_usec_timer_mark(&partition_timer);
+ int64_t time = aom_usec_timer_elapsed(&partition_timer);
+ partition_times[PARTITION_HORZ_4] += time;
+ partition_timer_on = 0;
+ }
+#endif
+ restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes);
+ }
+
+ // PARTITION_VERT_4
+ assert(IMPLIES(!cpi->oxcf.enable_rect_partitions, !partition_vert4_allowed));
+ if (!terminate_partition_search && partition_vert4_allowed && has_cols &&
+ (do_rectangular_split || active_v_edge(cpi, mi_row, mi_step)) &&
+ !is_gt_max_sq_part) {
+ av1_init_rd_stats(&sum_rdc);
+ const int quarter_step = mi_size_wide[bsize] / 4;
+ PICK_MODE_CONTEXT *ctx_prev = ctx_none;
+
+ subsize = get_partition_subsize(bsize, PARTITION_VERT_4);
+ sum_rdc.rate = partition_cost[PARTITION_VERT_4];
+ sum_rdc.rdcost = RDCOST(x->rdmult, sum_rdc.rate, 0);
+
+#if CONFIG_COLLECT_PARTITION_STATS
+ if (best_rdc.rdcost - sum_rdc.rdcost >= 0) {
+ partition_attempts[PARTITION_VERT_4] += 1;
+ aom_usec_timer_start(&partition_timer);
+ partition_timer_on = 1;
+ }
+#endif
+ for (int i = 0; i < 4; ++i) {
+ const int this_mi_col = mi_col + i * quarter_step;
+
+ if (i > 0 && this_mi_col >= mi_params->mi_cols) break;
+
+ PICK_MODE_CONTEXT *ctx_this = &pc_tree->vertical4[i];
+
+ ctx_this->rd_mode_is_ready = 0;
+ if (!rd_try_subblock(cpi, td, tile_data, tp, (i == 3), mi_row,
+ this_mi_col, subsize, best_rdc, &sum_rdc,
+ PARTITION_VERT_4, ctx_prev, ctx_this)) {
+ av1_invalid_rd_stats(&sum_rdc);
+ break;
+ }
+
+ ctx_prev = ctx_this;
+ }
+
+ av1_rd_cost_update(x->rdmult, &sum_rdc);
+ if (sum_rdc.rdcost < best_rdc.rdcost) {
+ best_rdc = sum_rdc;
+ found_best_partition = true;
+ pc_tree->partitioning = PARTITION_VERT_4;
+ }
+#if CONFIG_COLLECT_PARTITION_STATS
+ if (partition_timer_on) {
+ aom_usec_timer_mark(&partition_timer);
+ int64_t time = aom_usec_timer_elapsed(&partition_timer);
+ partition_times[PARTITION_VERT_4] += time;
+ partition_timer_on = 0;
+ }
+#endif
+ restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes);
+ }
+
+ if (bsize == cm->seq_params.sb_size && !found_best_partition) {
+ // Did not find a valid partition, go back and search again, with less
+ // constraint on which partition types to search.
+ x->must_find_valid_partition = 1;
+#if CONFIG_COLLECT_PARTITION_STATS == 2
+ part_stats->partition_redo += 1;
+#endif
+ goto BEGIN_PARTITION_SEARCH;
+ }
+
+ *rd_cost = best_rdc;
+
+#if CONFIG_COLLECT_PARTITION_STATS
+ if (best_rdc.rate < INT_MAX && best_rdc.dist < INT64_MAX) {
+ partition_decisions[pc_tree->partitioning] += 1;
+ }
+#endif
+
+#if CONFIG_COLLECT_PARTITION_STATS == 1
+ // If CONFIG_COLLECT_PARTITION_STATS is 1, then print out the stats for each
+ // prediction block
+ FILE *f = fopen("data.csv", "a");
+ fprintf(f, "%d,%d,%d,", bsize, cm->show_frame, frame_is_intra_only(cm));
+ for (int idx = 0; idx < EXT_PARTITION_TYPES; idx++) {
+ fprintf(f, "%d,", partition_decisions[idx]);
+ }
+ for (int idx = 0; idx < EXT_PARTITION_TYPES; idx++) {
+ fprintf(f, "%d,", partition_attempts[idx]);
+ }
+ for (int idx = 0; idx < EXT_PARTITION_TYPES; idx++) {
+ fprintf(f, "%ld,", partition_times[idx]);
+ }
+ fprintf(f, "\n");
+ fclose(f);
+#endif
+
+#if CONFIG_COLLECT_PARTITION_STATS == 2
+ // If CONFIG_COLLECTION_PARTITION_STATS is 2, then we print out the stats for
+ // the whole clip. So we need to pass the information upstream to the encoder
+ const int bsize_idx = av1_get_bsize_idx_for_part_stats(bsize);
+ int *agg_attempts = part_stats->partition_attempts[bsize_idx];
+ int *agg_decisions = part_stats->partition_decisions[bsize_idx];
+ int64_t *agg_times = part_stats->partition_times[bsize_idx];
+ for (int idx = 0; idx < EXT_PARTITION_TYPES; idx++) {
+ agg_attempts[idx] += partition_attempts[idx];
+ agg_decisions[idx] += partition_decisions[idx];
+ agg_times[idx] += partition_times[idx];
+ }
+#endif
+
+ if (found_best_partition && pc_tree->index != 3) {
+ if (bsize == cm->seq_params.sb_size) {
+ const int emit_output = multi_pass_mode != SB_DRY_PASS;
+ const RUN_TYPE run_type = emit_output ? OUTPUT_ENABLED : DRY_RUN_NORMAL;
+
+ x->cb_offset = 0;
+ encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, run_type, bsize,
+ pc_tree, NULL);
+ } else {
+ encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, DRY_RUN_NORMAL, bsize,
+ pc_tree, NULL);
+ }
+ }
+
+ if (bsize == cm->seq_params.sb_size) {
+ assert(best_rdc.rate < INT_MAX);
+ assert(best_rdc.dist < INT64_MAX);
+ } else {
+ assert(tp_orig == *tp);
+ }
+
+ x->rdmult = orig_rdmult;
+ return found_best_partition;
+}
+#endif // !CONFIG_REALTIME_ONLY
+#undef NUM_SIMPLE_MOTION_FEATURES
+
+#if !CONFIG_REALTIME_ONLY
+
+static int get_rdmult_delta(AV1_COMP *cpi, BLOCK_SIZE bsize, int analysis_type,
+ int mi_row, int mi_col, int orig_rdmult) {
+ AV1_COMMON *const cm = &cpi->common;
+ assert(IMPLIES(cpi->gf_group.size > 0,
+ cpi->gf_group.index < cpi->gf_group.size));
+ const int tpl_idx = cpi->gf_group.index;
+ TplParams *const tpl_data = &cpi->tpl_data;
+ TplDepFrame *tpl_frame = &tpl_data->tpl_frame[tpl_idx];
+ TplDepStats *tpl_stats = tpl_frame->tpl_stats_ptr;
+ const uint8_t block_mis_log2 = tpl_data->tpl_stats_block_mis_log2;
+ int tpl_stride = tpl_frame->stride;
+ int64_t intra_cost = 0;
+ int64_t mc_dep_cost = 0;
+ const int mi_wide = mi_size_wide[bsize];
+ const int mi_high = mi_size_high[bsize];
+
+ if (tpl_frame->is_valid == 0) return orig_rdmult;
+
+ if (!is_frame_tpl_eligible(cpi)) return orig_rdmult;
+
+ if (cpi->gf_group.index >= MAX_LAG_BUFFERS) return orig_rdmult;
+
+ int64_t mc_count = 0, mc_saved = 0;
+ int mi_count = 0;
+ const int mi_col_sr =
+ coded_to_superres_mi(mi_col, cm->superres_scale_denominator);
+ const int mi_col_end_sr =
+ coded_to_superres_mi(mi_col + mi_wide, cm->superres_scale_denominator);
+ const int mi_cols_sr = av1_pixels_to_mi(cm->superres_upscaled_width);
+ const int step = 1 << block_mis_log2;
+ for (int row = mi_row; row < mi_row + mi_high; row += step) {
+ for (int col = mi_col_sr; col < mi_col_end_sr; col += step) {
+ if (row >= cm->mi_params.mi_rows || col >= mi_cols_sr) continue;
+ TplDepStats *this_stats =
+ &tpl_stats[av1_tpl_ptr_pos(row, col, tpl_stride, block_mis_log2)];
+ int64_t mc_dep_delta =
+ RDCOST(tpl_frame->base_rdmult, this_stats->mc_dep_rate,
+ this_stats->mc_dep_dist);
+ intra_cost += this_stats->recrf_dist << RDDIV_BITS;
+ mc_dep_cost += (this_stats->recrf_dist << RDDIV_BITS) + mc_dep_delta;
+ mc_count += this_stats->mc_count;
+ mc_saved += this_stats->mc_saved;
+ mi_count++;
+ }
+ }
+
+ aom_clear_system_state();
+
+ double beta = 1.0;
+ if (analysis_type == 0) {
+ if (mc_dep_cost > 0 && intra_cost > 0) {
+ const double r0 = cpi->rd.r0;
+ const double rk = (double)intra_cost / mc_dep_cost;
+ beta = (r0 / rk);
+ }
+ } else if (analysis_type == 1) {
+ const double mc_count_base = (mi_count * cpi->rd.mc_count_base);
+ beta = (mc_count + 1.0) / (mc_count_base + 1.0);
+ beta = pow(beta, 0.5);
+ } else if (analysis_type == 2) {
+ const double mc_saved_base = (mi_count * cpi->rd.mc_saved_base);
+ beta = (mc_saved + 1.0) / (mc_saved_base + 1.0);
+ beta = pow(beta, 0.5);
+ }
+
+ int rdmult = av1_get_adaptive_rdmult(cpi, beta);
+
+ aom_clear_system_state();
+
+ rdmult = AOMMIN(rdmult, orig_rdmult * 3 / 2);
+ rdmult = AOMMAX(rdmult, orig_rdmult * 1 / 2);
+
+ rdmult = AOMMAX(1, rdmult);
+
+ return rdmult;
+}
+
+static int get_tpl_stats_b(AV1_COMP *cpi, BLOCK_SIZE bsize, int mi_row,
+ int mi_col, int64_t *intra_cost_b,
+ int64_t *inter_cost_b,
+ int_mv mv_b[][INTER_REFS_PER_FRAME], int *stride) {
+ if (!cpi->oxcf.enable_tpl_model) return 0;
+ if (cpi->superres_mode != SUPERRES_NONE) return 0;
+ if (cpi->common.current_frame.frame_type == KEY_FRAME) return 0;
+ const FRAME_UPDATE_TYPE update_type = get_frame_update_type(&cpi->gf_group);
+ if (update_type == INTNL_OVERLAY_UPDATE || update_type == OVERLAY_UPDATE)
+ return 0;
+ assert(IMPLIES(cpi->gf_group.size > 0,
+ cpi->gf_group.index < cpi->gf_group.size));
+
+ AV1_COMMON *const cm = &cpi->common;
+ const int gf_group_index = cpi->gf_group.index;
+ TplParams *const tpl_data = &cpi->tpl_data;
+ TplDepFrame *tpl_frame = &tpl_data->tpl_frame[gf_group_index];
+ TplDepStats *tpl_stats = tpl_frame->tpl_stats_ptr;
+ int tpl_stride = tpl_frame->stride;
+ const int mi_wide = mi_size_wide[bsize];
+ const int mi_high = mi_size_high[bsize];
+
+ if (tpl_frame->is_valid == 0) return 0;
+ if (gf_group_index >= MAX_LAG_BUFFERS) return 0;
+
+ int mi_count = 0;
+ int count = 0;
+ const int mi_col_sr =
+ coded_to_superres_mi(mi_col, cm->superres_scale_denominator);
+ const int mi_col_end_sr =
+ coded_to_superres_mi(mi_col + mi_wide, cm->superres_scale_denominator);
+ // mi_cols_sr is mi_cols at superres case.
+ const int mi_cols_sr = av1_pixels_to_mi(cm->superres_upscaled_width);
+
+ // TPL store unit size is not the same as the motion estimation unit size.
+ // Here always use motion estimation size to avoid getting repetitive inter/
+ // intra cost.
+ const BLOCK_SIZE tpl_bsize = convert_length_to_bsize(MC_FLOW_BSIZE_1D);
+ const int step = mi_size_wide[tpl_bsize];
+ assert(mi_size_wide[tpl_bsize] == mi_size_high[tpl_bsize]);
+
+ // Stride is only based on SB size, and we fill in values for every 16x16
+ // block in a SB.
+ *stride = (mi_col_end_sr - mi_col_sr) / step;
+
+ for (int row = mi_row; row < mi_row + mi_high; row += step) {
+ for (int col = mi_col_sr; col < mi_col_end_sr; col += step) {
+ // Handle partial SB, so that no invalid values are used later.
+ if (row >= cm->mi_params.mi_rows || col >= mi_cols_sr) {
+ inter_cost_b[count] = INT64_MAX;
+ intra_cost_b[count] = INT64_MAX;
+ for (int i = 0; i < INTER_REFS_PER_FRAME; ++i) {
+ mv_b[count][i].as_int = INVALID_MV;
+ }
+ count++;
+ continue;
+ }
+
+ TplDepStats *this_stats = &tpl_stats[av1_tpl_ptr_pos(
+ row, col, tpl_stride, tpl_data->tpl_stats_block_mis_log2)];
+ inter_cost_b[count] = this_stats->inter_cost;
+ intra_cost_b[count] = this_stats->intra_cost;
+ memcpy(mv_b[count], this_stats->mv, sizeof(this_stats->mv));
+ mi_count++;
+ count++;
+ }
+ }
+
+ return mi_count;
+}
+
+// analysis_type 0: Use mc_dep_cost and intra_cost
+// analysis_type 1: Use count of best inter predictor chosen
+// analysis_type 2: Use cost reduction from intra to inter for best inter
+// predictor chosen
+static int get_q_for_deltaq_objective(AV1_COMP *const cpi, BLOCK_SIZE bsize,
+ int mi_row, int mi_col) {
+ AV1_COMMON *const cm = &cpi->common;
+ assert(IMPLIES(cpi->gf_group.size > 0,
+ cpi->gf_group.index < cpi->gf_group.size));
+ const int tpl_idx = cpi->gf_group.index;
+ TplParams *const tpl_data = &cpi->tpl_data;
+ TplDepFrame *tpl_frame = &tpl_data->tpl_frame[tpl_idx];
+ TplDepStats *tpl_stats = tpl_frame->tpl_stats_ptr;
+ const uint8_t block_mis_log2 = tpl_data->tpl_stats_block_mis_log2;
+ int tpl_stride = tpl_frame->stride;
+ int64_t intra_cost = 0;
+ int64_t mc_dep_cost = 0;
+ const int mi_wide = mi_size_wide[bsize];
+ const int mi_high = mi_size_high[bsize];
+ const int base_qindex = cm->quant_params.base_qindex;
+
+ if (tpl_frame->is_valid == 0) return base_qindex;
+
+ if (!is_frame_tpl_eligible(cpi)) return base_qindex;
+
+ if (cpi->gf_group.index >= MAX_LAG_BUFFERS) return base_qindex;
+
+ int64_t mc_count = 0, mc_saved = 0;
+ int mi_count = 0;
+ const int mi_col_sr =
+ coded_to_superres_mi(mi_col, cm->superres_scale_denominator);
+ const int mi_col_end_sr =
+ coded_to_superres_mi(mi_col + mi_wide, cm->superres_scale_denominator);
+ const int mi_cols_sr = av1_pixels_to_mi(cm->superres_upscaled_width);
+ const int step = 1 << block_mis_log2;
+ for (int row = mi_row; row < mi_row + mi_high; row += step) {
+ for (int col = mi_col_sr; col < mi_col_end_sr; col += step) {
+ if (row >= cm->mi_params.mi_rows || col >= mi_cols_sr) continue;
+ TplDepStats *this_stats =
+ &tpl_stats[av1_tpl_ptr_pos(row, col, tpl_stride, block_mis_log2)];
+ int64_t mc_dep_delta =
+ RDCOST(tpl_frame->base_rdmult, this_stats->mc_dep_rate,
+ this_stats->mc_dep_dist);
+ intra_cost += this_stats->recrf_dist << RDDIV_BITS;
+ mc_dep_cost += (this_stats->recrf_dist << RDDIV_BITS) + mc_dep_delta;
+ mc_count += this_stats->mc_count;
+ mc_saved += this_stats->mc_saved;
+ mi_count++;
+ }
+ }
+
+ aom_clear_system_state();
+
+ int offset = 0;
+ double beta = 1.0;
+ if (mc_dep_cost > 0 && intra_cost > 0) {
+ const double r0 = cpi->rd.r0;
+ const double rk = (double)intra_cost / mc_dep_cost;
+ beta = (r0 / rk);
+ assert(beta > 0.0);
+ }
+ offset = av1_get_deltaq_offset(cpi, base_qindex, beta);
+ aom_clear_system_state();
+
+ const DeltaQInfo *const delta_q_info = &cm->delta_q_info;
+ offset = AOMMIN(offset, delta_q_info->delta_q_res * 9 - 1);
+ offset = AOMMAX(offset, -delta_q_info->delta_q_res * 9 + 1);
+ int qindex = cm->quant_params.base_qindex + offset;
+ qindex = AOMMIN(qindex, MAXQ);
+ qindex = AOMMAX(qindex, MINQ);
+
+ return qindex;
+}
+
+static AOM_INLINE void setup_delta_q(AV1_COMP *const cpi, ThreadData *td,
+ MACROBLOCK *const x,
+ const TileInfo *const tile_info,
+ int mi_row, int mi_col, int num_planes) {
+ AV1_COMMON *const cm = &cpi->common;
+ const CommonModeInfoParams *const mi_params = &cm->mi_params;
+ const DeltaQInfo *const delta_q_info = &cm->delta_q_info;
+ assert(delta_q_info->delta_q_present_flag);
+
+ const BLOCK_SIZE sb_size = cm->seq_params.sb_size;
+ // Delta-q modulation based on variance
+ av1_setup_src_planes(x, cpi->source, mi_row, mi_col, num_planes, sb_size);
+
+ int current_qindex = cm->quant_params.base_qindex;
+ if (cpi->oxcf.deltaq_mode == DELTA_Q_PERCEPTUAL) {
+ if (DELTA_Q_PERCEPTUAL_MODULATION == 1) {
+ const int block_wavelet_energy_level =
+ av1_block_wavelet_energy_level(cpi, x, sb_size);
+ x->sb_energy_level = block_wavelet_energy_level;
+ current_qindex = av1_compute_q_from_energy_level_deltaq_mode(
+ cpi, block_wavelet_energy_level);
+ } else {
+ const int block_var_level = av1_log_block_var(cpi, x, sb_size);
+ x->sb_energy_level = block_var_level;
+ current_qindex =
+ av1_compute_q_from_energy_level_deltaq_mode(cpi, block_var_level);
+ }
+ } else if (cpi->oxcf.deltaq_mode == DELTA_Q_OBJECTIVE &&
+ cpi->oxcf.enable_tpl_model) {
+ // Setup deltaq based on tpl stats
+ current_qindex = get_q_for_deltaq_objective(cpi, sb_size, mi_row, mi_col);
+ }
+
+ const int delta_q_res = delta_q_info->delta_q_res;
+ // Right now aq only works with tpl model. So if tpl is disabled, we set the
+ // current_qindex to base_qindex.
+ if (cpi->oxcf.enable_tpl_model && cpi->oxcf.deltaq_mode != NO_DELTA_Q) {
+ current_qindex =
+ clamp(current_qindex, delta_q_res, 256 - delta_q_info->delta_q_res);
+ } else {
+ current_qindex = cm->quant_params.base_qindex;
+ }
+
+ MACROBLOCKD *const xd = &x->e_mbd;
+ const int sign_deltaq_index =
+ current_qindex - xd->current_qindex >= 0 ? 1 : -1;
+ const int deltaq_deadzone = delta_q_res / 4;
+ const int qmask = ~(delta_q_res - 1);
+ int abs_deltaq_index = abs(current_qindex - xd->current_qindex);
+ abs_deltaq_index = (abs_deltaq_index + deltaq_deadzone) & qmask;
+ current_qindex = xd->current_qindex + sign_deltaq_index * abs_deltaq_index;
+ current_qindex = AOMMAX(current_qindex, MINQ + 1);
+ assert(current_qindex > 0);
+
+ xd->delta_qindex = current_qindex - cm->quant_params.base_qindex;
+ set_offsets(cpi, tile_info, x, mi_row, mi_col, sb_size);
+ xd->mi[0]->current_qindex = current_qindex;
+ av1_init_plane_quantizers(cpi, x, xd->mi[0]->segment_id);
+
+ // keep track of any non-zero delta-q used
+ td->deltaq_used |= (xd->delta_qindex != 0);
+
+ if (cpi->oxcf.deltalf_mode) {
+ const int delta_lf_res = delta_q_info->delta_lf_res;
+ const int lfmask = ~(delta_lf_res - 1);
+ const int delta_lf_from_base =
+ ((xd->delta_qindex / 2 + delta_lf_res / 2) & lfmask);
+ const int8_t delta_lf =
+ (int8_t)clamp(delta_lf_from_base, -MAX_LOOP_FILTER, MAX_LOOP_FILTER);
+ const int frame_lf_count =
+ av1_num_planes(cm) > 1 ? FRAME_LF_COUNT : FRAME_LF_COUNT - 2;
+ const int mib_size = cm->seq_params.mib_size;
+
+ // pre-set the delta lf for loop filter. Note that this value is set
+ // before mi is assigned for each block in current superblock
+ for (int j = 0; j < AOMMIN(mib_size, mi_params->mi_rows - mi_row); j++) {
+ for (int k = 0; k < AOMMIN(mib_size, mi_params->mi_cols - mi_col); k++) {
+ const int grid_idx = get_mi_grid_idx(mi_params, mi_row + j, mi_col + k);
+ mi_params->mi_grid_base[grid_idx]->delta_lf_from_base = delta_lf;
+ for (int lf_id = 0; lf_id < frame_lf_count; ++lf_id) {
+ mi_params->mi_grid_base[grid_idx]->delta_lf[lf_id] = delta_lf;
+ }
+ }
+ }
+ }
+}
+#endif // !CONFIG_REALTIME_ONLY
+
+#define AVG_CDF_WEIGHT_LEFT 3
+#define AVG_CDF_WEIGHT_TOP_RIGHT 1
+
+static AOM_INLINE void avg_cdf_symbol(aom_cdf_prob *cdf_ptr_left,
+ aom_cdf_prob *cdf_ptr_tr, int num_cdfs,
+ int cdf_stride, int nsymbs, int wt_left,
+ int wt_tr) {
+ for (int i = 0; i < num_cdfs; i++) {
+ for (int j = 0; j <= nsymbs; j++) {
+ cdf_ptr_left[i * cdf_stride + j] =
+ (aom_cdf_prob)(((int)cdf_ptr_left[i * cdf_stride + j] * wt_left +
+ (int)cdf_ptr_tr[i * cdf_stride + j] * wt_tr +
+ ((wt_left + wt_tr) / 2)) /
+ (wt_left + wt_tr));
+ assert(cdf_ptr_left[i * cdf_stride + j] >= 0 &&
+ cdf_ptr_left[i * cdf_stride + j] < CDF_PROB_TOP);
+ }
+ }
+}
+
+#define AVERAGE_CDF(cname_left, cname_tr, nsymbs) \
+ AVG_CDF_STRIDE(cname_left, cname_tr, nsymbs, CDF_SIZE(nsymbs))
+
+#define AVG_CDF_STRIDE(cname_left, cname_tr, nsymbs, cdf_stride) \
+ do { \
+ aom_cdf_prob *cdf_ptr_left = (aom_cdf_prob *)cname_left; \
+ aom_cdf_prob *cdf_ptr_tr = (aom_cdf_prob *)cname_tr; \
+ int array_size = (int)sizeof(cname_left) / sizeof(aom_cdf_prob); \
+ int num_cdfs = array_size / cdf_stride; \
+ avg_cdf_symbol(cdf_ptr_left, cdf_ptr_tr, num_cdfs, cdf_stride, nsymbs, \
+ wt_left, wt_tr); \
+ } while (0)
+
+static AOM_INLINE void avg_nmv(nmv_context *nmv_left, nmv_context *nmv_tr,
+ int wt_left, int wt_tr) {
+ AVERAGE_CDF(nmv_left->joints_cdf, nmv_tr->joints_cdf, 4);
+ for (int i = 0; i < 2; i++) {
+ AVERAGE_CDF(nmv_left->comps[i].classes_cdf, nmv_tr->comps[i].classes_cdf,
+ MV_CLASSES);
+ AVERAGE_CDF(nmv_left->comps[i].class0_fp_cdf,
+ nmv_tr->comps[i].class0_fp_cdf, MV_FP_SIZE);
+ AVERAGE_CDF(nmv_left->comps[i].fp_cdf, nmv_tr->comps[i].fp_cdf, MV_FP_SIZE);
+ AVERAGE_CDF(nmv_left->comps[i].sign_cdf, nmv_tr->comps[i].sign_cdf, 2);
+ AVERAGE_CDF(nmv_left->comps[i].class0_hp_cdf,
+ nmv_tr->comps[i].class0_hp_cdf, 2);
+ AVERAGE_CDF(nmv_left->comps[i].hp_cdf, nmv_tr->comps[i].hp_cdf, 2);
+ AVERAGE_CDF(nmv_left->comps[i].class0_cdf, nmv_tr->comps[i].class0_cdf,
+ CLASS0_SIZE);
+ AVERAGE_CDF(nmv_left->comps[i].bits_cdf, nmv_tr->comps[i].bits_cdf, 2);
+ }
+}
+
+// In case of row-based multi-threading of encoder, since we always
+// keep a top - right sync, we can average the top - right SB's CDFs and
+// the left SB's CDFs and use the same for current SB's encoding to
+// improve the performance. This function facilitates the averaging
+// of CDF and used only when row-mt is enabled in encoder.
+static AOM_INLINE void avg_cdf_symbols(FRAME_CONTEXT *ctx_left,
+ FRAME_CONTEXT *ctx_tr, int wt_left,
+ int wt_tr) {
+ AVERAGE_CDF(ctx_left->txb_skip_cdf, ctx_tr->txb_skip_cdf, 2);
+ AVERAGE_CDF(ctx_left->eob_extra_cdf, ctx_tr->eob_extra_cdf, 2);
+ AVERAGE_CDF(ctx_left->dc_sign_cdf, ctx_tr->dc_sign_cdf, 2);
+ AVERAGE_CDF(ctx_left->eob_flag_cdf16, ctx_tr->eob_flag_cdf16, 5);
+ AVERAGE_CDF(ctx_left->eob_flag_cdf32, ctx_tr->eob_flag_cdf32, 6);
+ AVERAGE_CDF(ctx_left->eob_flag_cdf64, ctx_tr->eob_flag_cdf64, 7);
+ AVERAGE_CDF(ctx_left->eob_flag_cdf128, ctx_tr->eob_flag_cdf128, 8);
+ AVERAGE_CDF(ctx_left->eob_flag_cdf256, ctx_tr->eob_flag_cdf256, 9);
+ AVERAGE_CDF(ctx_left->eob_flag_cdf512, ctx_tr->eob_flag_cdf512, 10);
+ AVERAGE_CDF(ctx_left->eob_flag_cdf1024, ctx_tr->eob_flag_cdf1024, 11);
+ AVERAGE_CDF(ctx_left->coeff_base_eob_cdf, ctx_tr->coeff_base_eob_cdf, 3);
+ AVERAGE_CDF(ctx_left->coeff_base_cdf, ctx_tr->coeff_base_cdf, 4);
+ AVERAGE_CDF(ctx_left->coeff_br_cdf, ctx_tr->coeff_br_cdf, BR_CDF_SIZE);
+ AVERAGE_CDF(ctx_left->newmv_cdf, ctx_tr->newmv_cdf, 2);
+ AVERAGE_CDF(ctx_left->zeromv_cdf, ctx_tr->zeromv_cdf, 2);
+ AVERAGE_CDF(ctx_left->refmv_cdf, ctx_tr->refmv_cdf, 2);
+ AVERAGE_CDF(ctx_left->drl_cdf, ctx_tr->drl_cdf, 2);
+ AVERAGE_CDF(ctx_left->inter_compound_mode_cdf,
+ ctx_tr->inter_compound_mode_cdf, INTER_COMPOUND_MODES);
+ AVERAGE_CDF(ctx_left->compound_type_cdf, ctx_tr->compound_type_cdf,
+ MASKED_COMPOUND_TYPES);
+ AVERAGE_CDF(ctx_left->wedge_idx_cdf, ctx_tr->wedge_idx_cdf, 16);
+ AVERAGE_CDF(ctx_left->interintra_cdf, ctx_tr->interintra_cdf, 2);
+ AVERAGE_CDF(ctx_left->wedge_interintra_cdf, ctx_tr->wedge_interintra_cdf, 2);
+ AVERAGE_CDF(ctx_left->interintra_mode_cdf, ctx_tr->interintra_mode_cdf,
+ INTERINTRA_MODES);
+ AVERAGE_CDF(ctx_left->motion_mode_cdf, ctx_tr->motion_mode_cdf, MOTION_MODES);
+ AVERAGE_CDF(ctx_left->obmc_cdf, ctx_tr->obmc_cdf, 2);
+ AVERAGE_CDF(ctx_left->palette_y_size_cdf, ctx_tr->palette_y_size_cdf,
+ PALETTE_SIZES);
+ AVERAGE_CDF(ctx_left->palette_uv_size_cdf, ctx_tr->palette_uv_size_cdf,
+ PALETTE_SIZES);
+ for (int j = 0; j < PALETTE_SIZES; j++) {
+ int nsymbs = j + PALETTE_MIN_SIZE;
+ AVG_CDF_STRIDE(ctx_left->palette_y_color_index_cdf[j],
+ ctx_tr->palette_y_color_index_cdf[j], nsymbs,
+ CDF_SIZE(PALETTE_COLORS));
+ AVG_CDF_STRIDE(ctx_left->palette_uv_color_index_cdf[j],
+ ctx_tr->palette_uv_color_index_cdf[j], nsymbs,
+ CDF_SIZE(PALETTE_COLORS));
+ }
+ AVERAGE_CDF(ctx_left->palette_y_mode_cdf, ctx_tr->palette_y_mode_cdf, 2);
+ AVERAGE_CDF(ctx_left->palette_uv_mode_cdf, ctx_tr->palette_uv_mode_cdf, 2);
+ AVERAGE_CDF(ctx_left->comp_inter_cdf, ctx_tr->comp_inter_cdf, 2);
+ AVERAGE_CDF(ctx_left->single_ref_cdf, ctx_tr->single_ref_cdf, 2);
+ AVERAGE_CDF(ctx_left->comp_ref_type_cdf, ctx_tr->comp_ref_type_cdf, 2);
+ AVERAGE_CDF(ctx_left->uni_comp_ref_cdf, ctx_tr->uni_comp_ref_cdf, 2);
+ AVERAGE_CDF(ctx_left->comp_ref_cdf, ctx_tr->comp_ref_cdf, 2);
+ AVERAGE_CDF(ctx_left->comp_bwdref_cdf, ctx_tr->comp_bwdref_cdf, 2);
+ AVERAGE_CDF(ctx_left->txfm_partition_cdf, ctx_tr->txfm_partition_cdf, 2);
+ AVERAGE_CDF(ctx_left->compound_index_cdf, ctx_tr->compound_index_cdf, 2);
+ AVERAGE_CDF(ctx_left->comp_group_idx_cdf, ctx_tr->comp_group_idx_cdf, 2);
+ AVERAGE_CDF(ctx_left->skip_mode_cdfs, ctx_tr->skip_mode_cdfs, 2);
+ AVERAGE_CDF(ctx_left->skip_cdfs, ctx_tr->skip_cdfs, 2);
+ AVERAGE_CDF(ctx_left->intra_inter_cdf, ctx_tr->intra_inter_cdf, 2);
+ avg_nmv(&ctx_left->nmvc, &ctx_tr->nmvc, wt_left, wt_tr);
+ avg_nmv(&ctx_left->ndvc, &ctx_tr->ndvc, wt_left, wt_tr);
+ AVERAGE_CDF(ctx_left->intrabc_cdf, ctx_tr->intrabc_cdf, 2);
+ AVERAGE_CDF(ctx_left->seg.tree_cdf, ctx_tr->seg.tree_cdf, MAX_SEGMENTS);
+ AVERAGE_CDF(ctx_left->seg.pred_cdf, ctx_tr->seg.pred_cdf, 2);
+ AVERAGE_CDF(ctx_left->seg.spatial_pred_seg_cdf,
+ ctx_tr->seg.spatial_pred_seg_cdf, MAX_SEGMENTS);
+ AVERAGE_CDF(ctx_left->filter_intra_cdfs, ctx_tr->filter_intra_cdfs, 2);
+ AVERAGE_CDF(ctx_left->filter_intra_mode_cdf, ctx_tr->filter_intra_mode_cdf,
+ FILTER_INTRA_MODES);
+ AVERAGE_CDF(ctx_left->switchable_restore_cdf, ctx_tr->switchable_restore_cdf,
+ RESTORE_SWITCHABLE_TYPES);
+ AVERAGE_CDF(ctx_left->wiener_restore_cdf, ctx_tr->wiener_restore_cdf, 2);
+ AVERAGE_CDF(ctx_left->sgrproj_restore_cdf, ctx_tr->sgrproj_restore_cdf, 2);
+ AVERAGE_CDF(ctx_left->y_mode_cdf, ctx_tr->y_mode_cdf, INTRA_MODES);
+ AVG_CDF_STRIDE(ctx_left->uv_mode_cdf[0], ctx_tr->uv_mode_cdf[0],
+ UV_INTRA_MODES - 1, CDF_SIZE(UV_INTRA_MODES));
+ AVERAGE_CDF(ctx_left->uv_mode_cdf[1], ctx_tr->uv_mode_cdf[1], UV_INTRA_MODES);
+ for (int i = 0; i < PARTITION_CONTEXTS; i++) {
+ if (i < 4) {
+ AVG_CDF_STRIDE(ctx_left->partition_cdf[i], ctx_tr->partition_cdf[i], 4,
+ CDF_SIZE(10));
+ } else if (i < 16) {
+ AVERAGE_CDF(ctx_left->partition_cdf[i], ctx_tr->partition_cdf[i], 10);
+ } else {
+ AVG_CDF_STRIDE(ctx_left->partition_cdf[i], ctx_tr->partition_cdf[i], 8,
+ CDF_SIZE(10));
+ }
+ }
+ AVERAGE_CDF(ctx_left->switchable_interp_cdf, ctx_tr->switchable_interp_cdf,
+ SWITCHABLE_FILTERS);
+ AVERAGE_CDF(ctx_left->kf_y_cdf, ctx_tr->kf_y_cdf, INTRA_MODES);
+ AVERAGE_CDF(ctx_left->angle_delta_cdf, ctx_tr->angle_delta_cdf,
+ 2 * MAX_ANGLE_DELTA + 1);
+ AVG_CDF_STRIDE(ctx_left->tx_size_cdf[0], ctx_tr->tx_size_cdf[0], MAX_TX_DEPTH,
+ CDF_SIZE(MAX_TX_DEPTH + 1));
+ AVERAGE_CDF(ctx_left->tx_size_cdf[1], ctx_tr->tx_size_cdf[1],
+ MAX_TX_DEPTH + 1);
+ AVERAGE_CDF(ctx_left->tx_size_cdf[2], ctx_tr->tx_size_cdf[2],
+ MAX_TX_DEPTH + 1);
+ AVERAGE_CDF(ctx_left->tx_size_cdf[3], ctx_tr->tx_size_cdf[3],
+ MAX_TX_DEPTH + 1);
+ AVERAGE_CDF(ctx_left->delta_q_cdf, ctx_tr->delta_q_cdf, DELTA_Q_PROBS + 1);
+ AVERAGE_CDF(ctx_left->delta_lf_cdf, ctx_tr->delta_lf_cdf, DELTA_LF_PROBS + 1);
+ for (int i = 0; i < FRAME_LF_COUNT; i++) {
+ AVERAGE_CDF(ctx_left->delta_lf_multi_cdf[i], ctx_tr->delta_lf_multi_cdf[i],
+ DELTA_LF_PROBS + 1);
+ }
+ AVG_CDF_STRIDE(ctx_left->intra_ext_tx_cdf[1], ctx_tr->intra_ext_tx_cdf[1], 7,
+ CDF_SIZE(TX_TYPES));
+ AVG_CDF_STRIDE(ctx_left->intra_ext_tx_cdf[2], ctx_tr->intra_ext_tx_cdf[2], 5,
+ CDF_SIZE(TX_TYPES));
+ AVG_CDF_STRIDE(ctx_left->inter_ext_tx_cdf[1], ctx_tr->inter_ext_tx_cdf[1], 16,
+ CDF_SIZE(TX_TYPES));
+ AVG_CDF_STRIDE(ctx_left->inter_ext_tx_cdf[2], ctx_tr->inter_ext_tx_cdf[2], 12,
+ CDF_SIZE(TX_TYPES));
+ AVG_CDF_STRIDE(ctx_left->inter_ext_tx_cdf[3], ctx_tr->inter_ext_tx_cdf[3], 2,
+ CDF_SIZE(TX_TYPES));
+ AVERAGE_CDF(ctx_left->cfl_sign_cdf, ctx_tr->cfl_sign_cdf, CFL_JOINT_SIGNS);
+ AVERAGE_CDF(ctx_left->cfl_alpha_cdf, ctx_tr->cfl_alpha_cdf,
+ CFL_ALPHABET_SIZE);
+}
+
+#if !CONFIG_REALTIME_ONLY
+static AOM_INLINE void adjust_rdmult_tpl_model(AV1_COMP *cpi, MACROBLOCK *x,
+ int mi_row, int mi_col) {
+ const BLOCK_SIZE sb_size = cpi->common.seq_params.sb_size;
+ const int orig_rdmult = cpi->rd.RDMULT;
+
+ assert(IMPLIES(cpi->gf_group.size > 0,
+ cpi->gf_group.index < cpi->gf_group.size));
+ const int gf_group_index = cpi->gf_group.index;
+ if (cpi->oxcf.enable_tpl_model && cpi->oxcf.aq_mode == NO_AQ &&
+ cpi->oxcf.deltaq_mode == NO_DELTA_Q && gf_group_index > 0 &&
+ cpi->gf_group.update_type[gf_group_index] == ARF_UPDATE) {
+ const int dr =
+ get_rdmult_delta(cpi, sb_size, 0, mi_row, mi_col, orig_rdmult);
+ x->rdmult = dr;
+ }
+}
+#endif
+
+static void source_content_sb(AV1_COMP *cpi, MACROBLOCK *x, int shift) {
+ unsigned int tmp_sse;
+ unsigned int tmp_variance;
+ const BLOCK_SIZE bsize = BLOCK_64X64;
+ uint8_t *src_y = cpi->source->y_buffer;
+ int src_ystride = cpi->source->y_stride;
+ uint8_t *last_src_y = cpi->last_source->y_buffer;
+ int last_src_ystride = cpi->last_source->y_stride;
+ uint64_t avg_source_sse_threshold = 100000; // ~5*5*(64*64)
+ uint64_t avg_source_sse_threshold_high = 1000000; // ~15*15*(64*64)
+ uint64_t sum_sq_thresh = 10000; // sum = sqrt(thresh / 64*64)) ~1.5
+#if CONFIG_AV1_HIGHBITDEPTH
+ MACROBLOCKD *xd = &x->e_mbd;
+ if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) return;
+#endif
+ src_y += shift;
+ last_src_y += shift;
+ tmp_variance = cpi->fn_ptr[bsize].vf(src_y, src_ystride, last_src_y,
+ last_src_ystride, &tmp_sse);
+ // Note: tmp_sse - tmp_variance = ((sum * sum) >> 12)
+ // Detect large lighting change.
+ if (tmp_variance < (tmp_sse >> 1) && (tmp_sse - tmp_variance) > sum_sq_thresh)
+ x->content_state_sb = kLowVarHighSumdiff;
+ else if (tmp_sse < avg_source_sse_threshold)
+ x->content_state_sb = kLowSad;
+ else if (tmp_sse > avg_source_sse_threshold_high)
+ x->content_state_sb = kHighSad;
+}
+
+static AOM_INLINE void encode_nonrd_sb(AV1_COMP *cpi, ThreadData *td,
+ TileDataEnc *tile_data,
+ PC_TREE *const pc_root, TOKENEXTRA **tp,
+ const int mi_row, const int mi_col,
+ const int seg_skip) {
+ AV1_COMMON *const cm = &cpi->common;
+ MACROBLOCK *const x = &td->mb;
+ const SPEED_FEATURES *const sf = &cpi->sf;
+ const TileInfo *const tile_info = &tile_data->tile_info;
+ MB_MODE_INFO **mi = cm->mi_params.mi_grid_base +
+ get_mi_grid_idx(&cm->mi_params, mi_row, mi_col);
+ const BLOCK_SIZE sb_size = cm->seq_params.sb_size;
+ if (sf->rt_sf.source_metrics_sb_nonrd && sb_size == BLOCK_64X64 &&
+ cpi->svc.number_spatial_layers <= 1 &&
+ cm->current_frame.frame_type != KEY_FRAME) {
+ int shift = cpi->source->y_stride * (mi_row << 2) + (mi_col << 2);
+ source_content_sb(cpi, x, shift);
+ }
+ if (sf->part_sf.partition_search_type == FIXED_PARTITION || seg_skip) {
+ set_offsets(cpi, tile_info, x, mi_row, mi_col, sb_size);
+ const BLOCK_SIZE bsize =
+ seg_skip ? sb_size : sf->part_sf.always_this_block_size;
+ set_fixed_partitioning(cpi, tile_info, mi, mi_row, mi_col, bsize);
+ } else if (cpi->partition_search_skippable_frame) {
+ set_offsets(cpi, tile_info, x, mi_row, mi_col, sb_size);
+ const BLOCK_SIZE bsize =
+ get_rd_var_based_fixed_partition(cpi, x, mi_row, mi_col);
+ set_fixed_partitioning(cpi, tile_info, mi, mi_row, mi_col, bsize);
+ } else if (sf->part_sf.partition_search_type == VAR_BASED_PARTITION) {
+ set_offsets_without_segment_id(cpi, tile_info, x, mi_row, mi_col, sb_size);
+ av1_choose_var_based_partitioning(cpi, tile_info, td, x, mi_row, mi_col);
+ }
+ assert(sf->part_sf.partition_search_type == FIXED_PARTITION || seg_skip ||
+ cpi->partition_search_skippable_frame ||
+ sf->part_sf.partition_search_type == VAR_BASED_PARTITION);
+ td->mb.cb_offset = 0;
+ nonrd_use_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col, sb_size,
+ pc_root);
+}
+
+// Memset the mbmis at the current superblock to 0
+static INLINE void reset_mbmi(CommonModeInfoParams *const mi_params,
+ BLOCK_SIZE sb_size, int mi_row, int mi_col) {
+ // size of sb in unit of mi (BLOCK_4X4)
+ const int sb_size_mi = mi_size_wide[sb_size];
+ const int mi_alloc_size_1d = mi_size_wide[mi_params->mi_alloc_bsize];
+ // size of sb in unit of allocated mi size
+ const int sb_size_alloc_mi = mi_size_wide[sb_size] / mi_alloc_size_1d;
+ assert(mi_params->mi_alloc_stride % sb_size_alloc_mi == 0 &&
+ "mi is not allocated as a multiple of sb!");
+ assert(mi_params->mi_stride % sb_size_mi == 0 &&
+ "mi_grid_base is not allocated as a multiple of sb!");
+
+ const int mi_rows = mi_size_high[sb_size];
+ for (int cur_mi_row = 0; cur_mi_row < mi_rows; cur_mi_row++) {
+ assert(get_mi_grid_idx(mi_params, 0, mi_col + mi_alloc_size_1d) <
+ mi_params->mi_stride);
+ const int mi_grid_idx =
+ get_mi_grid_idx(mi_params, mi_row + cur_mi_row, mi_col);
+ const int alloc_mi_idx =
+ get_alloc_mi_idx(mi_params, mi_row + cur_mi_row, mi_col);
+ memset(&mi_params->mi_grid_base[mi_grid_idx], 0,
+ sb_size_mi * sizeof(*mi_params->mi_grid_base));
+ memset(&mi_params->tx_type_map[mi_grid_idx], 0,
+ sb_size_mi * sizeof(*mi_params->tx_type_map));
+ if (cur_mi_row % mi_alloc_size_1d == 0) {
+ memset(&mi_params->mi_alloc[alloc_mi_idx], 0,
+ sb_size_alloc_mi * sizeof(*mi_params->mi_alloc));
+ }
+ }
+}
+
+static INLINE void backup_sb_state(SB_FIRST_PASS_STATS *sb_fp_stats,
+ const AV1_COMP *cpi, ThreadData *td,
+ const TileDataEnc *tile_data, int mi_row,
+ int mi_col) {
+ MACROBLOCK *x = &td->mb;
+ MACROBLOCKD *xd = &x->e_mbd;
+ const TileInfo *tile_info = &tile_data->tile_info;
+
+ const AV1_COMMON *cm = &cpi->common;
+ const int num_planes = av1_num_planes(cm);
+ const BLOCK_SIZE sb_size = cm->seq_params.sb_size;
+
+ xd->above_txfm_context =
+ cm->above_contexts.txfm[tile_info->tile_row] + mi_col;
+ xd->left_txfm_context =
+ xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK);
+ save_context(x, &sb_fp_stats->x_ctx, mi_row, mi_col, sb_size, num_planes);
+
+ sb_fp_stats->rd_count = cpi->td.rd_counts;
+ sb_fp_stats->split_count = cpi->td.mb.txb_split_count;
+
+ sb_fp_stats->fc = *td->counts;
+
+ memcpy(sb_fp_stats->inter_mode_rd_models, tile_data->inter_mode_rd_models,
+ sizeof(sb_fp_stats->inter_mode_rd_models));
+
+ memcpy(sb_fp_stats->thresh_freq_fact, x->thresh_freq_fact,
+ sizeof(sb_fp_stats->thresh_freq_fact));
+
+ const int alloc_mi_idx = get_alloc_mi_idx(&cm->mi_params, mi_row, mi_col);
+ sb_fp_stats->current_qindex =
+ cm->mi_params.mi_alloc[alloc_mi_idx].current_qindex;
+
+#if CONFIG_INTERNAL_STATS
+ memcpy(sb_fp_stats->mode_chosen_counts, cpi->mode_chosen_counts,
+ sizeof(sb_fp_stats->mode_chosen_counts));
+#endif // CONFIG_INTERNAL_STATS
+}
+
+static INLINE void restore_sb_state(const SB_FIRST_PASS_STATS *sb_fp_stats,
+ AV1_COMP *cpi, ThreadData *td,
+ TileDataEnc *tile_data, int mi_row,
+ int mi_col) {
+ MACROBLOCK *x = &td->mb;
+
+ const AV1_COMMON *cm = &cpi->common;
+ const int num_planes = av1_num_planes(cm);
+ const BLOCK_SIZE sb_size = cm->seq_params.sb_size;
+
+ restore_context(x, &sb_fp_stats->x_ctx, mi_row, mi_col, sb_size, num_planes);
+
+ cpi->td.rd_counts = sb_fp_stats->rd_count;
+ cpi->td.mb.txb_split_count = sb_fp_stats->split_count;
+
+ *td->counts = sb_fp_stats->fc;
+
+ memcpy(tile_data->inter_mode_rd_models, sb_fp_stats->inter_mode_rd_models,
+ sizeof(sb_fp_stats->inter_mode_rd_models));
+ memcpy(x->thresh_freq_fact, sb_fp_stats->thresh_freq_fact,
+ sizeof(sb_fp_stats->thresh_freq_fact));
+
+ const int alloc_mi_idx = get_alloc_mi_idx(&cm->mi_params, mi_row, mi_col);
+ cm->mi_params.mi_alloc[alloc_mi_idx].current_qindex =
+ sb_fp_stats->current_qindex;
+
+#if CONFIG_INTERNAL_STATS
+ memcpy(cpi->mode_chosen_counts, sb_fp_stats->mode_chosen_counts,
+ sizeof(sb_fp_stats->mode_chosen_counts));
+#endif // CONFIG_INTERNAL_STATS
+}
+
+#if !CONFIG_REALTIME_ONLY
+static void init_ref_frame_space(AV1_COMP *cpi, ThreadData *td, int mi_row,
+ int mi_col) {
+ const AV1_COMMON *cm = &cpi->common;
+ const CommonModeInfoParams *const mi_params = &cm->mi_params;
+ MACROBLOCK *x = &td->mb;
+ const int frame_idx = cpi->gf_group.index;
+ TplParams *const tpl_data = &cpi->tpl_data;
+ TplDepFrame *tpl_frame = &tpl_data->tpl_frame[frame_idx];
+ const uint8_t block_mis_log2 = tpl_data->tpl_stats_block_mis_log2;
+
+ av1_zero(x->search_ref_frame);
+
+ if (tpl_frame->is_valid == 0) return;
+ if (!is_frame_tpl_eligible(cpi)) return;
+ if (frame_idx >= MAX_LAG_BUFFERS) return;
+ if (cpi->superres_mode != SUPERRES_NONE) return;
+ if (cpi->oxcf.aq_mode != NO_AQ) return;
+
+ const int is_overlay = cpi->gf_group.update_type[frame_idx] == OVERLAY_UPDATE;
+ if (is_overlay) {
+ memset(x->search_ref_frame, 1, sizeof(x->search_ref_frame));
+ return;
+ }
+
+ TplDepStats *tpl_stats = tpl_frame->tpl_stats_ptr;
+ const int tpl_stride = tpl_frame->stride;
+ int64_t inter_cost[INTER_REFS_PER_FRAME] = { 0 };
+ const int step = 1 << block_mis_log2;
+ const BLOCK_SIZE sb_size = cm->seq_params.sb_size;
+ const int mi_row_end =
+ AOMMIN(mi_size_high[sb_size] + mi_row, mi_params->mi_rows);
+ const int mi_col_end =
+ AOMMIN(mi_size_wide[sb_size] + mi_col, mi_params->mi_cols);
+
+ for (int row = mi_row; row < mi_row_end; row += step) {
+ for (int col = mi_col; col < mi_col_end; col += step) {
+ const TplDepStats *this_stats =
+ &tpl_stats[av1_tpl_ptr_pos(row, col, tpl_stride, block_mis_log2)];
+ int64_t tpl_pred_error[INTER_REFS_PER_FRAME] = { 0 };
+ // Find the winner ref frame idx for the current block
+ int64_t best_inter_cost = this_stats->pred_error[0];
+ int best_rf_idx = 0;
+ for (int idx = 1; idx < INTER_REFS_PER_FRAME; ++idx) {
+ if ((this_stats->pred_error[idx] < best_inter_cost) &&
+ (this_stats->pred_error[idx] != 0)) {
+ best_inter_cost = this_stats->pred_error[idx];
+ best_rf_idx = idx;
+ }
+ }
+ // tpl_pred_error is the pred_error reduction of best_ref w.r.t.
+ // LAST_FRAME.
+ tpl_pred_error[best_rf_idx] = this_stats->pred_error[best_rf_idx] -
+ this_stats->pred_error[LAST_FRAME - 1];
+
+ for (int rf_idx = 1; rf_idx < INTER_REFS_PER_FRAME; ++rf_idx)
+ inter_cost[rf_idx] += tpl_pred_error[rf_idx];
+ }
+ }
+
+ int rank_index[INTER_REFS_PER_FRAME - 1];
+ for (int idx = 0; idx < INTER_REFS_PER_FRAME - 1; ++idx) {
+ rank_index[idx] = idx + 1;
+ for (int i = idx; i > 0; --i) {
+ if (inter_cost[rank_index[i - 1]] > inter_cost[rank_index[i]]) {
+ const int tmp = rank_index[i - 1];
+ rank_index[i - 1] = rank_index[i];
+ rank_index[i] = tmp;
+ }
+ }
+ }
+
+ x->search_ref_frame[INTRA_FRAME] = 1;
+ x->search_ref_frame[LAST_FRAME] = 1;
+
+ int cutoff_ref = 0;
+ for (int idx = 0; idx < INTER_REFS_PER_FRAME - 1; ++idx) {
+ x->search_ref_frame[rank_index[idx] + LAST_FRAME] = 1;
+ if (idx > 2) {
+ if (!cutoff_ref) {
+ // If the predictive coding gains are smaller than the previous more
+ // relevant frame over certain amount, discard this frame and all the
+ // frames afterwards.
+ if (llabs(inter_cost[rank_index[idx]]) <
+ llabs(inter_cost[rank_index[idx - 1]]) / 8 ||
+ inter_cost[rank_index[idx]] == 0)
+ cutoff_ref = 1;
+ }
+
+ if (cutoff_ref) x->search_ref_frame[rank_index[idx] + LAST_FRAME] = 0;
+ }
+ }
+}
+#endif // !CONFIG_REALTIME_ONLY
+
+// This function initializes the stats for encode_rd_sb.
+static INLINE void init_encode_rd_sb(AV1_COMP *cpi, ThreadData *td,
+ const TileDataEnc *tile_data,
+ PC_TREE *pc_root, RD_STATS *rd_cost,
+ int mi_row, int mi_col,
+ int gather_tpl_data) {
+ const AV1_COMMON *cm = &cpi->common;
+ const TileInfo *tile_info = &tile_data->tile_info;
+ MACROBLOCK *x = &td->mb;
+
+ const SPEED_FEATURES *sf = &cpi->sf;
+ const int use_simple_motion_search =
+ (sf->part_sf.simple_motion_search_split ||
+ sf->part_sf.simple_motion_search_prune_rect ||
+ sf->part_sf.simple_motion_search_early_term_none ||
+ sf->part_sf.ml_early_term_after_part_split_level) &&
+ !frame_is_intra_only(cm);
+ if (use_simple_motion_search) {
+ init_simple_motion_search_mvs(pc_root);
+ }
+
+#if !CONFIG_REALTIME_ONLY
+ init_ref_frame_space(cpi, td, mi_row, mi_col);
+ x->sb_energy_level = 0;
+ x->cnn_output_valid = 0;
+ if (gather_tpl_data) {
+ if (cm->delta_q_info.delta_q_present_flag) {
+ const int num_planes = av1_num_planes(cm);
+ const BLOCK_SIZE sb_size = cm->seq_params.sb_size;
+ setup_delta_q(cpi, td, x, tile_info, mi_row, mi_col, num_planes);
+ av1_tpl_rdmult_setup_sb(cpi, x, sb_size, mi_row, mi_col);
+ }
+ if (cpi->oxcf.enable_tpl_model) {
+ adjust_rdmult_tpl_model(cpi, x, mi_row, mi_col);
+ }
+ }
+#else
+ (void)tile_info;
+ (void)mi_row;
+ (void)mi_col;
+ (void)gather_tpl_data;
+#endif
+
+ // Reset hash state for transform/mode rd hash information
+ reset_hash_records(x, cpi->sf.tx_sf.use_inter_txb_hash);
+ av1_zero(x->picked_ref_frames_mask);
+ av1_zero(x->pred_mv);
+ av1_invalid_rd_stats(rd_cost);
+}
+
+static AOM_INLINE void encode_rd_sb(AV1_COMP *cpi, ThreadData *td,
+ TileDataEnc *tile_data,
+ PC_TREE *const pc_root, TOKENEXTRA **tp,
+ const int mi_row, const int mi_col,
+ const int seg_skip) {
+ AV1_COMMON *const cm = &cpi->common;
+ MACROBLOCK *const x = &td->mb;
+ const SPEED_FEATURES *const sf = &cpi->sf;
+ const TileInfo *const tile_info = &tile_data->tile_info;
+ MB_MODE_INFO **mi = cm->mi_params.mi_grid_base +
+ get_mi_grid_idx(&cm->mi_params, mi_row, mi_col);
+ const BLOCK_SIZE sb_size = cm->seq_params.sb_size;
+ int dummy_rate;
+ int64_t dummy_dist;
+ RD_STATS dummy_rdc;
+
+#if CONFIG_REALTIME_ONLY
+ (void)seg_skip;
+#endif // CONFIG_REALTIME_ONLY
+
+ init_encode_rd_sb(cpi, td, tile_data, pc_root, &dummy_rdc, mi_row, mi_col, 1);
+
+ if (sf->part_sf.partition_search_type == VAR_BASED_PARTITION) {
+ set_offsets_without_segment_id(cpi, tile_info, x, mi_row, mi_col, sb_size);
+ av1_choose_var_based_partitioning(cpi, tile_info, td, x, mi_row, mi_col);
+ rd_use_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col, sb_size,
+ &dummy_rate, &dummy_dist, 1, pc_root);
+ }
+#if !CONFIG_REALTIME_ONLY
+ else if (sf->part_sf.partition_search_type == FIXED_PARTITION || seg_skip) {
+ set_offsets(cpi, tile_info, x, mi_row, mi_col, sb_size);
+ const BLOCK_SIZE bsize =
+ seg_skip ? sb_size : sf->part_sf.always_this_block_size;
+ set_fixed_partitioning(cpi, tile_info, mi, mi_row, mi_col, bsize);
+ rd_use_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col, sb_size,
+ &dummy_rate, &dummy_dist, 1, pc_root);
+ } else if (cpi->partition_search_skippable_frame) {
+ set_offsets(cpi, tile_info, x, mi_row, mi_col, sb_size);
+ const BLOCK_SIZE bsize =
+ get_rd_var_based_fixed_partition(cpi, x, mi_row, mi_col);
+ set_fixed_partitioning(cpi, tile_info, mi, mi_row, mi_col, bsize);
+ rd_use_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col, sb_size,
+ &dummy_rate, &dummy_dist, 1, pc_root);
+ } else {
+ // No stats for overlay frames. Exclude key frame.
+ x->valid_cost_b =
+ get_tpl_stats_b(cpi, sb_size, mi_row, mi_col, x->intra_cost_b,
+ x->inter_cost_b, x->mv_b, &x->cost_stride);
+
+ reset_partition(pc_root, sb_size);
+
+#if CONFIG_COLLECT_COMPONENT_TIMING
+ start_timing(cpi, rd_pick_partition_time);
+#endif
+ BLOCK_SIZE max_sq_size = x->max_partition_size;
+ BLOCK_SIZE min_sq_size = x->min_partition_size;
+
+ if (use_auto_max_partition(cpi, sb_size, mi_row, mi_col)) {
+ float features[FEATURE_SIZE_MAX_MIN_PART_PRED] = { 0.0f };
+
+ av1_get_max_min_partition_features(cpi, x, mi_row, mi_col, features);
+ max_sq_size = AOMMAX(
+ AOMMIN(av1_predict_max_partition(cpi, x, features), max_sq_size),
+ min_sq_size);
+ }
+
+ const int num_passes = cpi->oxcf.sb_multipass_unit_test ? 2 : 1;
+
+ if (num_passes == 1) {
+ rd_pick_partition(cpi, td, tile_data, tp, mi_row, mi_col, sb_size,
+ max_sq_size, min_sq_size, &dummy_rdc, dummy_rdc,
+ pc_root, NULL, SB_SINGLE_PASS, NULL);
+ } else {
+ // First pass
+ SB_FIRST_PASS_STATS sb_fp_stats;
+ backup_sb_state(&sb_fp_stats, cpi, td, tile_data, mi_row, mi_col);
+ rd_pick_partition(cpi, td, tile_data, tp, mi_row, mi_col, sb_size,
+ max_sq_size, min_sq_size, &dummy_rdc, dummy_rdc,
+ pc_root, NULL, SB_DRY_PASS, NULL);
+
+ // Second pass
+ init_encode_rd_sb(cpi, td, tile_data, pc_root, &dummy_rdc, mi_row, mi_col,
+ 0);
+ reset_mbmi(&cm->mi_params, sb_size, mi_row, mi_col);
+ reset_partition(pc_root, sb_size);
+
+ restore_sb_state(&sb_fp_stats, cpi, td, tile_data, mi_row, mi_col);
+
+ rd_pick_partition(cpi, td, tile_data, tp, mi_row, mi_col, sb_size,
+ max_sq_size, min_sq_size, &dummy_rdc, dummy_rdc,
+ pc_root, NULL, SB_WET_PASS, NULL);
+ }
+ // Reset to 0 so that it wouldn't be used elsewhere mistakenly.
+ x->valid_cost_b = 0;
+#if CONFIG_COLLECT_COMPONENT_TIMING
+ end_timing(cpi, rd_pick_partition_time);
+#endif
+ }
+#endif // !CONFIG_REALTIME_ONLY
+
+ // TODO(angiebird): Let inter_mode_rd_model_estimation support multi-tile.
+ if (cpi->sf.inter_sf.inter_mode_rd_model_estimation == 1 &&
+ cm->tiles.cols == 1 && cm->tiles.rows == 1) {
+ av1_inter_mode_data_fit(tile_data, x->rdmult);
+ }
+}
+
+static AOM_INLINE void set_cost_upd_freq(AV1_COMP *cpi, ThreadData *td,
+ const TileInfo *const tile_info,
+ const int mi_row, const int mi_col) {
+ AV1_COMMON *const cm = &cpi->common;
+ const int num_planes = av1_num_planes(cm);
+ MACROBLOCK *const x = &td->mb;
+ MACROBLOCKD *const xd = &x->e_mbd;
+
+ switch (cpi->oxcf.coeff_cost_upd_freq) {
+ case COST_UPD_TILE: // Tile level
+ if (mi_row != tile_info->mi_row_start) break;
+ AOM_FALLTHROUGH_INTENDED;
+ case COST_UPD_SBROW: // SB row level in tile
+ if (mi_col != tile_info->mi_col_start) break;
+ AOM_FALLTHROUGH_INTENDED;
+ case COST_UPD_SB: // SB level
+ if (cpi->sf.inter_sf.disable_sb_level_coeff_cost_upd &&
+ mi_col != tile_info->mi_col_start)
+ break;
+ av1_fill_coeff_costs(&td->mb, xd->tile_ctx, num_planes);
+ break;
+ default: assert(0);
+ }
+
+ switch (cpi->oxcf.mode_cost_upd_freq) {
+ case COST_UPD_TILE: // Tile level
+ if (mi_row != tile_info->mi_row_start) break;
+ AOM_FALLTHROUGH_INTENDED;
+ case COST_UPD_SBROW: // SB row level in tile
+ if (mi_col != tile_info->mi_col_start) break;
+ AOM_FALLTHROUGH_INTENDED;
+ case COST_UPD_SB: // SB level
+ av1_fill_mode_rates(cm, x, xd->tile_ctx);
+ break;
+ default: assert(0);
+ }
+ switch (cpi->oxcf.mv_cost_upd_freq) {
+ case COST_UPD_OFF: break;
+ case COST_UPD_TILE: // Tile level
+ if (mi_row != tile_info->mi_row_start) break;
+ AOM_FALLTHROUGH_INTENDED;
+ case COST_UPD_SBROW: // SB row level in tile
+ if (mi_col != tile_info->mi_col_start) break;
+ AOM_FALLTHROUGH_INTENDED;
+ case COST_UPD_SB: // SB level
+ if (cpi->sf.inter_sf.disable_sb_level_mv_cost_upd &&
+ mi_col != tile_info->mi_col_start)
+ break;
+ av1_fill_mv_costs(xd->tile_ctx, cm->features.cur_frame_force_integer_mv,
+ cm->features.allow_high_precision_mv, x);
+ break;
+ default: assert(0);
+ }
+}
+
+static AOM_INLINE void encode_sb_row(AV1_COMP *cpi, ThreadData *td,
+ TileDataEnc *tile_data, int mi_row,
+ TOKENEXTRA **tp) {
+ AV1_COMMON *const cm = &cpi->common;
+ const TileInfo *const tile_info = &tile_data->tile_info;
+ MACROBLOCK *const x = &td->mb;
+ MACROBLOCKD *const xd = &x->e_mbd;
+ const int sb_cols_in_tile = av1_get_sb_cols_in_tile(cm, tile_data->tile_info);
+ const BLOCK_SIZE sb_size = cm->seq_params.sb_size;
+ const int mib_size = cm->seq_params.mib_size;
+ const int mib_size_log2 = cm->seq_params.mib_size_log2;
+ const int sb_row = (mi_row - tile_info->mi_row_start) >> mib_size_log2;
+ const int use_nonrd_mode = cpi->sf.rt_sf.use_nonrd_pick_mode;
+
+#if CONFIG_COLLECT_COMPONENT_TIMING
+ start_timing(cpi, encode_sb_time);
+#endif
+
+ // Initialize the left context for the new SB row
+ av1_zero_left_context(xd);
+
+ // Reset delta for every tile
+ if (mi_row == tile_info->mi_row_start || cpi->row_mt) {
+ if (cm->delta_q_info.delta_q_present_flag)
+ xd->current_qindex = cm->quant_params.base_qindex;
+ if (cm->delta_q_info.delta_lf_present_flag) {
+ av1_reset_loop_filter_delta(xd, av1_num_planes(cm));
+ }
+ }
+ reset_thresh_freq_fact(x);
+
+ // Code each SB in the row
+ for (int mi_col = tile_info->mi_col_start, sb_col_in_tile = 0;
+ mi_col < tile_info->mi_col_end; mi_col += mib_size, sb_col_in_tile++) {
+ (*(cpi->row_mt_sync_read_ptr))(&tile_data->row_mt_sync, sb_row,
+ sb_col_in_tile);
+ if (tile_data->allow_update_cdf && (cpi->row_mt == 1) &&
+ (tile_info->mi_row_start != mi_row)) {
+ if ((tile_info->mi_col_start == mi_col)) {
+ // restore frame context of 1st column sb
+ memcpy(xd->tile_ctx, x->row_ctx, sizeof(*xd->tile_ctx));
+ } else {
+ int wt_left = AVG_CDF_WEIGHT_LEFT;
+ int wt_tr = AVG_CDF_WEIGHT_TOP_RIGHT;
+ if (tile_info->mi_col_end > (mi_col + mib_size))
+ avg_cdf_symbols(xd->tile_ctx, x->row_ctx + sb_col_in_tile, wt_left,
+ wt_tr);
+ else
+ avg_cdf_symbols(xd->tile_ctx, x->row_ctx + sb_col_in_tile - 1,
+ wt_left, wt_tr);
+ }
+ }
+
+ set_cost_upd_freq(cpi, td, tile_info, mi_row, mi_col);
+
+ x->color_sensitivity[0] = 0;
+ x->color_sensitivity[1] = 0;
+ x->content_state_sb = 0;
+
+ PC_TREE *const pc_root = td->pc_root;
+ pc_root->index = 0;
+
+ xd->cur_frame_force_integer_mv = cm->features.cur_frame_force_integer_mv;
+ td->mb.cb_coef_buff = av1_get_cb_coeff_buffer(cpi, mi_row, mi_col);
+ x->source_variance = UINT_MAX;
+ x->simple_motion_pred_sse = UINT_MAX;
+
+ const struct segmentation *const seg = &cm->seg;
+ int seg_skip = 0;
+ if (seg->enabled) {
+ const uint8_t *const map =
+ seg->update_map ? cpi->enc_seg.map : cm->last_frame_seg_map;
+ const int segment_id =
+ map ? get_segment_id(&cm->mi_params, map, sb_size, mi_row, mi_col)
+ : 0;
+ seg_skip = segfeature_active(seg, segment_id, SEG_LVL_SKIP);
+ }
+
+ if (use_nonrd_mode) {
+ encode_nonrd_sb(cpi, td, tile_data, pc_root, tp, mi_row, mi_col,
+ seg_skip);
+ } else {
+ encode_rd_sb(cpi, td, tile_data, pc_root, tp, mi_row, mi_col, seg_skip);
+ }
+
+ if (tile_data->allow_update_cdf && (cpi->row_mt == 1) &&
+ (tile_info->mi_row_end > (mi_row + mib_size))) {
+ if (sb_cols_in_tile == 1)
+ memcpy(x->row_ctx, xd->tile_ctx, sizeof(*xd->tile_ctx));
+ else if (sb_col_in_tile >= 1)
+ memcpy(x->row_ctx + sb_col_in_tile - 1, xd->tile_ctx,
+ sizeof(*xd->tile_ctx));
+ }
+ (*(cpi->row_mt_sync_write_ptr))(&tile_data->row_mt_sync, sb_row,
+ sb_col_in_tile, sb_cols_in_tile);
+ }
+#if CONFIG_COLLECT_COMPONENT_TIMING
+ end_timing(cpi, encode_sb_time);
+#endif
+}
+
+static AOM_INLINE void init_encode_frame_mb_context(AV1_COMP *cpi) {
+ AV1_COMMON *const cm = &cpi->common;
+ const int num_planes = av1_num_planes(cm);
+ MACROBLOCK *const x = &cpi->td.mb;
+ MACROBLOCKD *const xd = &x->e_mbd;
+
+ // Copy data over into macro block data structures.
+ av1_setup_src_planes(x, cpi->source, 0, 0, num_planes,
+ cm->seq_params.sb_size);
+
+ av1_setup_block_planes(xd, cm->seq_params.subsampling_x,
+ cm->seq_params.subsampling_y, num_planes);
+}
+
+void av1_alloc_tile_data(AV1_COMP *cpi) {
+ AV1_COMMON *const cm = &cpi->common;
+ const int tile_cols = cm->tiles.cols;
+ const int tile_rows = cm->tiles.rows;
+
+ if (cpi->tile_data != NULL) aom_free(cpi->tile_data);
+ CHECK_MEM_ERROR(
+ cm, cpi->tile_data,
+ aom_memalign(32, tile_cols * tile_rows * sizeof(*cpi->tile_data)));
+
+ cpi->allocated_tiles = tile_cols * tile_rows;
+}
+
+void av1_init_tile_data(AV1_COMP *cpi) {
+ AV1_COMMON *const cm = &cpi->common;
+ const int num_planes = av1_num_planes(cm);
+ const int tile_cols = cm->tiles.cols;
+ const int tile_rows = cm->tiles.rows;
+ int tile_col, tile_row;
+ TOKENEXTRA *pre_tok = cpi->tile_tok[0][0];
+ TOKENLIST *tplist = cpi->tplist[0][0];
+ unsigned int tile_tok = 0;
+ int tplist_count = 0;
+
+ for (tile_row = 0; tile_row < tile_rows; ++tile_row) {
+ for (tile_col = 0; tile_col < tile_cols; ++tile_col) {
+ TileDataEnc *const tile_data =
+ &cpi->tile_data[tile_row * tile_cols + tile_col];
+ TileInfo *const tile_info = &tile_data->tile_info;
+ av1_tile_init(tile_info, cm, tile_row, tile_col);
+
+ cpi->tile_tok[tile_row][tile_col] = pre_tok + tile_tok;
+ pre_tok = cpi->tile_tok[tile_row][tile_col];
+ tile_tok = allocated_tokens(
+ *tile_info, cm->seq_params.mib_size_log2 + MI_SIZE_LOG2, num_planes);
+ cpi->tplist[tile_row][tile_col] = tplist + tplist_count;
+ tplist = cpi->tplist[tile_row][tile_col];
+ tplist_count = av1_get_sb_rows_in_tile(cm, tile_data->tile_info);
+ tile_data->allow_update_cdf = !cm->tiles.large_scale;
+ tile_data->allow_update_cdf =
+ tile_data->allow_update_cdf && !cm->features.disable_cdf_update;
+ tile_data->tctx = *cm->fc;
+ }
+ }
+}
+
+void av1_encode_sb_row(AV1_COMP *cpi, ThreadData *td, int tile_row,
+ int tile_col, int mi_row) {
+ AV1_COMMON *const cm = &cpi->common;
+ const int num_planes = av1_num_planes(cm);
+ const int tile_cols = cm->tiles.cols;
+ TileDataEnc *this_tile = &cpi->tile_data[tile_row * tile_cols + tile_col];
+ const TileInfo *const tile_info = &this_tile->tile_info;
+ TOKENEXTRA *tok = NULL;
+ const int sb_row_in_tile =
+ (mi_row - tile_info->mi_row_start) >> cm->seq_params.mib_size_log2;
+ const int tile_mb_cols =
+ (tile_info->mi_col_end - tile_info->mi_col_start + 2) >> 2;
+ const int num_mb_rows_in_sb =
+ ((1 << (cm->seq_params.mib_size_log2 + MI_SIZE_LOG2)) + 8) >> 4;
+
+ get_start_tok(cpi, tile_row, tile_col, mi_row, &tok,
+ cm->seq_params.mib_size_log2 + MI_SIZE_LOG2, num_planes);
+ cpi->tplist[tile_row][tile_col][sb_row_in_tile].start = tok;
+
+ encode_sb_row(cpi, td, this_tile, mi_row, &tok);
+
+ cpi->tplist[tile_row][tile_col][sb_row_in_tile].stop = tok;
+ cpi->tplist[tile_row][tile_col][sb_row_in_tile].count =
+ (unsigned int)(cpi->tplist[tile_row][tile_col][sb_row_in_tile].stop -
+ cpi->tplist[tile_row][tile_col][sb_row_in_tile].start);
+
+ assert(
+ (unsigned int)(tok -
+ cpi->tplist[tile_row][tile_col][sb_row_in_tile].start) <=
+ get_token_alloc(num_mb_rows_in_sb, tile_mb_cols,
+ cm->seq_params.mib_size_log2 + MI_SIZE_LOG2, num_planes));
+
+ (void)tile_mb_cols;
+ (void)num_mb_rows_in_sb;
+}
+
+void av1_encode_tile(AV1_COMP *cpi, ThreadData *td, int tile_row,
+ int tile_col) {
+ AV1_COMMON *const cm = &cpi->common;
+ TileDataEnc *const this_tile =
+ &cpi->tile_data[tile_row * cm->tiles.cols + tile_col];
+ const TileInfo *const tile_info = &this_tile->tile_info;
+
+ if (!cpi->sf.rt_sf.use_nonrd_pick_mode) av1_inter_mode_data_init(this_tile);
+
+ av1_zero_above_context(cm, &td->mb.e_mbd, tile_info->mi_col_start,
+ tile_info->mi_col_end, tile_row);
+ av1_init_above_context(&cm->above_contexts, av1_num_planes(cm), tile_row,
+ &td->mb.e_mbd);
+
+ if (cpi->oxcf.enable_cfl_intra) cfl_init(&td->mb.e_mbd.cfl, &cm->seq_params);
+
+ av1_crc32c_calculator_init(&td->mb.mb_rd_record.crc_calculator);
+
+ for (int mi_row = tile_info->mi_row_start; mi_row < tile_info->mi_row_end;
+ mi_row += cm->seq_params.mib_size) {
+ av1_encode_sb_row(cpi, td, tile_row, tile_col, mi_row);
+ }
+}
+
+static AOM_INLINE void encode_tiles(AV1_COMP *cpi) {
+ AV1_COMMON *const cm = &cpi->common;
+ const int tile_cols = cm->tiles.cols;
+ const int tile_rows = cm->tiles.rows;
+ int tile_col, tile_row;
+
+ if (cpi->tile_data == NULL || cpi->allocated_tiles < tile_cols * tile_rows)
+ av1_alloc_tile_data(cpi);
+
+ av1_init_tile_data(cpi);
+
+ for (tile_row = 0; tile_row < tile_rows; ++tile_row) {
+ for (tile_col = 0; tile_col < tile_cols; ++tile_col) {
+ TileDataEnc *const this_tile =
+ &cpi->tile_data[tile_row * cm->tiles.cols + tile_col];
+ cpi->td.intrabc_used = 0;
+ cpi->td.deltaq_used = 0;
+ cpi->td.mb.e_mbd.tile_ctx = &this_tile->tctx;
+ cpi->td.mb.tile_pb_ctx = &this_tile->tctx;
+ av1_encode_tile(cpi, &cpi->td, tile_row, tile_col);
+ cpi->intrabc_used |= cpi->td.intrabc_used;
+ cpi->deltaq_used |= cpi->td.deltaq_used;
+ }
+ }
+}
+
+#define GLOBAL_TRANS_TYPES_ENC 3 // highest motion model to search
+static int gm_get_params_cost(const WarpedMotionParams *gm,
+ const WarpedMotionParams *ref_gm, int allow_hp) {
+ int params_cost = 0;
+ int trans_bits, trans_prec_diff;
+ switch (gm->wmtype) {
+ case AFFINE:
+ case ROTZOOM:
+ params_cost += aom_count_signed_primitive_refsubexpfin(
+ GM_ALPHA_MAX + 1, SUBEXPFIN_K,
+ (ref_gm->wmmat[2] >> GM_ALPHA_PREC_DIFF) - (1 << GM_ALPHA_PREC_BITS),
+ (gm->wmmat[2] >> GM_ALPHA_PREC_DIFF) - (1 << GM_ALPHA_PREC_BITS));
+ params_cost += aom_count_signed_primitive_refsubexpfin(
+ GM_ALPHA_MAX + 1, SUBEXPFIN_K,
+ (ref_gm->wmmat[3] >> GM_ALPHA_PREC_DIFF),
+ (gm->wmmat[3] >> GM_ALPHA_PREC_DIFF));
+ if (gm->wmtype >= AFFINE) {
+ params_cost += aom_count_signed_primitive_refsubexpfin(
+ GM_ALPHA_MAX + 1, SUBEXPFIN_K,
+ (ref_gm->wmmat[4] >> GM_ALPHA_PREC_DIFF),
+ (gm->wmmat[4] >> GM_ALPHA_PREC_DIFF));
+ params_cost += aom_count_signed_primitive_refsubexpfin(
+ GM_ALPHA_MAX + 1, SUBEXPFIN_K,
+ (ref_gm->wmmat[5] >> GM_ALPHA_PREC_DIFF) -
+ (1 << GM_ALPHA_PREC_BITS),
+ (gm->wmmat[5] >> GM_ALPHA_PREC_DIFF) - (1 << GM_ALPHA_PREC_BITS));
+ }
+ AOM_FALLTHROUGH_INTENDED;
+ case TRANSLATION:
+ trans_bits = (gm->wmtype == TRANSLATION)
+ ? GM_ABS_TRANS_ONLY_BITS - !allow_hp
+ : GM_ABS_TRANS_BITS;
+ trans_prec_diff = (gm->wmtype == TRANSLATION)
+ ? GM_TRANS_ONLY_PREC_DIFF + !allow_hp
+ : GM_TRANS_PREC_DIFF;
+ params_cost += aom_count_signed_primitive_refsubexpfin(
+ (1 << trans_bits) + 1, SUBEXPFIN_K,
+ (ref_gm->wmmat[0] >> trans_prec_diff),
+ (gm->wmmat[0] >> trans_prec_diff));
+ params_cost += aom_count_signed_primitive_refsubexpfin(
+ (1 << trans_bits) + 1, SUBEXPFIN_K,
+ (ref_gm->wmmat[1] >> trans_prec_diff),
+ (gm->wmmat[1] >> trans_prec_diff));
+ AOM_FALLTHROUGH_INTENDED;
+ case IDENTITY: break;
+ default: assert(0);
+ }
+ return (params_cost << AV1_PROB_COST_SHIFT);
+}
+
+static int do_gm_search_logic(SPEED_FEATURES *const sf, int frame) {
+ (void)frame;
+ switch (sf->gm_sf.gm_search_type) {
+ case GM_FULL_SEARCH: return 1;
+ case GM_REDUCED_REF_SEARCH_SKIP_L2_L3:
+ return !(frame == LAST2_FRAME || frame == LAST3_FRAME);
+ case GM_REDUCED_REF_SEARCH_SKIP_L2_L3_ARF2:
+ return !(frame == LAST2_FRAME || frame == LAST3_FRAME ||
+ (frame == ALTREF2_FRAME));
+ case GM_DISABLE_SEARCH: return 0;
+ default: assert(0);
+ }
+ return 1;
+}
+
+// Set the relative distance of a reference frame w.r.t. current frame
+static AOM_INLINE void set_rel_frame_dist(AV1_COMP *cpi) {
+ const AV1_COMMON *const cm = &cpi->common;
+ const OrderHintInfo *const order_hint_info = &cm->seq_params.order_hint_info;
+ MV_REFERENCE_FRAME ref_frame;
+ int min_past_dist = INT32_MAX, min_future_dist = INT32_MAX;
+ cpi->nearest_past_ref = NONE_FRAME;
+ cpi->nearest_future_ref = NONE_FRAME;
+ for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
+ cpi->ref_relative_dist[ref_frame - LAST_FRAME] = 0;
+ if (cpi->ref_frame_flags & av1_ref_frame_flag_list[ref_frame]) {
+ int dist = av1_encoder_get_relative_dist(
+ order_hint_info,
+ cm->cur_frame->ref_display_order_hint[ref_frame - LAST_FRAME],
+ cm->current_frame.display_order_hint);
+ cpi->ref_relative_dist[ref_frame - LAST_FRAME] = dist;
+ // Get the nearest ref_frame in the past
+ if (abs(dist) < min_past_dist && dist < 0) {
+ cpi->nearest_past_ref = ref_frame;
+ min_past_dist = abs(dist);
+ }
+ // Get the nearest ref_frame in the future
+ if (dist < min_future_dist && dist > 0) {
+ cpi->nearest_future_ref = ref_frame;
+ min_future_dist = dist;
+ }
+ }
+ }
+}
+
+static INLINE int refs_are_one_sided(const AV1_COMMON *cm) {
+ assert(!frame_is_intra_only(cm));
+
+ int one_sided_refs = 1;
+ for (int ref = LAST_FRAME; ref <= ALTREF_FRAME; ++ref) {
+ const RefCntBuffer *const buf = get_ref_frame_buf(cm, ref);
+ if (buf == NULL) continue;
+
+ const int ref_display_order_hint = buf->display_order_hint;
+ if (av1_encoder_get_relative_dist(
+ &cm->seq_params.order_hint_info, ref_display_order_hint,
+ (int)cm->current_frame.display_order_hint) > 0) {
+ one_sided_refs = 0; // bwd reference
+ break;
+ }
+ }
+ return one_sided_refs;
+}
+
+static INLINE void get_skip_mode_ref_offsets(const AV1_COMMON *cm,
+ int ref_order_hint[2]) {
+ const SkipModeInfo *const skip_mode_info = &cm->current_frame.skip_mode_info;
+ ref_order_hint[0] = ref_order_hint[1] = 0;
+ if (!skip_mode_info->skip_mode_allowed) return;
+
+ const RefCntBuffer *const buf_0 =
+ get_ref_frame_buf(cm, LAST_FRAME + skip_mode_info->ref_frame_idx_0);
+ const RefCntBuffer *const buf_1 =
+ get_ref_frame_buf(cm, LAST_FRAME + skip_mode_info->ref_frame_idx_1);
+ assert(buf_0 != NULL && buf_1 != NULL);
+
+ ref_order_hint[0] = buf_0->order_hint;
+ ref_order_hint[1] = buf_1->order_hint;
+}
+
+static int check_skip_mode_enabled(AV1_COMP *const cpi) {
+ AV1_COMMON *const cm = &cpi->common;
+
+ av1_setup_skip_mode_allowed(cm);
+ if (!cm->current_frame.skip_mode_info.skip_mode_allowed) return 0;
+
+ // Turn off skip mode if the temporal distances of the reference pair to the
+ // current frame are different by more than 1 frame.
+ const int cur_offset = (int)cm->current_frame.order_hint;
+ int ref_offset[2];
+ get_skip_mode_ref_offsets(cm, ref_offset);
+ const int cur_to_ref0 = get_relative_dist(&cm->seq_params.order_hint_info,
+ cur_offset, ref_offset[0]);
+ const int cur_to_ref1 = abs(get_relative_dist(&cm->seq_params.order_hint_info,
+ cur_offset, ref_offset[1]));
+ if (abs(cur_to_ref0 - cur_to_ref1) > 1) return 0;
+
+ // High Latency: Turn off skip mode if all refs are fwd.
+ if (cpi->all_one_sided_refs && cpi->oxcf.lag_in_frames > 0) return 0;
+
+ static const int flag_list[REF_FRAMES] = { 0,
+ AOM_LAST_FLAG,
+ AOM_LAST2_FLAG,
+ AOM_LAST3_FLAG,
+ AOM_GOLD_FLAG,
+ AOM_BWD_FLAG,
+ AOM_ALT2_FLAG,
+ AOM_ALT_FLAG };
+ const int ref_frame[2] = {
+ cm->current_frame.skip_mode_info.ref_frame_idx_0 + LAST_FRAME,
+ cm->current_frame.skip_mode_info.ref_frame_idx_1 + LAST_FRAME
+ };
+ if (!(cpi->ref_frame_flags & flag_list[ref_frame[0]]) ||
+ !(cpi->ref_frame_flags & flag_list[ref_frame[1]]))
+ return 0;
+
+ return 1;
+}
+
+// Function to decide if we can skip the global motion parameter computation
+// for a particular ref frame
+static INLINE int skip_gm_frame(AV1_COMMON *const cm, int ref_frame) {
+ if ((ref_frame == LAST3_FRAME || ref_frame == LAST2_FRAME) &&
+ cm->global_motion[GOLDEN_FRAME].wmtype != IDENTITY) {
+ return get_relative_dist(
+ &cm->seq_params.order_hint_info,
+ cm->cur_frame->ref_order_hints[ref_frame - LAST_FRAME],
+ cm->cur_frame->ref_order_hints[GOLDEN_FRAME - LAST_FRAME]) <= 0;
+ }
+ return 0;
+}
+
+static AOM_INLINE void set_default_interp_skip_flags(
+ const AV1_COMMON *cm, InterpSearchFlags *interp_search_flags) {
+ const int num_planes = av1_num_planes(cm);
+ interp_search_flags->default_interp_skip_flags =
+ (num_planes == 1) ? INTERP_SKIP_LUMA_EVAL_CHROMA
+ : INTERP_SKIP_LUMA_SKIP_CHROMA;
+}
+
+// TODO(Remya): Can include erroradv_prod_tr[] for threshold calculation
+static INLINE int64_t calc_erroradv_threshold(AV1_COMP *cpi,
+ int64_t ref_frame_error) {
+ if (!cpi->sf.gm_sf.disable_adaptive_warp_error_thresh)
+ return (int64_t)(
+ ref_frame_error * erroradv_tr[cpi->sf.gm_sf.gm_erroradv_type] + 0.5);
+ else
+ return INT64_MAX;
+}
+
+static void compute_global_motion_for_ref_frame(
+ AV1_COMP *cpi, YV12_BUFFER_CONFIG *ref_buf[REF_FRAMES], int frame,
+ int *num_frm_corners, int *frm_corners, unsigned char *frm_buffer,
+ MotionModel *params_by_motion, uint8_t *segment_map,
+ const int segment_map_w, const int segment_map_h,
+ const WarpedMotionParams *ref_params) {
+ ThreadData *const td = &cpi->td;
+ MACROBLOCK *const x = &td->mb;
+ AV1_COMMON *const cm = &cpi->common;
+ MACROBLOCKD *const xd = &x->e_mbd;
+ int i;
+ // clang-format off
+ static const double kIdentityParams[MAX_PARAMDIM - 1] = {
+ 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0
+ };
+ // clang-format on
+ WarpedMotionParams tmp_wm_params;
+ const double *params_this_motion;
+ int inliers_by_motion[RANSAC_NUM_MOTIONS];
+ assert(ref_buf[frame] != NULL);
+ if (*num_frm_corners < 0) {
+ // compute interest points using FAST features
+ *num_frm_corners = av1_fast_corner_detect(
+ frm_buffer, cpi->source->y_width, cpi->source->y_height,
+ cpi->source->y_stride, frm_corners, MAX_CORNERS);
+ }
+ TransformationType model;
+
+ aom_clear_system_state();
+
+ // TODO(sarahparker, debargha): Explore do_adaptive_gm_estimation = 1
+ const int do_adaptive_gm_estimation = 0;
+
+ const int ref_frame_dist = get_relative_dist(
+ &cm->seq_params.order_hint_info, cm->current_frame.order_hint,
+ cm->cur_frame->ref_order_hints[frame - LAST_FRAME]);
+ const GlobalMotionEstimationType gm_estimation_type =
+ cm->seq_params.order_hint_info.enable_order_hint &&
+ abs(ref_frame_dist) <= 2 && do_adaptive_gm_estimation
+ ? GLOBAL_MOTION_DISFLOW_BASED
+ : GLOBAL_MOTION_FEATURE_BASED;
+ for (model = ROTZOOM; model < GLOBAL_TRANS_TYPES_ENC; ++model) {
+ int64_t best_warp_error = INT64_MAX;
+ // Initially set all params to identity.
+ for (i = 0; i < RANSAC_NUM_MOTIONS; ++i) {
+ memcpy(params_by_motion[i].params, kIdentityParams,
+ (MAX_PARAMDIM - 1) * sizeof(*(params_by_motion[i].params)));
+ params_by_motion[i].num_inliers = 0;
+ }
+
+ av1_compute_global_motion(
+ model, frm_buffer, cpi->source->y_width, cpi->source->y_height,
+ cpi->source->y_stride, frm_corners, *num_frm_corners, ref_buf[frame],
+ cpi->common.seq_params.bit_depth, gm_estimation_type, inliers_by_motion,
+ params_by_motion, RANSAC_NUM_MOTIONS);
+ int64_t ref_frame_error = 0;
+ for (i = 0; i < RANSAC_NUM_MOTIONS; ++i) {
+ if (inliers_by_motion[i] == 0) continue;
+
+ params_this_motion = params_by_motion[i].params;
+ av1_convert_model_to_params(params_this_motion, &tmp_wm_params);
+
+ if (tmp_wm_params.wmtype != IDENTITY) {
+ av1_compute_feature_segmentation_map(
+ segment_map, segment_map_w, segment_map_h,
+ params_by_motion[i].inliers, params_by_motion[i].num_inliers);
+
+ ref_frame_error = av1_segmented_frame_error(
+ is_cur_buf_hbd(xd), xd->bd, ref_buf[frame]->y_buffer,
+ ref_buf[frame]->y_stride, cpi->source->y_buffer,
+ cpi->source->y_width, cpi->source->y_height, cpi->source->y_stride,
+ segment_map, segment_map_w);
+
+ int64_t erroradv_threshold =
+ calc_erroradv_threshold(cpi, ref_frame_error);
+
+ const int64_t warp_error = av1_refine_integerized_param(
+ &tmp_wm_params, tmp_wm_params.wmtype, is_cur_buf_hbd(xd), xd->bd,
+ ref_buf[frame]->y_buffer, ref_buf[frame]->y_width,
+ ref_buf[frame]->y_height, ref_buf[frame]->y_stride,
+ cpi->source->y_buffer, cpi->source->y_width, cpi->source->y_height,
+ cpi->source->y_stride, GM_REFINEMENT_COUNT, best_warp_error,
+ segment_map, segment_map_w, erroradv_threshold);
+
+ if (warp_error < best_warp_error) {
+ best_warp_error = warp_error;
+ // Save the wm_params modified by
+ // av1_refine_integerized_param() rather than motion index to
+ // avoid rerunning refine() below.
+ memcpy(&(cm->global_motion[frame]), &tmp_wm_params,
+ sizeof(WarpedMotionParams));
+ }
+ }
+ }
+ if (cm->global_motion[frame].wmtype <= AFFINE)
+ if (!av1_get_shear_params(&cm->global_motion[frame]))
+ cm->global_motion[frame] = default_warp_params;
+
+ if (cm->global_motion[frame].wmtype == TRANSLATION) {
+ cm->global_motion[frame].wmmat[0] =
+ convert_to_trans_prec(cm->features.allow_high_precision_mv,
+ cm->global_motion[frame].wmmat[0]) *
+ GM_TRANS_ONLY_DECODE_FACTOR;
+ cm->global_motion[frame].wmmat[1] =
+ convert_to_trans_prec(cm->features.allow_high_precision_mv,
+ cm->global_motion[frame].wmmat[1]) *
+ GM_TRANS_ONLY_DECODE_FACTOR;
+ }
+
+ if (cm->global_motion[frame].wmtype == IDENTITY) continue;
+
+ if (ref_frame_error == 0) continue;
+
+ // If the best error advantage found doesn't meet the threshold for
+ // this motion type, revert to IDENTITY.
+ if (!av1_is_enough_erroradvantage(
+ (double)best_warp_error / ref_frame_error,
+ gm_get_params_cost(&cm->global_motion[frame], ref_params,
+ cm->features.allow_high_precision_mv),
+ cpi->sf.gm_sf.gm_erroradv_type)) {
+ cm->global_motion[frame] = default_warp_params;
+ }
+
+ if (cm->global_motion[frame].wmtype != IDENTITY) break;
+ }
+
+ aom_clear_system_state();
+}
+
+typedef struct {
+ int distance;
+ MV_REFERENCE_FRAME frame;
+} FrameDistPair;
+
+static INLINE void update_valid_ref_frames_for_gm(
+ AV1_COMP *cpi, YV12_BUFFER_CONFIG *ref_buf[REF_FRAMES],
+ FrameDistPair *past_ref_frame, FrameDistPair *future_ref_frame,
+ int *num_past_ref_frames, int *num_future_ref_frames) {
+ AV1_COMMON *const cm = &cpi->common;
+ const OrderHintInfo *const order_hint_info = &cm->seq_params.order_hint_info;
+ for (int frame = ALTREF_FRAME; frame >= LAST_FRAME; --frame) {
+ const MV_REFERENCE_FRAME ref_frame[2] = { frame, NONE_FRAME };
+ RefCntBuffer *buf = get_ref_frame_buf(cm, frame);
+ const int ref_disabled =
+ !(cpi->ref_frame_flags & av1_ref_frame_flag_list[frame]);
+ ref_buf[frame] = NULL;
+ cm->global_motion[frame] = default_warp_params;
+ // Skip global motion estimation for invalid ref frames
+ if (buf == NULL ||
+ (ref_disabled && cpi->sf.hl_sf.recode_loop != DISALLOW_RECODE)) {
+ cpi->gm_info.params_cost[frame] = 0;
+ continue;
+ } else {
+ ref_buf[frame] = &buf->buf;
+ }
+
+ if (ref_buf[frame]->y_crop_width == cpi->source->y_crop_width &&
+ ref_buf[frame]->y_crop_height == cpi->source->y_crop_height &&
+ do_gm_search_logic(&cpi->sf, frame) &&
+ !prune_ref_by_selective_ref_frame(
+ cpi, NULL, ref_frame, cm->cur_frame->ref_display_order_hint) &&
+ !(cpi->sf.gm_sf.selective_ref_gm && skip_gm_frame(cm, frame))) {
+ assert(ref_buf[frame] != NULL);
+ int relative_frame_dist = av1_encoder_get_relative_dist(
+ order_hint_info, buf->display_order_hint,
+ cm->cur_frame->display_order_hint);
+ // Populate past and future ref frames
+ if (relative_frame_dist <= 0) {
+ past_ref_frame[*num_past_ref_frames].distance =
+ abs(relative_frame_dist);
+ past_ref_frame[*num_past_ref_frames].frame = frame;
+ (*num_past_ref_frames)++;
+ } else {
+ future_ref_frame[*num_future_ref_frames].distance =
+ abs(relative_frame_dist);
+ future_ref_frame[*num_future_ref_frames].frame = frame;
+ (*num_future_ref_frames)++;
+ }
+ }
+ }
+}
+
+static INLINE void compute_gm_for_valid_ref_frames(
+ AV1_COMP *cpi, YV12_BUFFER_CONFIG *ref_buf[REF_FRAMES], int frame,
+ int *num_frm_corners, int *frm_corners, unsigned char *frm_buffer,
+ MotionModel *params_by_motion, uint8_t *segment_map,
+ const int segment_map_w, const int segment_map_h) {
+ AV1_COMMON *const cm = &cpi->common;
+ GlobalMotionInfo *const gm_info = &cpi->gm_info;
+ const WarpedMotionParams *ref_params =
+ cm->prev_frame ? &cm->prev_frame->global_motion[frame]
+ : &default_warp_params;
+
+ compute_global_motion_for_ref_frame(
+ cpi, ref_buf, frame, num_frm_corners, frm_corners, frm_buffer,
+ params_by_motion, segment_map, segment_map_w, segment_map_h, ref_params);
+
+ gm_info->params_cost[frame] =
+ gm_get_params_cost(&cm->global_motion[frame], ref_params,
+ cm->features.allow_high_precision_mv) +
+ gm_info->type_cost[cm->global_motion[frame].wmtype] -
+ gm_info->type_cost[IDENTITY];
+}
+
+static int compare_distance(const void *a, const void *b) {
+ const int diff =
+ ((FrameDistPair *)a)->distance - ((FrameDistPair *)b)->distance;
+ if (diff > 0)
+ return 1;
+ else if (diff < 0)
+ return -1;
+ return 0;
+}
+
+static INLINE void compute_global_motion_for_references(
+ AV1_COMP *cpi, YV12_BUFFER_CONFIG *ref_buf[REF_FRAMES],
+ FrameDistPair reference_frame[REF_FRAMES - 1], int num_ref_frames,
+ int *num_frm_corners, int *frm_corners, unsigned char *frm_buffer,
+ MotionModel *params_by_motion, uint8_t *segment_map,
+ const int segment_map_w, const int segment_map_h) {
+ AV1_COMMON *const cm = &cpi->common;
+ // Compute global motion w.r.t. reference frames starting from the nearest ref
+ // frame in a given direction
+ for (int frame = 0; frame < num_ref_frames; frame++) {
+ int ref_frame = reference_frame[frame].frame;
+ compute_gm_for_valid_ref_frames(cpi, ref_buf, ref_frame, num_frm_corners,
+ frm_corners, frm_buffer, params_by_motion,
+ segment_map, segment_map_w, segment_map_h);
+ // If global motion w.r.t. current ref frame is
+ // INVALID/TRANSLATION/IDENTITY, skip the evaluation of global motion w.r.t
+ // the remaining ref frames in that direction. The below exit is disabled
+ // when ref frame distance w.r.t. current frame is zero. E.g.:
+ // source_alt_ref_frame w.r.t. ARF frames
+ if (cpi->sf.gm_sf.prune_ref_frame_for_gm_search &&
+ reference_frame[frame].distance != 0 &&
+ cm->global_motion[ref_frame].wmtype != ROTZOOM)
+ break;
+ }
+}
+
+static AOM_INLINE void setup_prune_ref_frame_mask(AV1_COMP *cpi) {
+ if (!cpi->sf.rt_sf.use_nonrd_pick_mode &&
+ cpi->sf.inter_sf.selective_ref_frame >= 2) {
+ AV1_COMMON *const cm = &cpi->common;
+ const OrderHintInfo *const order_hint_info =
+ &cm->seq_params.order_hint_info;
+ const int cur_frame_display_order_hint =
+ cm->current_frame.display_order_hint;
+ unsigned int *ref_display_order_hint =
+ cm->cur_frame->ref_display_order_hint;
+ const int arf2_dist = av1_encoder_get_relative_dist(
+ order_hint_info, ref_display_order_hint[ALTREF2_FRAME - LAST_FRAME],
+ cur_frame_display_order_hint);
+ const int bwd_dist = av1_encoder_get_relative_dist(
+ order_hint_info, ref_display_order_hint[BWDREF_FRAME - LAST_FRAME],
+ cur_frame_display_order_hint);
+
+ for (int ref_idx = REF_FRAMES; ref_idx < MODE_CTX_REF_FRAMES; ++ref_idx) {
+ MV_REFERENCE_FRAME rf[2];
+ av1_set_ref_frame(rf, ref_idx);
+ if (!(cpi->ref_frame_flags & av1_ref_frame_flag_list[rf[0]]) ||
+ !(cpi->ref_frame_flags & av1_ref_frame_flag_list[rf[1]])) {
+ continue;
+ }
+
+ if (!cpi->all_one_sided_refs) {
+ int ref_dist[2];
+ for (int i = 0; i < 2; ++i) {
+ ref_dist[i] = av1_encoder_get_relative_dist(
+ order_hint_info, ref_display_order_hint[rf[i] - LAST_FRAME],
+ cur_frame_display_order_hint);
+ }
+
+ // One-sided compound is used only when all reference frames are
+ // one-sided.
+ if ((ref_dist[0] > 0) == (ref_dist[1] > 0)) {
+ cpi->prune_ref_frame_mask |= 1 << ref_idx;
+ }
+ }
+
+ if (cpi->sf.inter_sf.selective_ref_frame >= 4 &&
+ (rf[0] == ALTREF2_FRAME || rf[1] == ALTREF2_FRAME) &&
+ (cpi->ref_frame_flags & av1_ref_frame_flag_list[BWDREF_FRAME])) {
+ // Check if both ALTREF2_FRAME and BWDREF_FRAME are future references.
+ if (arf2_dist > 0 && bwd_dist > 0 && bwd_dist <= arf2_dist) {
+ // Drop ALTREF2_FRAME as a reference if BWDREF_FRAME is a closer
+ // reference to the current frame than ALTREF2_FRAME
+ cpi->prune_ref_frame_mask |= 1 << ref_idx;
+ }
+ }
+ }
+ }
+}
+
+#define CHECK_PRECOMPUTED_REF_FRAME_MAP 0
+
+static AOM_INLINE void encode_frame_internal(AV1_COMP *cpi) {
+ ThreadData *const td = &cpi->td;
+ MACROBLOCK *const x = &td->mb;
+ AV1_COMMON *const cm = &cpi->common;
+ CommonModeInfoParams *const mi_params = &cm->mi_params;
+ FeatureFlags *const features = &cm->features;
+ MACROBLOCKD *const xd = &x->e_mbd;
+ RD_COUNTS *const rdc = &cpi->td.rd_counts;
+ GlobalMotionInfo *const gm_info = &cpi->gm_info;
+ FrameProbInfo *const frame_probs = &cpi->frame_probs;
+ IntraBCHashInfo *const intrabc_hash_info = &x->intrabc_hash_info;
+ int i;
+
+ if (!cpi->sf.rt_sf.use_nonrd_pick_mode) {
+ mi_params->setup_mi(mi_params);
+ }
+
+ set_mi_offsets(mi_params, xd, 0, 0);
+
+#if CONFIG_AV1_HIGHBITDEPTH
+ x->fwd_txfm4x4 = aom_fdct4x4;
+#else
+ x->fwd_txfm4x4 = aom_fdct4x4_lp;
+#endif
+
+ av1_zero(*td->counts);
+ av1_zero(rdc->comp_pred_diff);
+ av1_zero(rdc->tx_type_used);
+ av1_zero(rdc->obmc_used);
+ av1_zero(rdc->warped_used);
+
+ // Reset the flag.
+ cpi->intrabc_used = 0;
+ // Need to disable intrabc when superres is selected
+ if (av1_superres_scaled(cm)) {
+ features->allow_intrabc = 0;
+ }
+
+ features->allow_intrabc &= (cpi->oxcf.enable_intrabc);
+
+ if (features->allow_warped_motion &&
+ cpi->sf.inter_sf.prune_warped_prob_thresh > 0) {
+ const FRAME_UPDATE_TYPE update_type = get_frame_update_type(&cpi->gf_group);
+ if (frame_probs->warped_probs[update_type] <
+ cpi->sf.inter_sf.prune_warped_prob_thresh)
+ features->allow_warped_motion = 0;
+ }
+
+ int hash_table_created = 0;
+ if (!is_stat_generation_stage(cpi) && av1_use_hash_me(cpi) &&
+ !cpi->sf.rt_sf.use_nonrd_pick_mode) {
+ // TODO(any): move this outside of the recoding loop to avoid recalculating
+ // the hash table.
+ // add to hash table
+ const int pic_width = cpi->source->y_crop_width;
+ const int pic_height = cpi->source->y_crop_height;
+ uint32_t *block_hash_values[2][2];
+ int8_t *is_block_same[2][3];
+ int k, j;
+
+ for (k = 0; k < 2; k++) {
+ for (j = 0; j < 2; j++) {
+ CHECK_MEM_ERROR(cm, block_hash_values[k][j],
+ aom_malloc(sizeof(uint32_t) * pic_width * pic_height));
+ }
+
+ for (j = 0; j < 3; j++) {
+ CHECK_MEM_ERROR(cm, is_block_same[k][j],
+ aom_malloc(sizeof(int8_t) * pic_width * pic_height));
+ }
+ }
+
+ av1_hash_table_init(intrabc_hash_info);
+ av1_hash_table_create(&intrabc_hash_info->intrabc_hash_table);
+ hash_table_created = 1;
+ av1_generate_block_2x2_hash_value(intrabc_hash_info, cpi->source,
+ block_hash_values[0], is_block_same[0]);
+ // Hash data generated for screen contents is used for intraBC ME
+ const int min_alloc_size = block_size_wide[mi_params->mi_alloc_bsize];
+ const int max_sb_size =
+ (1 << (cm->seq_params.mib_size_log2 + MI_SIZE_LOG2));
+ int src_idx = 0;
+ for (int size = 4; size <= max_sb_size; size *= 2, src_idx = !src_idx) {
+ const int dst_idx = !src_idx;
+ av1_generate_block_hash_value(
+ intrabc_hash_info, cpi->source, size, block_hash_values[src_idx],
+ block_hash_values[dst_idx], is_block_same[src_idx],
+ is_block_same[dst_idx]);
+ if (size >= min_alloc_size) {
+ av1_add_to_hash_map_by_row_with_precal_data(
+ &intrabc_hash_info->intrabc_hash_table, block_hash_values[dst_idx],
+ is_block_same[dst_idx][2], pic_width, pic_height, size);
+ }
+ }
+
+ for (k = 0; k < 2; k++) {
+ for (j = 0; j < 2; j++) {
+ aom_free(block_hash_values[k][j]);
+ }
+
+ for (j = 0; j < 3; j++) {
+ aom_free(is_block_same[k][j]);
+ }
+ }
+ }
+
+ const CommonQuantParams *quant_params = &cm->quant_params;
+ for (i = 0; i < MAX_SEGMENTS; ++i) {
+ const int qindex =
+ cm->seg.enabled ? av1_get_qindex(&cm->seg, i, quant_params->base_qindex)
+ : quant_params->base_qindex;
+ xd->lossless[i] =
+ qindex == 0 && quant_params->y_dc_delta_q == 0 &&
+ quant_params->u_dc_delta_q == 0 && quant_params->u_ac_delta_q == 0 &&
+ quant_params->v_dc_delta_q == 0 && quant_params->v_ac_delta_q == 0;
+ if (xd->lossless[i]) cpi->enc_seg.has_lossless_segment = 1;
+ xd->qindex[i] = qindex;
+ if (xd->lossless[i]) {
+ cpi->optimize_seg_arr[i] = NO_TRELLIS_OPT;
+ } else {
+ cpi->optimize_seg_arr[i] = cpi->sf.rd_sf.optimize_coefficients;
+ }
+ }
+ features->coded_lossless = is_coded_lossless(cm, xd);
+ features->all_lossless = features->coded_lossless && !av1_superres_scaled(cm);
+
+ // Fix delta q resolution for the moment
+ cm->delta_q_info.delta_q_res = 0;
+ if (cpi->oxcf.deltaq_mode == DELTA_Q_OBJECTIVE)
+ cm->delta_q_info.delta_q_res = DEFAULT_DELTA_Q_RES_OBJECTIVE;
+ else if (cpi->oxcf.deltaq_mode == DELTA_Q_PERCEPTUAL)
+ cm->delta_q_info.delta_q_res = DEFAULT_DELTA_Q_RES_PERCEPTUAL;
+ // Set delta_q_present_flag before it is used for the first time
+ cm->delta_q_info.delta_lf_res = DEFAULT_DELTA_LF_RES;
+ cm->delta_q_info.delta_q_present_flag = cpi->oxcf.deltaq_mode != NO_DELTA_Q;
+
+ // Turn off cm->delta_q_info.delta_q_present_flag if objective delta_q is used
+ // for ineligible frames. That effectively will turn off row_mt usage.
+ // Note objective delta_q and tpl eligible frames are only altref frames
+ // currently.
+ if (cm->delta_q_info.delta_q_present_flag) {
+ if (cpi->oxcf.deltaq_mode == DELTA_Q_OBJECTIVE &&
+ !is_frame_tpl_eligible(cpi))
+ cm->delta_q_info.delta_q_present_flag = 0;
+ }
+
+ // Reset delta_q_used flag
+ cpi->deltaq_used = 0;
+
+ cm->delta_q_info.delta_lf_present_flag =
+ cm->delta_q_info.delta_q_present_flag && cpi->oxcf.deltalf_mode;
+ cm->delta_q_info.delta_lf_multi = DEFAULT_DELTA_LF_MULTI;
+
+ // update delta_q_present_flag and delta_lf_present_flag based on
+ // base_qindex
+ cm->delta_q_info.delta_q_present_flag &= quant_params->base_qindex > 0;
+ cm->delta_q_info.delta_lf_present_flag &= quant_params->base_qindex > 0;
+
+ av1_frame_init_quantizer(cpi);
+ av1_initialize_rd_consts(cpi);
+ av1_initialize_me_consts(cpi, x, quant_params->base_qindex);
+
+ init_encode_frame_mb_context(cpi);
+ set_default_interp_skip_flags(cm, &cpi->interp_search_flags);
+ if (cm->prev_frame && cm->prev_frame->seg.enabled)
+ cm->last_frame_seg_map = cm->prev_frame->seg_map;
+ else
+ cm->last_frame_seg_map = NULL;
+ if (features->allow_intrabc || features->coded_lossless) {
+ av1_set_default_ref_deltas(cm->lf.ref_deltas);
+ av1_set_default_mode_deltas(cm->lf.mode_deltas);
+ } else if (cm->prev_frame) {
+ memcpy(cm->lf.ref_deltas, cm->prev_frame->ref_deltas, REF_FRAMES);
+ memcpy(cm->lf.mode_deltas, cm->prev_frame->mode_deltas, MAX_MODE_LF_DELTAS);
+ }
+ memcpy(cm->cur_frame->ref_deltas, cm->lf.ref_deltas, REF_FRAMES);
+ memcpy(cm->cur_frame->mode_deltas, cm->lf.mode_deltas, MAX_MODE_LF_DELTAS);
+
+ cpi->all_one_sided_refs =
+ frame_is_intra_only(cm) ? 0 : refs_are_one_sided(cm);
+
+ cpi->prune_ref_frame_mask = 0;
+ // Figure out which ref frames can be skipped at frame level.
+ setup_prune_ref_frame_mask(cpi);
+
+ x->txb_split_count = 0;
+#if CONFIG_SPEED_STATS
+ x->tx_search_count = 0;
+#endif // CONFIG_SPEED_STATS
+
+#if CONFIG_COLLECT_COMPONENT_TIMING
+ start_timing(cpi, av1_compute_global_motion_time);
+#endif
+ av1_zero(rdc->global_motion_used);
+ av1_zero(gm_info->params_cost);
+ if (cpi->common.current_frame.frame_type == INTER_FRAME && cpi->source &&
+ cpi->oxcf.enable_global_motion && !gm_info->search_done) {
+ YV12_BUFFER_CONFIG *ref_buf[REF_FRAMES];
+ MotionModel params_by_motion[RANSAC_NUM_MOTIONS];
+ for (int m = 0; m < RANSAC_NUM_MOTIONS; m++) {
+ memset(&params_by_motion[m], 0, sizeof(params_by_motion[m]));
+ params_by_motion[m].inliers =
+ aom_malloc(sizeof(*(params_by_motion[m].inliers)) * 2 * MAX_CORNERS);
+ }
+
+ int num_frm_corners = -1;
+ int frm_corners[2 * MAX_CORNERS];
+ unsigned char *frm_buffer = cpi->source->y_buffer;
+ if (cpi->source->flags & YV12_FLAG_HIGHBITDEPTH) {
+ // The frame buffer is 16-bit, so we need to convert to 8 bits for the
+ // following code. We cache the result until the frame is released.
+ frm_buffer =
+ av1_downconvert_frame(cpi->source, cpi->common.seq_params.bit_depth);
+ }
+ const int segment_map_w =
+ (cpi->source->y_width + WARP_ERROR_BLOCK) >> WARP_ERROR_BLOCK_LOG;
+ const int segment_map_h =
+ (cpi->source->y_height + WARP_ERROR_BLOCK) >> WARP_ERROR_BLOCK_LOG;
+
+ uint8_t *segment_map =
+ aom_malloc(sizeof(*segment_map) * segment_map_w * segment_map_h);
+ memset(segment_map, 0,
+ sizeof(*segment_map) * segment_map_w * segment_map_h);
+
+ FrameDistPair future_ref_frame[REF_FRAMES - 1] = {
+ { -1, NONE_FRAME }, { -1, NONE_FRAME }, { -1, NONE_FRAME },
+ { -1, NONE_FRAME }, { -1, NONE_FRAME }, { -1, NONE_FRAME },
+ { -1, NONE_FRAME }
+ };
+ FrameDistPair past_ref_frame[REF_FRAMES - 1] = {
+ { -1, NONE_FRAME }, { -1, NONE_FRAME }, { -1, NONE_FRAME },
+ { -1, NONE_FRAME }, { -1, NONE_FRAME }, { -1, NONE_FRAME },
+ { -1, NONE_FRAME }
+ };
+ int num_past_ref_frames = 0;
+ int num_future_ref_frames = 0;
+ // Populate ref_buf for valid ref frames in global motion
+ update_valid_ref_frames_for_gm(cpi, ref_buf, past_ref_frame,
+ future_ref_frame, &num_past_ref_frames,
+ &num_future_ref_frames);
+
+ // Sort the ref frames in the ascending order of their distance from the
+ // current frame
+ qsort(past_ref_frame, num_past_ref_frames, sizeof(past_ref_frame[0]),
+ compare_distance);
+ qsort(future_ref_frame, num_future_ref_frames, sizeof(future_ref_frame[0]),
+ compare_distance);
+
+ // Compute global motion w.r.t. past reference frames
+ if (num_past_ref_frames > 0)
+ compute_global_motion_for_references(
+ cpi, ref_buf, past_ref_frame, num_past_ref_frames, &num_frm_corners,
+ frm_corners, frm_buffer, params_by_motion, segment_map, segment_map_w,
+ segment_map_h);
+
+ // Compute global motion w.r.t. future reference frames
+ if (num_future_ref_frames > 0)
+ compute_global_motion_for_references(
+ cpi, ref_buf, future_ref_frame, num_future_ref_frames,
+ &num_frm_corners, frm_corners, frm_buffer, params_by_motion,
+ segment_map, segment_map_w, segment_map_h);
+
+ aom_free(segment_map);
+
+ gm_info->search_done = 1;
+ for (int m = 0; m < RANSAC_NUM_MOTIONS; m++) {
+ aom_free(params_by_motion[m].inliers);
+ }
+ }
+ memcpy(cm->cur_frame->global_motion, cm->global_motion,
+ REF_FRAMES * sizeof(WarpedMotionParams));
+#if CONFIG_COLLECT_COMPONENT_TIMING
+ end_timing(cpi, av1_compute_global_motion_time);
+#endif
+
+#if CONFIG_COLLECT_COMPONENT_TIMING
+ start_timing(cpi, av1_setup_motion_field_time);
+#endif
+ if (features->allow_ref_frame_mvs) av1_setup_motion_field(cm);
+#if CONFIG_COLLECT_COMPONENT_TIMING
+ end_timing(cpi, av1_setup_motion_field_time);
+#endif
+
+ cm->current_frame.skip_mode_info.skip_mode_flag =
+ check_skip_mode_enabled(cpi);
+
+ cpi->row_mt_sync_read_ptr = av1_row_mt_sync_read_dummy;
+ cpi->row_mt_sync_write_ptr = av1_row_mt_sync_write_dummy;
+ cpi->row_mt = 0;
+
+ if (cpi->oxcf.row_mt && (cpi->oxcf.max_threads > 1)) {
+ cpi->row_mt = 1;
+ cpi->row_mt_sync_read_ptr = av1_row_mt_sync_read;
+ cpi->row_mt_sync_write_ptr = av1_row_mt_sync_write;
+ av1_encode_tiles_row_mt(cpi);
+ } else {
+ if (AOMMIN(cpi->oxcf.max_threads, cm->tiles.cols * cm->tiles.rows) > 1)
+ av1_encode_tiles_mt(cpi);
+ else
+ encode_tiles(cpi);
+ }
+
+ // If intrabc is allowed but never selected, reset the allow_intrabc flag.
+ if (features->allow_intrabc && !cpi->intrabc_used) {
+ features->allow_intrabc = 0;
+ }
+ if (features->allow_intrabc) {
+ cm->delta_q_info.delta_lf_present_flag = 0;
+ }
+
+ if (cm->delta_q_info.delta_q_present_flag && cpi->deltaq_used == 0) {
+ cm->delta_q_info.delta_q_present_flag = 0;
+ }
+
+ // Set the transform size appropriately before bitstream creation
+ const MODE_EVAL_TYPE eval_type =
+ cpi->sf.winner_mode_sf.enable_winner_mode_for_tx_size_srch
+ ? WINNER_MODE_EVAL
+ : DEFAULT_EVAL;
+ const TX_SIZE_SEARCH_METHOD tx_search_type =
+ cpi->winner_mode_params.tx_size_search_methods[eval_type];
+ assert(cpi->oxcf.enable_tx64 || tx_search_type != USE_LARGESTALL);
+ features->tx_mode = select_tx_mode(cm, tx_search_type);
+
+ if (cpi->sf.tx_sf.tx_type_search.prune_tx_type_using_stats) {
+ const FRAME_UPDATE_TYPE update_type = get_frame_update_type(&cpi->gf_group);
+
+ for (i = 0; i < TX_SIZES_ALL; i++) {
+ int sum = 0;
+ int j;
+ int left = 1024;
+
+ for (j = 0; j < TX_TYPES; j++)
+ sum += cpi->td.rd_counts.tx_type_used[i][j];
+
+ for (j = TX_TYPES - 1; j >= 0; j--) {
+ const int new_prob =
+ sum ? 1024 * cpi->td.rd_counts.tx_type_used[i][j] / sum
+ : (j ? 0 : 1024);
+ int prob =
+ (frame_probs->tx_type_probs[update_type][i][j] + new_prob) >> 1;
+ left -= prob;
+ if (j == 0) prob += left;
+ frame_probs->tx_type_probs[update_type][i][j] = prob;
+ }
+ }
+ }
+
+ if (!cpi->sf.inter_sf.disable_obmc &&
+ cpi->sf.inter_sf.prune_obmc_prob_thresh > 0) {
+ const FRAME_UPDATE_TYPE update_type = get_frame_update_type(&cpi->gf_group);
+
+ for (i = 0; i < BLOCK_SIZES_ALL; i++) {
+ int sum = 0;
+ for (int j = 0; j < 2; j++) sum += cpi->td.rd_counts.obmc_used[i][j];
+
+ const int new_prob =
+ sum ? 128 * cpi->td.rd_counts.obmc_used[i][1] / sum : 0;
+ frame_probs->obmc_probs[update_type][i] =
+ (frame_probs->obmc_probs[update_type][i] + new_prob) >> 1;
+ }
+ }
+
+ if (features->allow_warped_motion &&
+ cpi->sf.inter_sf.prune_warped_prob_thresh > 0) {
+ const FRAME_UPDATE_TYPE update_type = get_frame_update_type(&cpi->gf_group);
+ int sum = 0;
+ for (i = 0; i < 2; i++) sum += cpi->td.rd_counts.warped_used[i];
+ const int new_prob = sum ? 128 * cpi->td.rd_counts.warped_used[1] / sum : 0;
+ frame_probs->warped_probs[update_type] =
+ (frame_probs->warped_probs[update_type] + new_prob) >> 1;
+ }
+
+ if (cm->current_frame.frame_type != KEY_FRAME &&
+ cpi->sf.interp_sf.adaptive_interp_filter_search == 2 &&
+ features->interp_filter == SWITCHABLE) {
+ const FRAME_UPDATE_TYPE update_type = get_frame_update_type(&cpi->gf_group);
+
+ for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; i++) {
+ int sum = 0;
+ int j;
+ int left = 1536;
+
+ for (j = 0; j < SWITCHABLE_FILTERS; j++) {
+ sum += cpi->td.counts->switchable_interp[i][j];
+ }
+
+ for (j = SWITCHABLE_FILTERS - 1; j >= 0; j--) {
+ const int new_prob =
+ sum ? 1536 * cpi->td.counts->switchable_interp[i][j] / sum
+ : (j ? 0 : 1536);
+ int prob = (frame_probs->switchable_interp_probs[update_type][i][j] +
+ new_prob) >>
+ 1;
+ left -= prob;
+ if (j == 0) prob += left;
+ frame_probs->switchable_interp_probs[update_type][i][j] = prob;
+ }
+ }
+ }
+
+ if ((!is_stat_generation_stage(cpi) && av1_use_hash_me(cpi) &&
+ !cpi->sf.rt_sf.use_nonrd_pick_mode) ||
+ hash_table_created) {
+ av1_hash_table_destroy(&intrabc_hash_info->intrabc_hash_table);
+ }
+}
+
+void av1_encode_frame(AV1_COMP *cpi) {
+ AV1_COMMON *const cm = &cpi->common;
+ CurrentFrame *const current_frame = &cm->current_frame;
+ FeatureFlags *const features = &cm->features;
+ const int num_planes = av1_num_planes(cm);
+ // Indicates whether or not to use a default reduced set for ext-tx
+ // rather than the potential full set of 16 transforms
+ features->reduced_tx_set_used = cpi->oxcf.reduced_tx_type_set;
+
+ // Make sure segment_id is no larger than last_active_segid.
+ if (cm->seg.enabled && cm->seg.update_map) {
+ const int mi_rows = cm->mi_params.mi_rows;
+ const int mi_cols = cm->mi_params.mi_cols;
+ const int last_active_segid = cm->seg.last_active_segid;
+ uint8_t *map = cpi->enc_seg.map;
+ for (int mi_row = 0; mi_row < mi_rows; ++mi_row) {
+ for (int mi_col = 0; mi_col < mi_cols; ++mi_col) {
+ map[mi_col] = AOMMIN(map[mi_col], last_active_segid);
+ }
+ map += mi_cols;
+ }
+ }
+
+ av1_setup_frame_buf_refs(cm);
+ enforce_max_ref_frames(cpi, &cpi->ref_frame_flags);
+ set_rel_frame_dist(cpi);
+ av1_setup_frame_sign_bias(cm);
+
+#if CHECK_PRECOMPUTED_REF_FRAME_MAP
+ GF_GROUP *gf_group = &cpi->gf_group;
+ // TODO(yuec): The check is disabled on OVERLAY frames for now, because info
+ // in cpi->gf_group has been refreshed for the next GOP when the check is
+ // performed for OVERLAY frames. Since we have not support inter-GOP ref
+ // frame map computation, the precomputed ref map for an OVERLAY frame is all
+ // -1 at this point (although it is meaning before gf_group is refreshed).
+ if (!frame_is_intra_only(cm) && gf_group->index != 0) {
+ const RefCntBuffer *const golden_buf = get_ref_frame_buf(cm, GOLDEN_FRAME);
+
+ if (golden_buf) {
+ const int golden_order_hint = golden_buf->order_hint;
+
+ for (int ref = LAST_FRAME; ref < EXTREF_FRAME; ++ref) {
+ const RefCntBuffer *const buf = get_ref_frame_buf(cm, ref);
+ const int ref_disp_idx_precomputed =
+ gf_group->ref_frame_disp_idx[gf_group->index][ref - LAST_FRAME];
+
+ (void)ref_disp_idx_precomputed;
+
+ if (buf != NULL) {
+ const int ref_disp_idx =
+ get_relative_dist(&cm->seq_params.order_hint_info,
+ buf->order_hint, golden_order_hint);
+
+ if (ref_disp_idx >= 0)
+ assert(ref_disp_idx == ref_disp_idx_precomputed);
+ else
+ assert(ref_disp_idx_precomputed == -1);
+ } else {
+ assert(ref_disp_idx_precomputed == -1);
+ }
+ }
+ }
+ }
+#endif
+
+#if CONFIG_MISMATCH_DEBUG
+ mismatch_reset_frame(num_planes);
+#else
+ (void)num_planes;
+#endif
+
+ if (cpi->sf.hl_sf.frame_parameter_update) {
+ RD_COUNTS *const rdc = &cpi->td.rd_counts;
+
+ if (frame_is_intra_only(cm))
+ current_frame->reference_mode = SINGLE_REFERENCE;
+ else
+ current_frame->reference_mode = REFERENCE_MODE_SELECT;
+
+ features->interp_filter = SWITCHABLE;
+ if (cm->tiles.large_scale) features->interp_filter = EIGHTTAP_REGULAR;
+
+ features->switchable_motion_mode = 1;
+
+ rdc->compound_ref_used_flag = 0;
+ rdc->skip_mode_used_flag = 0;
+
+ encode_frame_internal(cpi);
+
+ if (current_frame->reference_mode == REFERENCE_MODE_SELECT) {
+ // Use a flag that includes 4x4 blocks
+ if (rdc->compound_ref_used_flag == 0) {
+ current_frame->reference_mode = SINGLE_REFERENCE;
+#if CONFIG_ENTROPY_STATS
+ av1_zero(cpi->td.counts->comp_inter);
+#endif // CONFIG_ENTROPY_STATS
+ }
+ }
+ // Re-check on the skip mode status as reference mode may have been
+ // changed.
+ SkipModeInfo *const skip_mode_info = &current_frame->skip_mode_info;
+ if (frame_is_intra_only(cm) ||
+ current_frame->reference_mode == SINGLE_REFERENCE) {
+ skip_mode_info->skip_mode_allowed = 0;
+ skip_mode_info->skip_mode_flag = 0;
+ }
+ if (skip_mode_info->skip_mode_flag && rdc->skip_mode_used_flag == 0)
+ skip_mode_info->skip_mode_flag = 0;
+
+ if (!cm->tiles.large_scale) {
+ if (features->tx_mode == TX_MODE_SELECT &&
+ cpi->td.mb.txb_split_count == 0)
+ features->tx_mode = TX_MODE_LARGEST;
+ }
+ } else {
+ encode_frame_internal(cpi);
+ }
+}
+
+static AOM_INLINE void update_txfm_count(MACROBLOCK *x, MACROBLOCKD *xd,
+ FRAME_COUNTS *counts, TX_SIZE tx_size,
+ int depth, int blk_row, int blk_col,
+ uint8_t allow_update_cdf) {
+ MB_MODE_INFO *mbmi = xd->mi[0];
+ const BLOCK_SIZE bsize = mbmi->sb_type;
+ const int max_blocks_high = max_block_high(xd, bsize, 0);
+ const int max_blocks_wide = max_block_wide(xd, bsize, 0);
+ int ctx = txfm_partition_context(xd->above_txfm_context + blk_col,
+ xd->left_txfm_context + blk_row,
+ mbmi->sb_type, tx_size);
+ const int txb_size_index = av1_get_txb_size_index(bsize, blk_row, blk_col);
+ const TX_SIZE plane_tx_size = mbmi->inter_tx_size[txb_size_index];
+
+ if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return;
+ assert(tx_size > TX_4X4);
+
+ if (depth == MAX_VARTX_DEPTH) {
+ // Don't add to counts in this case
+ mbmi->tx_size = tx_size;
+ txfm_partition_update(xd->above_txfm_context + blk_col,
+ xd->left_txfm_context + blk_row, tx_size, tx_size);
+ return;
+ }
+
+ if (tx_size == plane_tx_size) {
+#if CONFIG_ENTROPY_STATS
+ ++counts->txfm_partition[ctx][0];
+#endif
+ if (allow_update_cdf)
+ update_cdf(xd->tile_ctx->txfm_partition_cdf[ctx], 0, 2);
+ mbmi->tx_size = tx_size;
+ txfm_partition_update(xd->above_txfm_context + blk_col,
+ xd->left_txfm_context + blk_row, tx_size, tx_size);
+ } else {
+ const TX_SIZE sub_txs = sub_tx_size_map[tx_size];
+ const int bsw = tx_size_wide_unit[sub_txs];
+ const int bsh = tx_size_high_unit[sub_txs];
+
+#if CONFIG_ENTROPY_STATS
+ ++counts->txfm_partition[ctx][1];
+#endif
+ if (allow_update_cdf)
+ update_cdf(xd->tile_ctx->txfm_partition_cdf[ctx], 1, 2);
+ ++x->txb_split_count;
+
+ if (sub_txs == TX_4X4) {
+ mbmi->inter_tx_size[txb_size_index] = TX_4X4;
+ mbmi->tx_size = TX_4X4;
+ txfm_partition_update(xd->above_txfm_context + blk_col,
+ xd->left_txfm_context + blk_row, TX_4X4, tx_size);
+ return;
+ }
+
+ for (int row = 0; row < tx_size_high_unit[tx_size]; row += bsh) {
+ for (int col = 0; col < tx_size_wide_unit[tx_size]; col += bsw) {
+ int offsetr = row;
+ int offsetc = col;
+
+ update_txfm_count(x, xd, counts, sub_txs, depth + 1, blk_row + offsetr,
+ blk_col + offsetc, allow_update_cdf);
+ }
+ }
+ }
+}
+
+static AOM_INLINE void tx_partition_count_update(const AV1_COMMON *const cm,
+ MACROBLOCK *x,
+ BLOCK_SIZE plane_bsize,
+ FRAME_COUNTS *td_counts,
+ uint8_t allow_update_cdf) {
+ MACROBLOCKD *xd = &x->e_mbd;
+ const int mi_width = mi_size_wide[plane_bsize];
+ const int mi_height = mi_size_high[plane_bsize];
+ const TX_SIZE max_tx_size = get_vartx_max_txsize(xd, plane_bsize, 0);
+ const int bh = tx_size_high_unit[max_tx_size];
+ const int bw = tx_size_wide_unit[max_tx_size];
+
+ xd->above_txfm_context =
+ cm->above_contexts.txfm[xd->tile.tile_row] + xd->mi_col;
+ xd->left_txfm_context =
+ xd->left_txfm_context_buffer + (xd->mi_row & MAX_MIB_MASK);
+
+ for (int idy = 0; idy < mi_height; idy += bh) {
+ for (int idx = 0; idx < mi_width; idx += bw) {
+ update_txfm_count(x, xd, td_counts, max_tx_size, 0, idy, idx,
+ allow_update_cdf);
+ }
+ }
+}
+
+static AOM_INLINE void set_txfm_context(MACROBLOCKD *xd, TX_SIZE tx_size,
+ int blk_row, int blk_col) {
+ MB_MODE_INFO *mbmi = xd->mi[0];
+ const BLOCK_SIZE bsize = mbmi->sb_type;
+ const int max_blocks_high = max_block_high(xd, bsize, 0);
+ const int max_blocks_wide = max_block_wide(xd, bsize, 0);
+ const int txb_size_index = av1_get_txb_size_index(bsize, blk_row, blk_col);
+ const TX_SIZE plane_tx_size = mbmi->inter_tx_size[txb_size_index];
+
+ if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return;
+
+ if (tx_size == plane_tx_size) {
+ mbmi->tx_size = tx_size;
+ txfm_partition_update(xd->above_txfm_context + blk_col,
+ xd->left_txfm_context + blk_row, tx_size, tx_size);
+
+ } else {
+ if (tx_size == TX_8X8) {
+ mbmi->inter_tx_size[txb_size_index] = TX_4X4;
+ mbmi->tx_size = TX_4X4;
+ txfm_partition_update(xd->above_txfm_context + blk_col,
+ xd->left_txfm_context + blk_row, TX_4X4, tx_size);
+ return;
+ }
+ const TX_SIZE sub_txs = sub_tx_size_map[tx_size];
+ const int bsw = tx_size_wide_unit[sub_txs];
+ const int bsh = tx_size_high_unit[sub_txs];
+ for (int row = 0; row < tx_size_high_unit[tx_size]; row += bsh) {
+ for (int col = 0; col < tx_size_wide_unit[tx_size]; col += bsw) {
+ const int offsetr = blk_row + row;
+ const int offsetc = blk_col + col;
+ if (offsetr >= max_blocks_high || offsetc >= max_blocks_wide) continue;
+ set_txfm_context(xd, sub_txs, offsetr, offsetc);
+ }
+ }
+ }
+}
+
+static AOM_INLINE void tx_partition_set_contexts(const AV1_COMMON *const cm,
+ MACROBLOCKD *xd,
+ BLOCK_SIZE plane_bsize) {
+ const int mi_width = mi_size_wide[plane_bsize];
+ const int mi_height = mi_size_high[plane_bsize];
+ const TX_SIZE max_tx_size = get_vartx_max_txsize(xd, plane_bsize, 0);
+ const int bh = tx_size_high_unit[max_tx_size];
+ const int bw = tx_size_wide_unit[max_tx_size];
+
+ xd->above_txfm_context =
+ cm->above_contexts.txfm[xd->tile.tile_row] + xd->mi_col;
+ xd->left_txfm_context =
+ xd->left_txfm_context_buffer + (xd->mi_row & MAX_MIB_MASK);
+
+ for (int idy = 0; idy < mi_height; idy += bh) {
+ for (int idx = 0; idx < mi_width; idx += bw) {
+ set_txfm_context(xd, max_tx_size, idy, idx);
+ }
+ }
+}
+
+static AOM_INLINE void encode_superblock(const AV1_COMP *const cpi,
+ TileDataEnc *tile_data, ThreadData *td,
+ TOKENEXTRA **t, RUN_TYPE dry_run,
+ BLOCK_SIZE bsize, int *rate) {
+ const AV1_COMMON *const cm = &cpi->common;
+ const int num_planes = av1_num_planes(cm);
+ MACROBLOCK *const x = &td->mb;
+ MACROBLOCKD *const xd = &x->e_mbd;
+ MB_MODE_INFO **mi_4x4 = xd->mi;
+ MB_MODE_INFO *mbmi = mi_4x4[0];
+ const int seg_skip =
+ segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP);
+ const int mis = cm->mi_params.mi_stride;
+ const int mi_width = mi_size_wide[bsize];
+ const int mi_height = mi_size_high[bsize];
+ const int is_inter = is_inter_block(mbmi);
+
+ // Initialize tx_mode and tx_size_search_method
+ set_tx_size_search_method(
+ cm, &cpi->winner_mode_params, x,
+ cpi->sf.winner_mode_sf.enable_winner_mode_for_tx_size_srch, 1);
+
+ const int mi_row = xd->mi_row;
+ const int mi_col = xd->mi_col;
+ if (!is_inter) {
+ xd->cfl.store_y = store_cfl_required(cm, xd);
+ mbmi->skip = 1;
+ for (int plane = 0; plane < num_planes; ++plane) {
+ av1_encode_intra_block_plane(cpi, x, bsize, plane, dry_run,
+ cpi->optimize_seg_arr[mbmi->segment_id]);
+ }
+
+ // If there is at least one lossless segment, force the skip for intra
+ // block to be 0, in order to avoid the segment_id to be changed by in
+ // write_segment_id().
+ if (!cpi->common.seg.segid_preskip && cpi->common.seg.update_map &&
+ cpi->enc_seg.has_lossless_segment)
+ mbmi->skip = 0;
+
+ xd->cfl.store_y = 0;
+ if (av1_allow_palette(cm->features.allow_screen_content_tools, bsize)) {
+ for (int plane = 0; plane < AOMMIN(2, num_planes); ++plane) {
+ if (mbmi->palette_mode_info.palette_size[plane] > 0) {
+ if (!dry_run) {
+ av1_tokenize_color_map(x, plane, t, bsize, mbmi->tx_size,
+ PALETTE_MAP, tile_data->allow_update_cdf,
+ td->counts);
+ } else if (dry_run == DRY_RUN_COSTCOEFFS) {
+ rate +=
+ av1_cost_color_map(x, plane, bsize, mbmi->tx_size, PALETTE_MAP);
+ }
+ }
+ }
+ }
+
+ av1_update_txb_context(cpi, td, dry_run, bsize,
+ tile_data->allow_update_cdf);
+ } else {
+ int ref;
+ const int is_compound = has_second_ref(mbmi);
+
+ set_ref_ptrs(cm, xd, mbmi->ref_frame[0], mbmi->ref_frame[1]);
+ for (ref = 0; ref < 1 + is_compound; ++ref) {
+ const YV12_BUFFER_CONFIG *cfg =
+ get_ref_frame_yv12_buf(cm, mbmi->ref_frame[ref]);
+ assert(IMPLIES(!is_intrabc_block(mbmi), cfg));
+ av1_setup_pre_planes(xd, ref, cfg, mi_row, mi_col,
+ xd->block_ref_scale_factors[ref], num_planes);
+ }
+ int start_plane = (cpi->sf.rt_sf.reuse_inter_pred_nonrd) ? 1 : 0;
+ av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, NULL, bsize,
+ start_plane, av1_num_planes(cm) - 1);
+ if (mbmi->motion_mode == OBMC_CAUSAL) {
+ assert(cpi->oxcf.enable_obmc == 1);
+ av1_build_obmc_inter_predictors_sb(cm, xd);
+ }
+
+#if CONFIG_MISMATCH_DEBUG
+ if (dry_run == OUTPUT_ENABLED) {
+ for (int plane = 0; plane < num_planes; ++plane) {
+ const struct macroblockd_plane *pd = &xd->plane[plane];
+ int pixel_c, pixel_r;
+ mi_to_pixel_loc(&pixel_c, &pixel_r, mi_col, mi_row, 0, 0,
+ pd->subsampling_x, pd->subsampling_y);
+ if (!is_chroma_reference(mi_row, mi_col, bsize, pd->subsampling_x,
+ pd->subsampling_y))
+ continue;
+ mismatch_record_block_pre(pd->dst.buf, pd->dst.stride,
+ cm->current_frame.order_hint, plane, pixel_c,
+ pixel_r, pd->width, pd->height,
+ xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH);
+ }
+ }
+#else
+ (void)num_planes;
+#endif
+
+ av1_encode_sb(cpi, x, bsize, dry_run);
+ av1_tokenize_sb_vartx(cpi, td, dry_run, bsize, rate,
+ tile_data->allow_update_cdf);
+ }
+
+ if (!dry_run) {
+ if (av1_allow_intrabc(cm) && is_intrabc_block(mbmi)) td->intrabc_used = 1;
+ if (x->tx_mode_search_type == TX_MODE_SELECT &&
+ !xd->lossless[mbmi->segment_id] && mbmi->sb_type > BLOCK_4X4 &&
+ !(is_inter && (mbmi->skip || seg_skip))) {
+ if (is_inter) {
+ tx_partition_count_update(cm, x, bsize, td->counts,
+ tile_data->allow_update_cdf);
+ } else {
+ if (mbmi->tx_size != max_txsize_rect_lookup[bsize])
+ ++x->txb_split_count;
+ if (block_signals_txsize(bsize)) {
+ const int tx_size_ctx = get_tx_size_context(xd);
+ const int32_t tx_size_cat = bsize_to_tx_size_cat(bsize);
+ const int depth = tx_size_to_depth(mbmi->tx_size, bsize);
+ const int max_depths = bsize_to_max_depth(bsize);
+
+ if (tile_data->allow_update_cdf)
+ update_cdf(xd->tile_ctx->tx_size_cdf[tx_size_cat][tx_size_ctx],
+ depth, max_depths + 1);
+#if CONFIG_ENTROPY_STATS
+ ++td->counts->intra_tx_size[tx_size_cat][tx_size_ctx][depth];
+#endif
+ }
+ }
+ assert(IMPLIES(is_rect_tx(mbmi->tx_size), is_rect_tx_allowed(xd, mbmi)));
+ } else {
+ int i, j;
+ TX_SIZE intra_tx_size;
+ // The new intra coding scheme requires no change of transform size
+ if (is_inter) {
+ if (xd->lossless[mbmi->segment_id]) {
+ intra_tx_size = TX_4X4;
+ } else {
+ intra_tx_size = tx_size_from_tx_mode(bsize, x->tx_mode_search_type);
+ }
+ } else {
+ intra_tx_size = mbmi->tx_size;
+ }
+
+ for (j = 0; j < mi_height; j++)
+ for (i = 0; i < mi_width; i++)
+ if (mi_col + i < cm->mi_params.mi_cols &&
+ mi_row + j < cm->mi_params.mi_rows)
+ mi_4x4[mis * j + i]->tx_size = intra_tx_size;
+
+ if (intra_tx_size != max_txsize_rect_lookup[bsize]) ++x->txb_split_count;
+ }
+ }
+
+ if (x->tx_mode_search_type == TX_MODE_SELECT &&
+ block_signals_txsize(mbmi->sb_type) && is_inter &&
+ !(mbmi->skip || seg_skip) && !xd->lossless[mbmi->segment_id]) {
+ if (dry_run) tx_partition_set_contexts(cm, xd, bsize);
+ } else {
+ TX_SIZE tx_size = mbmi->tx_size;
+ // The new intra coding scheme requires no change of transform size
+ if (is_inter) {
+ if (xd->lossless[mbmi->segment_id]) {
+ tx_size = TX_4X4;
+ } else {
+ tx_size = tx_size_from_tx_mode(bsize, x->tx_mode_search_type);
+ }
+ } else {
+ tx_size = (bsize > BLOCK_4X4) ? tx_size : TX_4X4;
+ }
+ mbmi->tx_size = tx_size;
+ set_txfm_ctxs(tx_size, xd->width, xd->height,
+ (mbmi->skip || seg_skip) && is_inter_block(mbmi), xd);
+ }
+
+ if (is_inter_block(mbmi) && !xd->is_chroma_ref && is_cfl_allowed(xd)) {
+ cfl_store_block(xd, mbmi->sb_type, mbmi->tx_size);
+ }
+}