summaryrefslogtreecommitdiff
path: root/libs/libaom/src/av1/common/reconinter.c
diff options
context:
space:
mode:
Diffstat (limited to 'libs/libaom/src/av1/common/reconinter.c')
-rw-r--r--libs/libaom/src/av1/common/reconinter.c1426
1 files changed, 1426 insertions, 0 deletions
diff --git a/libs/libaom/src/av1/common/reconinter.c b/libs/libaom/src/av1/common/reconinter.c
new file mode 100644
index 000000000..287adddcc
--- /dev/null
+++ b/libs/libaom/src/av1/common/reconinter.c
@@ -0,0 +1,1426 @@
+/*
+ * Copyright (c) 2016, Alliance for Open Media. All rights reserved
+ *
+ * This source code is subject to the terms of the BSD 2 Clause License and
+ * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
+ * was not distributed with this source code in the LICENSE file, you can
+ * obtain it at www.aomedia.org/license/software. If the Alliance for Open
+ * Media Patent License 1.0 was not distributed with this source code in the
+ * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
+ */
+
+#include <assert.h>
+#include <stdio.h>
+#include <limits.h>
+
+#include "config/aom_config.h"
+#include "config/aom_dsp_rtcd.h"
+#include "config/aom_scale_rtcd.h"
+
+#include "aom/aom_integer.h"
+#include "aom_dsp/blend.h"
+
+#include "av1/common/av1_common_int.h"
+#include "av1/common/blockd.h"
+#include "av1/common/mvref_common.h"
+#include "av1/common/obmc.h"
+#include "av1/common/reconinter.h"
+#include "av1/common/reconintra.h"
+
+// This function will determine whether or not to create a warped
+// prediction.
+int av1_allow_warp(const MB_MODE_INFO *const mbmi,
+ const WarpTypesAllowed *const warp_types,
+ const WarpedMotionParams *const gm_params,
+ int build_for_obmc, const struct scale_factors *const sf,
+ WarpedMotionParams *final_warp_params) {
+ // Note: As per the spec, we must test the fixed point scales here, which are
+ // at a higher precision (1 << 14) than the xs and ys in subpel_params (that
+ // have 1 << 10 precision).
+ if (av1_is_scaled(sf)) return 0;
+
+ if (final_warp_params != NULL) *final_warp_params = default_warp_params;
+
+ if (build_for_obmc) return 0;
+
+ if (warp_types->local_warp_allowed && !mbmi->wm_params.invalid) {
+ if (final_warp_params != NULL)
+ memcpy(final_warp_params, &mbmi->wm_params, sizeof(*final_warp_params));
+ return 1;
+ } else if (warp_types->global_warp_allowed && !gm_params->invalid) {
+ if (final_warp_params != NULL)
+ memcpy(final_warp_params, gm_params, sizeof(*final_warp_params));
+ return 1;
+ }
+
+ return 0;
+}
+
+void av1_init_inter_params(InterPredParams *inter_pred_params, int block_width,
+ int block_height, int pix_row, int pix_col,
+ int subsampling_x, int subsampling_y, int bit_depth,
+ int use_hbd_buf, int is_intrabc,
+ const struct scale_factors *sf,
+ const struct buf_2d *ref_buf,
+ int_interpfilters interp_filters) {
+ inter_pred_params->block_width = block_width;
+ inter_pred_params->block_height = block_height;
+ inter_pred_params->pix_row = pix_row;
+ inter_pred_params->pix_col = pix_col;
+ inter_pred_params->subsampling_x = subsampling_x;
+ inter_pred_params->subsampling_y = subsampling_y;
+ inter_pred_params->bit_depth = bit_depth;
+ inter_pred_params->use_hbd_buf = use_hbd_buf;
+ inter_pred_params->is_intrabc = is_intrabc;
+ inter_pred_params->scale_factors = sf;
+ inter_pred_params->ref_frame_buf = *ref_buf;
+ inter_pred_params->mode = TRANSLATION_PRED;
+ inter_pred_params->comp_mode = UNIFORM_SINGLE;
+
+ if (is_intrabc) {
+ inter_pred_params->interp_filter_params[0] = &av1_intrabc_filter_params;
+ inter_pred_params->interp_filter_params[1] = &av1_intrabc_filter_params;
+ } else {
+ inter_pred_params->interp_filter_params[0] =
+ av1_get_interp_filter_params_with_block_size(
+ interp_filters.as_filters.x_filter, block_width);
+ inter_pred_params->interp_filter_params[1] =
+ av1_get_interp_filter_params_with_block_size(
+ interp_filters.as_filters.y_filter, block_height);
+ }
+}
+
+void av1_init_comp_mode(InterPredParams *inter_pred_params) {
+ inter_pred_params->comp_mode = UNIFORM_COMP;
+}
+
+void av1_init_warp_params(InterPredParams *inter_pred_params,
+ const WarpTypesAllowed *warp_types, int ref,
+ const MACROBLOCKD *xd, const MB_MODE_INFO *mi) {
+ if (inter_pred_params->block_height < 8 || inter_pred_params->block_width < 8)
+ return;
+
+ if (xd->cur_frame_force_integer_mv) return;
+
+ if (av1_allow_warp(mi, warp_types, &xd->global_motion[mi->ref_frame[ref]], 0,
+ inter_pred_params->scale_factors,
+ &inter_pred_params->warp_params))
+ inter_pred_params->mode = WARP_PRED;
+}
+
+void av1_init_mask_comp(InterPredParams *inter_pred_params, BLOCK_SIZE bsize,
+ const INTERINTER_COMPOUND_DATA *mask_comp) {
+ inter_pred_params->sb_type = bsize;
+ inter_pred_params->mask_comp = *mask_comp;
+
+ if (inter_pred_params->conv_params.compound_index == 1) {
+ inter_pred_params->conv_params.do_average = 0;
+ inter_pred_params->comp_mode = MASK_COMP;
+ }
+}
+
+void av1_make_inter_predictor(const uint8_t *src, int src_stride, uint8_t *dst,
+ int dst_stride,
+ InterPredParams *inter_pred_params,
+ const SubpelParams *subpel_params) {
+ assert(IMPLIES(inter_pred_params->conv_params.is_compound,
+ inter_pred_params->conv_params.dst != NULL));
+
+ // TODO(jingning): av1_warp_plane() can be further cleaned up.
+ if (inter_pred_params->mode == WARP_PRED) {
+ av1_warp_plane(
+ &inter_pred_params->warp_params, inter_pred_params->use_hbd_buf,
+ inter_pred_params->bit_depth, inter_pred_params->ref_frame_buf.buf0,
+ inter_pred_params->ref_frame_buf.width,
+ inter_pred_params->ref_frame_buf.height,
+ inter_pred_params->ref_frame_buf.stride, dst,
+ inter_pred_params->pix_col, inter_pred_params->pix_row,
+ inter_pred_params->block_width, inter_pred_params->block_height,
+ dst_stride, inter_pred_params->subsampling_x,
+ inter_pred_params->subsampling_y, &inter_pred_params->conv_params);
+ } else if (inter_pred_params->mode == TRANSLATION_PRED) {
+#if CONFIG_AV1_HIGHBITDEPTH
+ if (inter_pred_params->use_hbd_buf) {
+ highbd_inter_predictor(
+ src, src_stride, dst, dst_stride, subpel_params,
+ inter_pred_params->scale_factors, inter_pred_params->block_width,
+ inter_pred_params->block_height, &inter_pred_params->conv_params,
+ inter_pred_params->interp_filter_params,
+ inter_pred_params->bit_depth);
+ } else {
+ inter_predictor(
+ src, src_stride, dst, dst_stride, subpel_params,
+ inter_pred_params->scale_factors, inter_pred_params->block_width,
+ inter_pred_params->block_height, &inter_pred_params->conv_params,
+ inter_pred_params->interp_filter_params);
+ }
+#else
+ inter_predictor(
+ src, src_stride, dst, dst_stride, subpel_params,
+ inter_pred_params->scale_factors, inter_pred_params->block_width,
+ inter_pred_params->block_height, &inter_pred_params->conv_params,
+ inter_pred_params->interp_filter_params);
+#endif
+ }
+}
+
+static const uint8_t wedge_master_oblique_odd[MASK_MASTER_SIZE] = {
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 6, 18,
+ 37, 53, 60, 63, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64,
+ 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64,
+};
+static const uint8_t wedge_master_oblique_even[MASK_MASTER_SIZE] = {
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 4, 11, 27,
+ 46, 58, 62, 63, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64,
+ 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64,
+};
+static const uint8_t wedge_master_vertical[MASK_MASTER_SIZE] = {
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 7, 21,
+ 43, 57, 62, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64,
+ 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64,
+};
+
+static AOM_INLINE void shift_copy(const uint8_t *src, uint8_t *dst, int shift,
+ int width) {
+ if (shift >= 0) {
+ memcpy(dst + shift, src, width - shift);
+ memset(dst, src[0], shift);
+ } else {
+ shift = -shift;
+ memcpy(dst, src + shift, width - shift);
+ memset(dst + width - shift, src[width - 1], shift);
+ }
+}
+
+/* clang-format off */
+DECLARE_ALIGNED(16, static uint8_t,
+ wedge_signflip_lookup[BLOCK_SIZES_ALL][MAX_WEDGE_TYPES]) = {
+ { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used
+ { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used
+ { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used
+ { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, },
+ { 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, },
+ { 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, },
+ { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, },
+ { 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, },
+ { 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, },
+ { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, },
+ { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used
+ { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used
+ { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used
+ { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used
+ { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used
+ { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used
+ { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used
+ { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used
+ { 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, },
+ { 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, },
+ { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used
+ { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used
+};
+/* clang-format on */
+
+// [negative][direction]
+DECLARE_ALIGNED(
+ 16, static uint8_t,
+ wedge_mask_obl[2][WEDGE_DIRECTIONS][MASK_MASTER_SIZE * MASK_MASTER_SIZE]);
+
+// 4 * MAX_WEDGE_SQUARE is an easy to compute and fairly tight upper bound
+// on the sum of all mask sizes up to an including MAX_WEDGE_SQUARE.
+DECLARE_ALIGNED(16, static uint8_t,
+ wedge_mask_buf[2 * MAX_WEDGE_TYPES * 4 * MAX_WEDGE_SQUARE]);
+
+DECLARE_ALIGNED(16, static uint8_t,
+ smooth_interintra_mask_buf[INTERINTRA_MODES][BLOCK_SIZES_ALL]
+ [MAX_WEDGE_SQUARE]);
+
+static wedge_masks_type wedge_masks[BLOCK_SIZES_ALL][2];
+
+static const wedge_code_type wedge_codebook_16_hgtw[16] = {
+ { WEDGE_OBLIQUE27, 4, 4 }, { WEDGE_OBLIQUE63, 4, 4 },
+ { WEDGE_OBLIQUE117, 4, 4 }, { WEDGE_OBLIQUE153, 4, 4 },
+ { WEDGE_HORIZONTAL, 4, 2 }, { WEDGE_HORIZONTAL, 4, 4 },
+ { WEDGE_HORIZONTAL, 4, 6 }, { WEDGE_VERTICAL, 4, 4 },
+ { WEDGE_OBLIQUE27, 4, 2 }, { WEDGE_OBLIQUE27, 4, 6 },
+ { WEDGE_OBLIQUE153, 4, 2 }, { WEDGE_OBLIQUE153, 4, 6 },
+ { WEDGE_OBLIQUE63, 2, 4 }, { WEDGE_OBLIQUE63, 6, 4 },
+ { WEDGE_OBLIQUE117, 2, 4 }, { WEDGE_OBLIQUE117, 6, 4 },
+};
+
+static const wedge_code_type wedge_codebook_16_hltw[16] = {
+ { WEDGE_OBLIQUE27, 4, 4 }, { WEDGE_OBLIQUE63, 4, 4 },
+ { WEDGE_OBLIQUE117, 4, 4 }, { WEDGE_OBLIQUE153, 4, 4 },
+ { WEDGE_VERTICAL, 2, 4 }, { WEDGE_VERTICAL, 4, 4 },
+ { WEDGE_VERTICAL, 6, 4 }, { WEDGE_HORIZONTAL, 4, 4 },
+ { WEDGE_OBLIQUE27, 4, 2 }, { WEDGE_OBLIQUE27, 4, 6 },
+ { WEDGE_OBLIQUE153, 4, 2 }, { WEDGE_OBLIQUE153, 4, 6 },
+ { WEDGE_OBLIQUE63, 2, 4 }, { WEDGE_OBLIQUE63, 6, 4 },
+ { WEDGE_OBLIQUE117, 2, 4 }, { WEDGE_OBLIQUE117, 6, 4 },
+};
+
+static const wedge_code_type wedge_codebook_16_heqw[16] = {
+ { WEDGE_OBLIQUE27, 4, 4 }, { WEDGE_OBLIQUE63, 4, 4 },
+ { WEDGE_OBLIQUE117, 4, 4 }, { WEDGE_OBLIQUE153, 4, 4 },
+ { WEDGE_HORIZONTAL, 4, 2 }, { WEDGE_HORIZONTAL, 4, 6 },
+ { WEDGE_VERTICAL, 2, 4 }, { WEDGE_VERTICAL, 6, 4 },
+ { WEDGE_OBLIQUE27, 4, 2 }, { WEDGE_OBLIQUE27, 4, 6 },
+ { WEDGE_OBLIQUE153, 4, 2 }, { WEDGE_OBLIQUE153, 4, 6 },
+ { WEDGE_OBLIQUE63, 2, 4 }, { WEDGE_OBLIQUE63, 6, 4 },
+ { WEDGE_OBLIQUE117, 2, 4 }, { WEDGE_OBLIQUE117, 6, 4 },
+};
+
+const wedge_params_type av1_wedge_params_lookup[BLOCK_SIZES_ALL] = {
+ { 0, NULL, NULL, NULL },
+ { 0, NULL, NULL, NULL },
+ { 0, NULL, NULL, NULL },
+ { MAX_WEDGE_TYPES, wedge_codebook_16_heqw, wedge_signflip_lookup[BLOCK_8X8],
+ wedge_masks[BLOCK_8X8] },
+ { MAX_WEDGE_TYPES, wedge_codebook_16_hgtw, wedge_signflip_lookup[BLOCK_8X16],
+ wedge_masks[BLOCK_8X16] },
+ { MAX_WEDGE_TYPES, wedge_codebook_16_hltw, wedge_signflip_lookup[BLOCK_16X8],
+ wedge_masks[BLOCK_16X8] },
+ { MAX_WEDGE_TYPES, wedge_codebook_16_heqw, wedge_signflip_lookup[BLOCK_16X16],
+ wedge_masks[BLOCK_16X16] },
+ { MAX_WEDGE_TYPES, wedge_codebook_16_hgtw, wedge_signflip_lookup[BLOCK_16X32],
+ wedge_masks[BLOCK_16X32] },
+ { MAX_WEDGE_TYPES, wedge_codebook_16_hltw, wedge_signflip_lookup[BLOCK_32X16],
+ wedge_masks[BLOCK_32X16] },
+ { MAX_WEDGE_TYPES, wedge_codebook_16_heqw, wedge_signflip_lookup[BLOCK_32X32],
+ wedge_masks[BLOCK_32X32] },
+ { 0, NULL, NULL, NULL },
+ { 0, NULL, NULL, NULL },
+ { 0, NULL, NULL, NULL },
+ { 0, NULL, NULL, NULL },
+ { 0, NULL, NULL, NULL },
+ { 0, NULL, NULL, NULL },
+ { 0, NULL, NULL, NULL },
+ { 0, NULL, NULL, NULL },
+ { MAX_WEDGE_TYPES, wedge_codebook_16_hgtw, wedge_signflip_lookup[BLOCK_8X32],
+ wedge_masks[BLOCK_8X32] },
+ { MAX_WEDGE_TYPES, wedge_codebook_16_hltw, wedge_signflip_lookup[BLOCK_32X8],
+ wedge_masks[BLOCK_32X8] },
+ { 0, NULL, NULL, NULL },
+ { 0, NULL, NULL, NULL },
+};
+
+static const uint8_t *get_wedge_mask_inplace(int wedge_index, int neg,
+ BLOCK_SIZE sb_type) {
+ const uint8_t *master;
+ const int bh = block_size_high[sb_type];
+ const int bw = block_size_wide[sb_type];
+ const wedge_code_type *a =
+ av1_wedge_params_lookup[sb_type].codebook + wedge_index;
+ int woff, hoff;
+ const uint8_t wsignflip =
+ av1_wedge_params_lookup[sb_type].signflip[wedge_index];
+
+ assert(wedge_index >= 0 && wedge_index < get_wedge_types_lookup(sb_type));
+ woff = (a->x_offset * bw) >> 3;
+ hoff = (a->y_offset * bh) >> 3;
+ master = wedge_mask_obl[neg ^ wsignflip][a->direction] +
+ MASK_MASTER_STRIDE * (MASK_MASTER_SIZE / 2 - hoff) +
+ MASK_MASTER_SIZE / 2 - woff;
+ return master;
+}
+
+const uint8_t *av1_get_compound_type_mask(
+ const INTERINTER_COMPOUND_DATA *const comp_data, BLOCK_SIZE sb_type) {
+ assert(is_masked_compound_type(comp_data->type));
+ (void)sb_type;
+ switch (comp_data->type) {
+ case COMPOUND_WEDGE:
+ return av1_get_contiguous_soft_mask(comp_data->wedge_index,
+ comp_data->wedge_sign, sb_type);
+ case COMPOUND_DIFFWTD: return comp_data->seg_mask;
+ default: assert(0); return NULL;
+ }
+}
+
+static AOM_INLINE void diffwtd_mask_d16(
+ uint8_t *mask, int which_inverse, int mask_base, const CONV_BUF_TYPE *src0,
+ int src0_stride, const CONV_BUF_TYPE *src1, int src1_stride, int h, int w,
+ ConvolveParams *conv_params, int bd) {
+ int round =
+ 2 * FILTER_BITS - conv_params->round_0 - conv_params->round_1 + (bd - 8);
+ int i, j, m, diff;
+ for (i = 0; i < h; ++i) {
+ for (j = 0; j < w; ++j) {
+ diff = abs(src0[i * src0_stride + j] - src1[i * src1_stride + j]);
+ diff = ROUND_POWER_OF_TWO(diff, round);
+ m = clamp(mask_base + (diff / DIFF_FACTOR), 0, AOM_BLEND_A64_MAX_ALPHA);
+ mask[i * w + j] = which_inverse ? AOM_BLEND_A64_MAX_ALPHA - m : m;
+ }
+ }
+}
+
+void av1_build_compound_diffwtd_mask_d16_c(
+ uint8_t *mask, DIFFWTD_MASK_TYPE mask_type, const CONV_BUF_TYPE *src0,
+ int src0_stride, const CONV_BUF_TYPE *src1, int src1_stride, int h, int w,
+ ConvolveParams *conv_params, int bd) {
+ switch (mask_type) {
+ case DIFFWTD_38:
+ diffwtd_mask_d16(mask, 0, 38, src0, src0_stride, src1, src1_stride, h, w,
+ conv_params, bd);
+ break;
+ case DIFFWTD_38_INV:
+ diffwtd_mask_d16(mask, 1, 38, src0, src0_stride, src1, src1_stride, h, w,
+ conv_params, bd);
+ break;
+ default: assert(0);
+ }
+}
+
+static AOM_INLINE void diffwtd_mask(uint8_t *mask, int which_inverse,
+ int mask_base, const uint8_t *src0,
+ int src0_stride, const uint8_t *src1,
+ int src1_stride, int h, int w) {
+ int i, j, m, diff;
+ for (i = 0; i < h; ++i) {
+ for (j = 0; j < w; ++j) {
+ diff =
+ abs((int)src0[i * src0_stride + j] - (int)src1[i * src1_stride + j]);
+ m = clamp(mask_base + (diff / DIFF_FACTOR), 0, AOM_BLEND_A64_MAX_ALPHA);
+ mask[i * w + j] = which_inverse ? AOM_BLEND_A64_MAX_ALPHA - m : m;
+ }
+ }
+}
+
+void av1_build_compound_diffwtd_mask_c(uint8_t *mask,
+ DIFFWTD_MASK_TYPE mask_type,
+ const uint8_t *src0, int src0_stride,
+ const uint8_t *src1, int src1_stride,
+ int h, int w) {
+ switch (mask_type) {
+ case DIFFWTD_38:
+ diffwtd_mask(mask, 0, 38, src0, src0_stride, src1, src1_stride, h, w);
+ break;
+ case DIFFWTD_38_INV:
+ diffwtd_mask(mask, 1, 38, src0, src0_stride, src1, src1_stride, h, w);
+ break;
+ default: assert(0);
+ }
+}
+
+static AOM_FORCE_INLINE void diffwtd_mask_highbd(
+ uint8_t *mask, int which_inverse, int mask_base, const uint16_t *src0,
+ int src0_stride, const uint16_t *src1, int src1_stride, int h, int w,
+ const unsigned int bd) {
+ assert(bd >= 8);
+ if (bd == 8) {
+ if (which_inverse) {
+ for (int i = 0; i < h; ++i) {
+ for (int j = 0; j < w; ++j) {
+ int diff = abs((int)src0[j] - (int)src1[j]) / DIFF_FACTOR;
+ unsigned int m = negative_to_zero(mask_base + diff);
+ m = AOMMIN(m, AOM_BLEND_A64_MAX_ALPHA);
+ mask[j] = AOM_BLEND_A64_MAX_ALPHA - m;
+ }
+ src0 += src0_stride;
+ src1 += src1_stride;
+ mask += w;
+ }
+ } else {
+ for (int i = 0; i < h; ++i) {
+ for (int j = 0; j < w; ++j) {
+ int diff = abs((int)src0[j] - (int)src1[j]) / DIFF_FACTOR;
+ unsigned int m = negative_to_zero(mask_base + diff);
+ m = AOMMIN(m, AOM_BLEND_A64_MAX_ALPHA);
+ mask[j] = m;
+ }
+ src0 += src0_stride;
+ src1 += src1_stride;
+ mask += w;
+ }
+ }
+ } else {
+ const unsigned int bd_shift = bd - 8;
+ if (which_inverse) {
+ for (int i = 0; i < h; ++i) {
+ for (int j = 0; j < w; ++j) {
+ int diff =
+ (abs((int)src0[j] - (int)src1[j]) >> bd_shift) / DIFF_FACTOR;
+ unsigned int m = negative_to_zero(mask_base + diff);
+ m = AOMMIN(m, AOM_BLEND_A64_MAX_ALPHA);
+ mask[j] = AOM_BLEND_A64_MAX_ALPHA - m;
+ }
+ src0 += src0_stride;
+ src1 += src1_stride;
+ mask += w;
+ }
+ } else {
+ for (int i = 0; i < h; ++i) {
+ for (int j = 0; j < w; ++j) {
+ int diff =
+ (abs((int)src0[j] - (int)src1[j]) >> bd_shift) / DIFF_FACTOR;
+ unsigned int m = negative_to_zero(mask_base + diff);
+ m = AOMMIN(m, AOM_BLEND_A64_MAX_ALPHA);
+ mask[j] = m;
+ }
+ src0 += src0_stride;
+ src1 += src1_stride;
+ mask += w;
+ }
+ }
+ }
+}
+
+void av1_build_compound_diffwtd_mask_highbd_c(
+ uint8_t *mask, DIFFWTD_MASK_TYPE mask_type, const uint8_t *src0,
+ int src0_stride, const uint8_t *src1, int src1_stride, int h, int w,
+ int bd) {
+ switch (mask_type) {
+ case DIFFWTD_38:
+ diffwtd_mask_highbd(mask, 0, 38, CONVERT_TO_SHORTPTR(src0), src0_stride,
+ CONVERT_TO_SHORTPTR(src1), src1_stride, h, w, bd);
+ break;
+ case DIFFWTD_38_INV:
+ diffwtd_mask_highbd(mask, 1, 38, CONVERT_TO_SHORTPTR(src0), src0_stride,
+ CONVERT_TO_SHORTPTR(src1), src1_stride, h, w, bd);
+ break;
+ default: assert(0);
+ }
+}
+
+static AOM_INLINE void init_wedge_master_masks() {
+ int i, j;
+ const int w = MASK_MASTER_SIZE;
+ const int h = MASK_MASTER_SIZE;
+ const int stride = MASK_MASTER_STRIDE;
+ // Note: index [0] stores the masters, and [1] its complement.
+ // Generate prototype by shifting the masters
+ int shift = h / 4;
+ for (i = 0; i < h; i += 2) {
+ shift_copy(wedge_master_oblique_even,
+ &wedge_mask_obl[0][WEDGE_OBLIQUE63][i * stride], shift,
+ MASK_MASTER_SIZE);
+ shift--;
+ shift_copy(wedge_master_oblique_odd,
+ &wedge_mask_obl[0][WEDGE_OBLIQUE63][(i + 1) * stride], shift,
+ MASK_MASTER_SIZE);
+ memcpy(&wedge_mask_obl[0][WEDGE_VERTICAL][i * stride],
+ wedge_master_vertical,
+ MASK_MASTER_SIZE * sizeof(wedge_master_vertical[0]));
+ memcpy(&wedge_mask_obl[0][WEDGE_VERTICAL][(i + 1) * stride],
+ wedge_master_vertical,
+ MASK_MASTER_SIZE * sizeof(wedge_master_vertical[0]));
+ }
+
+ for (i = 0; i < h; ++i) {
+ for (j = 0; j < w; ++j) {
+ const int msk = wedge_mask_obl[0][WEDGE_OBLIQUE63][i * stride + j];
+ wedge_mask_obl[0][WEDGE_OBLIQUE27][j * stride + i] = msk;
+ wedge_mask_obl[0][WEDGE_OBLIQUE117][i * stride + w - 1 - j] =
+ wedge_mask_obl[0][WEDGE_OBLIQUE153][(w - 1 - j) * stride + i] =
+ (1 << WEDGE_WEIGHT_BITS) - msk;
+ wedge_mask_obl[1][WEDGE_OBLIQUE63][i * stride + j] =
+ wedge_mask_obl[1][WEDGE_OBLIQUE27][j * stride + i] =
+ (1 << WEDGE_WEIGHT_BITS) - msk;
+ wedge_mask_obl[1][WEDGE_OBLIQUE117][i * stride + w - 1 - j] =
+ wedge_mask_obl[1][WEDGE_OBLIQUE153][(w - 1 - j) * stride + i] = msk;
+ const int mskx = wedge_mask_obl[0][WEDGE_VERTICAL][i * stride + j];
+ wedge_mask_obl[0][WEDGE_HORIZONTAL][j * stride + i] = mskx;
+ wedge_mask_obl[1][WEDGE_VERTICAL][i * stride + j] =
+ wedge_mask_obl[1][WEDGE_HORIZONTAL][j * stride + i] =
+ (1 << WEDGE_WEIGHT_BITS) - mskx;
+ }
+ }
+}
+
+static AOM_INLINE void init_wedge_masks() {
+ uint8_t *dst = wedge_mask_buf;
+ BLOCK_SIZE bsize;
+ memset(wedge_masks, 0, sizeof(wedge_masks));
+ for (bsize = BLOCK_4X4; bsize < BLOCK_SIZES_ALL; ++bsize) {
+ const wedge_params_type *wedge_params = &av1_wedge_params_lookup[bsize];
+ const int wtypes = wedge_params->wedge_types;
+ if (wtypes == 0) continue;
+ const uint8_t *mask;
+ const int bw = block_size_wide[bsize];
+ const int bh = block_size_high[bsize];
+ int w;
+ for (w = 0; w < wtypes; ++w) {
+ mask = get_wedge_mask_inplace(w, 0, bsize);
+ aom_convolve_copy(mask, MASK_MASTER_STRIDE, dst, bw, NULL, 0, NULL, 0, bw,
+ bh);
+ wedge_params->masks[0][w] = dst;
+ dst += bw * bh;
+
+ mask = get_wedge_mask_inplace(w, 1, bsize);
+ aom_convolve_copy(mask, MASK_MASTER_STRIDE, dst, bw, NULL, 0, NULL, 0, bw,
+ bh);
+ wedge_params->masks[1][w] = dst;
+ dst += bw * bh;
+ }
+ assert(sizeof(wedge_mask_buf) >= (size_t)(dst - wedge_mask_buf));
+ }
+}
+
+/* clang-format off */
+static const uint8_t ii_weights1d[MAX_SB_SIZE] = {
+ 60, 58, 56, 54, 52, 50, 48, 47, 45, 44, 42, 41, 39, 38, 37, 35, 34, 33, 32,
+ 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 22, 21, 20, 19, 19, 18, 18, 17, 16,
+ 16, 15, 15, 14, 14, 13, 13, 12, 12, 12, 11, 11, 10, 10, 10, 9, 9, 9, 8,
+ 8, 8, 8, 7, 7, 7, 7, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 4, 4,
+ 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2,
+ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1,
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
+};
+static uint8_t ii_size_scales[BLOCK_SIZES_ALL] = {
+ 32, 16, 16, 16, 8, 8, 8, 4,
+ 4, 4, 2, 2, 2, 1, 1, 1,
+ 8, 8, 4, 4, 2, 2
+};
+/* clang-format on */
+
+static AOM_INLINE void build_smooth_interintra_mask(uint8_t *mask, int stride,
+ BLOCK_SIZE plane_bsize,
+ INTERINTRA_MODE mode) {
+ int i, j;
+ const int bw = block_size_wide[plane_bsize];
+ const int bh = block_size_high[plane_bsize];
+ const int size_scale = ii_size_scales[plane_bsize];
+
+ switch (mode) {
+ case II_V_PRED:
+ for (i = 0; i < bh; ++i) {
+ memset(mask, ii_weights1d[i * size_scale], bw * sizeof(mask[0]));
+ mask += stride;
+ }
+ break;
+
+ case II_H_PRED:
+ for (i = 0; i < bh; ++i) {
+ for (j = 0; j < bw; ++j) mask[j] = ii_weights1d[j * size_scale];
+ mask += stride;
+ }
+ break;
+
+ case II_SMOOTH_PRED:
+ for (i = 0; i < bh; ++i) {
+ for (j = 0; j < bw; ++j)
+ mask[j] = ii_weights1d[(i < j ? i : j) * size_scale];
+ mask += stride;
+ }
+ break;
+
+ case II_DC_PRED:
+ default:
+ for (i = 0; i < bh; ++i) {
+ memset(mask, 32, bw * sizeof(mask[0]));
+ mask += stride;
+ }
+ break;
+ }
+}
+
+static AOM_INLINE void init_smooth_interintra_masks() {
+ for (int m = 0; m < INTERINTRA_MODES; ++m) {
+ for (int bs = 0; bs < BLOCK_SIZES_ALL; ++bs) {
+ const int bw = block_size_wide[bs];
+ const int bh = block_size_high[bs];
+ if (bw > MAX_WEDGE_SIZE || bh > MAX_WEDGE_SIZE) continue;
+ build_smooth_interintra_mask(smooth_interintra_mask_buf[m][bs], bw, bs,
+ m);
+ }
+ }
+}
+
+// Equation of line: f(x, y) = a[0]*(x - a[2]*w/8) + a[1]*(y - a[3]*h/8) = 0
+void av1_init_wedge_masks() {
+ init_wedge_master_masks();
+ init_wedge_masks();
+ init_smooth_interintra_masks();
+}
+
+static AOM_INLINE void build_masked_compound_no_round(
+ uint8_t *dst, int dst_stride, const CONV_BUF_TYPE *src0, int src0_stride,
+ const CONV_BUF_TYPE *src1, int src1_stride,
+ const INTERINTER_COMPOUND_DATA *const comp_data, BLOCK_SIZE sb_type, int h,
+ int w, InterPredParams *inter_pred_params) {
+ const int ssy = inter_pred_params->subsampling_y;
+ const int ssx = inter_pred_params->subsampling_x;
+ const uint8_t *mask = av1_get_compound_type_mask(comp_data, sb_type);
+ const int mask_stride = block_size_wide[sb_type];
+#if CONFIG_AV1_HIGHBITDEPTH
+ if (inter_pred_params->use_hbd_buf) {
+ aom_highbd_blend_a64_d16_mask(dst, dst_stride, src0, src0_stride, src1,
+ src1_stride, mask, mask_stride, w, h, ssx,
+ ssy, &inter_pred_params->conv_params,
+ inter_pred_params->bit_depth);
+ } else {
+ aom_lowbd_blend_a64_d16_mask(dst, dst_stride, src0, src0_stride, src1,
+ src1_stride, mask, mask_stride, w, h, ssx, ssy,
+ &inter_pred_params->conv_params);
+ }
+#else
+ aom_lowbd_blend_a64_d16_mask(dst, dst_stride, src0, src0_stride, src1,
+ src1_stride, mask, mask_stride, w, h, ssx, ssy,
+ &inter_pred_params->conv_params);
+#endif
+}
+
+void av1_make_masked_inter_predictor(const uint8_t *pre, int pre_stride,
+ uint8_t *dst, int dst_stride,
+ InterPredParams *inter_pred_params,
+ const SubpelParams *subpel_params) {
+ const INTERINTER_COMPOUND_DATA *comp_data = &inter_pred_params->mask_comp;
+ BLOCK_SIZE sb_type = inter_pred_params->sb_type;
+
+ // We're going to call av1_make_inter_predictor to generate a prediction into
+ // a temporary buffer, then will blend that temporary buffer with that from
+ // the other reference.
+ DECLARE_ALIGNED(32, uint8_t, tmp_buf[2 * MAX_SB_SQUARE]);
+ uint8_t *tmp_dst =
+ inter_pred_params->use_hbd_buf ? CONVERT_TO_BYTEPTR(tmp_buf) : tmp_buf;
+
+ const int tmp_buf_stride = MAX_SB_SIZE;
+ CONV_BUF_TYPE *org_dst = inter_pred_params->conv_params.dst;
+ int org_dst_stride = inter_pred_params->conv_params.dst_stride;
+ CONV_BUF_TYPE *tmp_buf16 = (CONV_BUF_TYPE *)tmp_buf;
+ inter_pred_params->conv_params.dst = tmp_buf16;
+ inter_pred_params->conv_params.dst_stride = tmp_buf_stride;
+ assert(inter_pred_params->conv_params.do_average == 0);
+
+ // This will generate a prediction in tmp_buf for the second reference
+ av1_make_inter_predictor(pre, pre_stride, tmp_dst, MAX_SB_SIZE,
+ inter_pred_params, subpel_params);
+
+ if (!inter_pred_params->conv_params.plane &&
+ comp_data->type == COMPOUND_DIFFWTD) {
+ av1_build_compound_diffwtd_mask_d16(
+ comp_data->seg_mask, comp_data->mask_type, org_dst, org_dst_stride,
+ tmp_buf16, tmp_buf_stride, inter_pred_params->block_height,
+ inter_pred_params->block_width, &inter_pred_params->conv_params,
+ inter_pred_params->bit_depth);
+ }
+ build_masked_compound_no_round(
+ dst, dst_stride, org_dst, org_dst_stride, tmp_buf16, tmp_buf_stride,
+ comp_data, sb_type, inter_pred_params->block_height,
+ inter_pred_params->block_width, inter_pred_params);
+}
+
+void av1_build_one_inter_predictor(
+ uint8_t *dst, int dst_stride, const MV *const src_mv,
+ InterPredParams *inter_pred_params, MACROBLOCKD *xd, int mi_x, int mi_y,
+ int ref, CalcSubpelParamsFunc calc_subpel_params_func) {
+ SubpelParams subpel_params;
+ uint8_t *src;
+ int src_stride;
+ calc_subpel_params_func(src_mv, inter_pred_params, xd, mi_x, mi_y, ref, &src,
+ &subpel_params, &src_stride);
+
+ if (inter_pred_params->comp_mode == UNIFORM_SINGLE ||
+ inter_pred_params->comp_mode == UNIFORM_COMP) {
+ av1_make_inter_predictor(src, src_stride, dst, dst_stride,
+ inter_pred_params, &subpel_params);
+ } else {
+ av1_make_masked_inter_predictor(src, src_stride, dst, dst_stride,
+ inter_pred_params, &subpel_params);
+ }
+}
+
+// True if the following hold:
+// 1. Not intrabc and not build_for_obmc
+// 2. A U or V plane
+// 3. If the block size differs from the base block size
+// 4. If sub-sampled, none of the previous blocks around the sub-sample
+// are intrabc or inter-blocks
+static bool is_sub8x8_inter(const MACROBLOCKD *xd, int plane, BLOCK_SIZE bsize,
+ int is_intrabc, int build_for_obmc) {
+ if (is_intrabc || build_for_obmc) {
+ return false;
+ }
+
+ const struct macroblockd_plane *const pd = &xd->plane[plane];
+ const int ss_x = pd->subsampling_x;
+ const int ss_y = pd->subsampling_y;
+ if ((block_size_wide[bsize] >= 8 || !ss_x) &&
+ (block_size_high[bsize] >= 8 || !ss_y)) {
+ return false;
+ }
+
+ // For sub8x8 chroma blocks, we may be covering more than one luma block's
+ // worth of pixels. Thus (mi_x, mi_y) may not be the correct coordinates for
+ // the top-left corner of the prediction source - the correct top-left corner
+ // is at (pre_x, pre_y).
+ const int row_start = (block_size_high[bsize] == 4) && ss_y ? -1 : 0;
+ const int col_start = (block_size_wide[bsize] == 4) && ss_x ? -1 : 0;
+
+ for (int row = row_start; row <= 0; ++row) {
+ for (int col = col_start; col <= 0; ++col) {
+ const MB_MODE_INFO *this_mbmi = xd->mi[row * xd->mi_stride + col];
+ if (!is_inter_block(this_mbmi)) return false;
+ if (is_intrabc_block(this_mbmi)) return false;
+ }
+ }
+ return true;
+}
+
+static void build_inter_predictors_sub8x8(
+ const AV1_COMMON *cm, MACROBLOCKD *xd, int plane, const MB_MODE_INFO *mi,
+ int bw, int bh, int mi_x, int mi_y,
+ CalcSubpelParamsFunc calc_subpel_params_func) {
+ const BLOCK_SIZE bsize = mi->sb_type;
+ struct macroblockd_plane *const pd = &xd->plane[plane];
+ const bool ss_x = pd->subsampling_x;
+ const bool ss_y = pd->subsampling_y;
+ const int b4_w = block_size_wide[bsize] >> ss_x;
+ const int b4_h = block_size_high[bsize] >> ss_y;
+ const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, ss_x, ss_y);
+ const int b8_w = block_size_wide[plane_bsize];
+ const int b8_h = block_size_high[plane_bsize];
+ const int is_compound = has_second_ref(mi);
+ assert(!is_compound);
+ assert(!is_intrabc_block(mi));
+
+ // For sub8x8 chroma blocks, we may be covering more than one luma block's
+ // worth of pixels. Thus (mi_x, mi_y) may not be the correct coordinates for
+ // the top-left corner of the prediction source - the correct top-left corner
+ // is at (pre_x, pre_y).
+ const int row_start = (block_size_high[bsize] == 4) && ss_y ? -1 : 0;
+ const int col_start = (block_size_wide[bsize] == 4) && ss_x ? -1 : 0;
+ const int pre_x = (mi_x + MI_SIZE * col_start) >> ss_x;
+ const int pre_y = (mi_y + MI_SIZE * row_start) >> ss_y;
+
+ int row = row_start;
+ for (int y = 0; y < b8_h; y += b4_h) {
+ int col = col_start;
+ for (int x = 0; x < b8_w; x += b4_w) {
+ MB_MODE_INFO *this_mbmi = xd->mi[row * xd->mi_stride + col];
+ int tmp_dst_stride = 8;
+ assert(bw < 8 || bh < 8);
+ (void)bw;
+ (void)bh;
+ struct buf_2d *const dst_buf = &pd->dst;
+ uint8_t *dst = dst_buf->buf + dst_buf->stride * y + x;
+ int ref = 0;
+ const RefCntBuffer *ref_buf =
+ get_ref_frame_buf(cm, this_mbmi->ref_frame[ref]);
+ const struct scale_factors *ref_scale_factors =
+ get_ref_scale_factors_const(cm, this_mbmi->ref_frame[ref]);
+ const struct scale_factors *const sf = ref_scale_factors;
+ const struct buf_2d pre_buf = {
+ NULL,
+ (plane == 1) ? ref_buf->buf.u_buffer : ref_buf->buf.v_buffer,
+ ref_buf->buf.uv_crop_width,
+ ref_buf->buf.uv_crop_height,
+ ref_buf->buf.uv_stride,
+ };
+
+ const MV mv = this_mbmi->mv[ref].as_mv;
+
+ InterPredParams inter_pred_params;
+ av1_init_inter_params(&inter_pred_params, b4_w, b4_h, pre_y + y,
+ pre_x + x, pd->subsampling_x, pd->subsampling_y,
+ xd->bd, is_cur_buf_hbd(xd), mi->use_intrabc, sf,
+ &pre_buf, this_mbmi->interp_filters);
+ inter_pred_params.conv_params = get_conv_params_no_round(
+ ref, plane, xd->tmp_conv_dst, tmp_dst_stride, is_compound, xd->bd);
+ inter_pred_params.conv_params.use_dist_wtd_comp_avg = 0;
+
+ av1_build_one_inter_predictor(dst, dst_buf->stride, &mv,
+ &inter_pred_params, xd, mi_x + x, mi_y + y,
+ ref, calc_subpel_params_func);
+
+ ++col;
+ }
+ ++row;
+ }
+}
+
+static void build_inter_predictors_8x8_and_bigger(
+ const AV1_COMMON *cm, MACROBLOCKD *xd, int plane, const MB_MODE_INFO *mi,
+ int build_for_obmc, int bw, int bh, int mi_x, int mi_y,
+ CalcSubpelParamsFunc calc_subpel_params_func) {
+ const int is_compound = has_second_ref(mi);
+ const int is_intrabc = is_intrabc_block(mi);
+ assert(IMPLIES(is_intrabc, !is_compound));
+ struct macroblockd_plane *const pd = &xd->plane[plane];
+ struct buf_2d *const dst_buf = &pd->dst;
+ uint8_t *const dst = dst_buf->buf;
+
+ int is_global[2] = { 0, 0 };
+ for (int ref = 0; ref < 1 + is_compound; ++ref) {
+ const WarpedMotionParams *const wm = &xd->global_motion[mi->ref_frame[ref]];
+ is_global[ref] = is_global_mv_block(mi, wm->wmtype);
+ }
+
+ const BLOCK_SIZE bsize = mi->sb_type;
+ const int ss_x = pd->subsampling_x;
+ const int ss_y = pd->subsampling_y;
+ const int row_start =
+ (block_size_high[bsize] == 4) && ss_y && !build_for_obmc ? -1 : 0;
+ const int col_start =
+ (block_size_wide[bsize] == 4) && ss_x && !build_for_obmc ? -1 : 0;
+ const int pre_x = (mi_x + MI_SIZE * col_start) >> ss_x;
+ const int pre_y = (mi_y + MI_SIZE * row_start) >> ss_y;
+
+ for (int ref = 0; ref < 1 + is_compound; ++ref) {
+ const struct scale_factors *const sf =
+ is_intrabc ? &cm->sf_identity : xd->block_ref_scale_factors[ref];
+ struct buf_2d *const pre_buf = is_intrabc ? dst_buf : &pd->pre[ref];
+ const MV mv = mi->mv[ref].as_mv;
+ const WarpTypesAllowed warp_types = { is_global[ref],
+ mi->motion_mode == WARPED_CAUSAL };
+
+ InterPredParams inter_pred_params;
+ av1_init_inter_params(&inter_pred_params, bw, bh, pre_y, pre_x,
+ pd->subsampling_x, pd->subsampling_y, xd->bd,
+ is_cur_buf_hbd(xd), mi->use_intrabc, sf, pre_buf,
+ mi->interp_filters);
+ if (is_compound) av1_init_comp_mode(&inter_pred_params);
+ inter_pred_params.conv_params = get_conv_params_no_round(
+ ref, plane, xd->tmp_conv_dst, MAX_SB_SIZE, is_compound, xd->bd);
+
+ av1_dist_wtd_comp_weight_assign(
+ cm, mi, 0, &inter_pred_params.conv_params.fwd_offset,
+ &inter_pred_params.conv_params.bck_offset,
+ &inter_pred_params.conv_params.use_dist_wtd_comp_avg, is_compound);
+
+ if (!build_for_obmc)
+ av1_init_warp_params(&inter_pred_params, &warp_types, ref, xd, mi);
+
+ if (is_masked_compound_type(mi->interinter_comp.type)) {
+ av1_init_mask_comp(&inter_pred_params, mi->sb_type, &mi->interinter_comp);
+ // Assign physical buffer.
+ inter_pred_params.mask_comp.seg_mask = xd->seg_mask;
+ }
+
+ av1_build_one_inter_predictor(dst, dst_buf->stride, &mv, &inter_pred_params,
+ xd, mi_x, mi_y, ref, calc_subpel_params_func);
+ }
+}
+
+void av1_build_inter_predictors(const AV1_COMMON *cm, MACROBLOCKD *xd,
+ int plane, const MB_MODE_INFO *mi,
+ int build_for_obmc, int bw, int bh, int mi_x,
+ int mi_y,
+ CalcSubpelParamsFunc calc_subpel_params_func) {
+ if (is_sub8x8_inter(xd, plane, mi->sb_type, is_intrabc_block(mi),
+ build_for_obmc)) {
+ build_inter_predictors_sub8x8(cm, xd, plane, mi, bw, bh, mi_x, mi_y,
+ calc_subpel_params_func);
+ } else {
+ build_inter_predictors_8x8_and_bigger(cm, xd, plane, mi, build_for_obmc, bw,
+ bh, mi_x, mi_y,
+ calc_subpel_params_func);
+ }
+}
+
+void av1_dist_wtd_comp_weight_assign(const AV1_COMMON *cm,
+ const MB_MODE_INFO *mbmi, int order_idx,
+ int *fwd_offset, int *bck_offset,
+ int *use_dist_wtd_comp_avg,
+ int is_compound) {
+ assert(fwd_offset != NULL && bck_offset != NULL);
+ if (!is_compound || mbmi->compound_idx) {
+ *use_dist_wtd_comp_avg = 0;
+ return;
+ }
+
+ *use_dist_wtd_comp_avg = 1;
+ const RefCntBuffer *const bck_buf = get_ref_frame_buf(cm, mbmi->ref_frame[0]);
+ const RefCntBuffer *const fwd_buf = get_ref_frame_buf(cm, mbmi->ref_frame[1]);
+ const int cur_frame_index = cm->cur_frame->order_hint;
+ int bck_frame_index = 0, fwd_frame_index = 0;
+
+ if (bck_buf != NULL) bck_frame_index = bck_buf->order_hint;
+ if (fwd_buf != NULL) fwd_frame_index = fwd_buf->order_hint;
+
+ int d0 = clamp(abs(get_relative_dist(&cm->seq_params.order_hint_info,
+ fwd_frame_index, cur_frame_index)),
+ 0, MAX_FRAME_DISTANCE);
+ int d1 = clamp(abs(get_relative_dist(&cm->seq_params.order_hint_info,
+ cur_frame_index, bck_frame_index)),
+ 0, MAX_FRAME_DISTANCE);
+
+ const int order = d0 <= d1;
+
+ if (d0 == 0 || d1 == 0) {
+ *fwd_offset = quant_dist_lookup_table[order_idx][3][order];
+ *bck_offset = quant_dist_lookup_table[order_idx][3][1 - order];
+ return;
+ }
+
+ int i;
+ for (i = 0; i < 3; ++i) {
+ int c0 = quant_dist_weight[i][order];
+ int c1 = quant_dist_weight[i][!order];
+ int d0_c0 = d0 * c0;
+ int d1_c1 = d1 * c1;
+ if ((d0 > d1 && d0_c0 < d1_c1) || (d0 <= d1 && d0_c0 > d1_c1)) break;
+ }
+
+ *fwd_offset = quant_dist_lookup_table[order_idx][i][order];
+ *bck_offset = quant_dist_lookup_table[order_idx][i][1 - order];
+}
+
+void av1_setup_dst_planes(struct macroblockd_plane *planes, BLOCK_SIZE bsize,
+ const YV12_BUFFER_CONFIG *src, int mi_row, int mi_col,
+ const int plane_start, const int plane_end) {
+ // We use AOMMIN(num_planes, MAX_MB_PLANE) instead of num_planes to quiet
+ // the static analysis warnings.
+ for (int i = plane_start; i < AOMMIN(plane_end, MAX_MB_PLANE); ++i) {
+ struct macroblockd_plane *const pd = &planes[i];
+ const int is_uv = i > 0;
+ setup_pred_plane(&pd->dst, bsize, src->buffers[i], src->crop_widths[is_uv],
+ src->crop_heights[is_uv], src->strides[is_uv], mi_row,
+ mi_col, NULL, pd->subsampling_x, pd->subsampling_y);
+ }
+}
+
+void av1_setup_pre_planes(MACROBLOCKD *xd, int idx,
+ const YV12_BUFFER_CONFIG *src, int mi_row, int mi_col,
+ const struct scale_factors *sf,
+ const int num_planes) {
+ if (src != NULL) {
+ // We use AOMMIN(num_planes, MAX_MB_PLANE) instead of num_planes to quiet
+ // the static analysis warnings.
+ for (int i = 0; i < AOMMIN(num_planes, MAX_MB_PLANE); ++i) {
+ struct macroblockd_plane *const pd = &xd->plane[i];
+ const int is_uv = i > 0;
+ setup_pred_plane(&pd->pre[idx], xd->mi[0]->sb_type, src->buffers[i],
+ src->crop_widths[is_uv], src->crop_heights[is_uv],
+ src->strides[is_uv], mi_row, mi_col, sf,
+ pd->subsampling_x, pd->subsampling_y);
+ }
+ }
+}
+
+// obmc_mask_N[overlap_position]
+static const uint8_t obmc_mask_1[1] = { 64 };
+DECLARE_ALIGNED(2, static const uint8_t, obmc_mask_2[2]) = { 45, 64 };
+
+DECLARE_ALIGNED(4, static const uint8_t, obmc_mask_4[4]) = { 39, 50, 59, 64 };
+
+static const uint8_t obmc_mask_8[8] = { 36, 42, 48, 53, 57, 61, 64, 64 };
+
+static const uint8_t obmc_mask_16[16] = { 34, 37, 40, 43, 46, 49, 52, 54,
+ 56, 58, 60, 61, 64, 64, 64, 64 };
+
+static const uint8_t obmc_mask_32[32] = { 33, 35, 36, 38, 40, 41, 43, 44,
+ 45, 47, 48, 50, 51, 52, 53, 55,
+ 56, 57, 58, 59, 60, 60, 61, 62,
+ 64, 64, 64, 64, 64, 64, 64, 64 };
+
+static const uint8_t obmc_mask_64[64] = {
+ 33, 34, 35, 35, 36, 37, 38, 39, 40, 40, 41, 42, 43, 44, 44, 44,
+ 45, 46, 47, 47, 48, 49, 50, 51, 51, 51, 52, 52, 53, 54, 55, 56,
+ 56, 56, 57, 57, 58, 58, 59, 60, 60, 60, 60, 60, 61, 62, 62, 62,
+ 62, 62, 63, 63, 63, 63, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64,
+};
+
+const uint8_t *av1_get_obmc_mask(int length) {
+ switch (length) {
+ case 1: return obmc_mask_1;
+ case 2: return obmc_mask_2;
+ case 4: return obmc_mask_4;
+ case 8: return obmc_mask_8;
+ case 16: return obmc_mask_16;
+ case 32: return obmc_mask_32;
+ case 64: return obmc_mask_64;
+ default: assert(0); return NULL;
+ }
+}
+
+static INLINE void increment_int_ptr(MACROBLOCKD *xd, int rel_mi_row,
+ int rel_mi_col, uint8_t op_mi_size,
+ int dir, MB_MODE_INFO *mi, void *fun_ctxt,
+ const int num_planes) {
+ (void)xd;
+ (void)rel_mi_row;
+ (void)rel_mi_col;
+ (void)op_mi_size;
+ (void)dir;
+ (void)mi;
+ ++*(int *)fun_ctxt;
+ (void)num_planes;
+}
+
+void av1_count_overlappable_neighbors(const AV1_COMMON *cm, MACROBLOCKD *xd) {
+ MB_MODE_INFO *mbmi = xd->mi[0];
+
+ mbmi->overlappable_neighbors[0] = 0;
+ mbmi->overlappable_neighbors[1] = 0;
+
+ if (!is_motion_variation_allowed_bsize(mbmi->sb_type)) return;
+
+ foreach_overlappable_nb_above(cm, xd, INT_MAX, increment_int_ptr,
+ &mbmi->overlappable_neighbors[0]);
+ foreach_overlappable_nb_left(cm, xd, INT_MAX, increment_int_ptr,
+ &mbmi->overlappable_neighbors[1]);
+}
+
+// HW does not support < 4x4 prediction. To limit the bandwidth requirement, if
+// block-size of current plane is smaller than 8x8, always only blend with the
+// left neighbor(s) (skip blending with the above side).
+#define DISABLE_CHROMA_U8X8_OBMC 0 // 0: one-sided obmc; 1: disable
+
+int av1_skip_u4x4_pred_in_obmc(BLOCK_SIZE bsize,
+ const struct macroblockd_plane *pd, int dir) {
+ assert(is_motion_variation_allowed_bsize(bsize));
+
+ const BLOCK_SIZE bsize_plane =
+ get_plane_block_size(bsize, pd->subsampling_x, pd->subsampling_y);
+ switch (bsize_plane) {
+#if DISABLE_CHROMA_U8X8_OBMC
+ case BLOCK_4X4:
+ case BLOCK_8X4:
+ case BLOCK_4X8: return 1; break;
+#else
+ case BLOCK_4X4:
+ case BLOCK_8X4:
+ case BLOCK_4X8: return dir == 0; break;
+#endif
+ default: return 0;
+ }
+}
+
+void av1_modify_neighbor_predictor_for_obmc(MB_MODE_INFO *mbmi) {
+ mbmi->ref_frame[1] = NONE_FRAME;
+ mbmi->interinter_comp.type = COMPOUND_AVERAGE;
+
+ return;
+}
+
+struct obmc_inter_pred_ctxt {
+ uint8_t **adjacent;
+ int *adjacent_stride;
+};
+
+static INLINE void build_obmc_inter_pred_above(
+ MACROBLOCKD *xd, int rel_mi_row, int rel_mi_col, uint8_t op_mi_size,
+ int dir, MB_MODE_INFO *above_mi, void *fun_ctxt, const int num_planes) {
+ (void)above_mi;
+ (void)rel_mi_row;
+ (void)dir;
+ struct obmc_inter_pred_ctxt *ctxt = (struct obmc_inter_pred_ctxt *)fun_ctxt;
+ const BLOCK_SIZE bsize = xd->mi[0]->sb_type;
+ const int overlap =
+ AOMMIN(block_size_high[bsize], block_size_high[BLOCK_64X64]) >> 1;
+
+ for (int plane = 0; plane < num_planes; ++plane) {
+ const struct macroblockd_plane *pd = &xd->plane[plane];
+ const int bw = (op_mi_size * MI_SIZE) >> pd->subsampling_x;
+ const int bh = overlap >> pd->subsampling_y;
+ const int plane_col = (rel_mi_col * MI_SIZE) >> pd->subsampling_x;
+
+ if (av1_skip_u4x4_pred_in_obmc(bsize, pd, 0)) continue;
+
+ const int dst_stride = pd->dst.stride;
+ uint8_t *const dst = &pd->dst.buf[plane_col];
+ const int tmp_stride = ctxt->adjacent_stride[plane];
+ const uint8_t *const tmp = &ctxt->adjacent[plane][plane_col];
+ const uint8_t *const mask = av1_get_obmc_mask(bh);
+#if CONFIG_AV1_HIGHBITDEPTH
+ const int is_hbd = is_cur_buf_hbd(xd);
+ if (is_hbd)
+ aom_highbd_blend_a64_vmask(dst, dst_stride, dst, dst_stride, tmp,
+ tmp_stride, mask, bw, bh, xd->bd);
+ else
+ aom_blend_a64_vmask(dst, dst_stride, dst, dst_stride, tmp, tmp_stride,
+ mask, bw, bh);
+#else
+ aom_blend_a64_vmask(dst, dst_stride, dst, dst_stride, tmp, tmp_stride, mask,
+ bw, bh);
+#endif
+ }
+}
+
+static INLINE void build_obmc_inter_pred_left(
+ MACROBLOCKD *xd, int rel_mi_row, int rel_mi_col, uint8_t op_mi_size,
+ int dir, MB_MODE_INFO *left_mi, void *fun_ctxt, const int num_planes) {
+ (void)left_mi;
+ (void)rel_mi_col;
+ (void)dir;
+ struct obmc_inter_pred_ctxt *ctxt = (struct obmc_inter_pred_ctxt *)fun_ctxt;
+ const BLOCK_SIZE bsize = xd->mi[0]->sb_type;
+ const int overlap =
+ AOMMIN(block_size_wide[bsize], block_size_wide[BLOCK_64X64]) >> 1;
+
+ for (int plane = 0; plane < num_planes; ++plane) {
+ const struct macroblockd_plane *pd = &xd->plane[plane];
+ const int bw = overlap >> pd->subsampling_x;
+ const int bh = (op_mi_size * MI_SIZE) >> pd->subsampling_y;
+ const int plane_row = (rel_mi_row * MI_SIZE) >> pd->subsampling_y;
+
+ if (av1_skip_u4x4_pred_in_obmc(bsize, pd, 1)) continue;
+
+ const int dst_stride = pd->dst.stride;
+ uint8_t *const dst = &pd->dst.buf[plane_row * dst_stride];
+ const int tmp_stride = ctxt->adjacent_stride[plane];
+ const uint8_t *const tmp = &ctxt->adjacent[plane][plane_row * tmp_stride];
+ const uint8_t *const mask = av1_get_obmc_mask(bw);
+
+#if CONFIG_AV1_HIGHBITDEPTH
+ const int is_hbd = is_cur_buf_hbd(xd);
+ if (is_hbd)
+ aom_highbd_blend_a64_hmask(dst, dst_stride, dst, dst_stride, tmp,
+ tmp_stride, mask, bw, bh, xd->bd);
+ else
+ aom_blend_a64_hmask(dst, dst_stride, dst, dst_stride, tmp, tmp_stride,
+ mask, bw, bh);
+#else
+ aom_blend_a64_hmask(dst, dst_stride, dst, dst_stride, tmp, tmp_stride, mask,
+ bw, bh);
+#endif
+ }
+}
+
+// This function combines motion compensated predictions that are generated by
+// top/left neighboring blocks' inter predictors with the regular inter
+// prediction. We assume the original prediction (bmc) is stored in
+// xd->plane[].dst.buf
+void av1_build_obmc_inter_prediction(const AV1_COMMON *cm, MACROBLOCKD *xd,
+ uint8_t *above[MAX_MB_PLANE],
+ int above_stride[MAX_MB_PLANE],
+ uint8_t *left[MAX_MB_PLANE],
+ int left_stride[MAX_MB_PLANE]) {
+ const BLOCK_SIZE bsize = xd->mi[0]->sb_type;
+
+ // handle above row
+ struct obmc_inter_pred_ctxt ctxt_above = { above, above_stride };
+ foreach_overlappable_nb_above(cm, xd,
+ max_neighbor_obmc[mi_size_wide_log2[bsize]],
+ build_obmc_inter_pred_above, &ctxt_above);
+
+ // handle left column
+ struct obmc_inter_pred_ctxt ctxt_left = { left, left_stride };
+ foreach_overlappable_nb_left(cm, xd,
+ max_neighbor_obmc[mi_size_high_log2[bsize]],
+ build_obmc_inter_pred_left, &ctxt_left);
+}
+
+void av1_setup_address_for_obmc(MACROBLOCKD *xd, int mi_row_offset,
+ int mi_col_offset, MB_MODE_INFO *ref_mbmi,
+ struct build_prediction_ctxt *ctxt,
+ const int num_planes) {
+ const BLOCK_SIZE ref_bsize = AOMMAX(BLOCK_8X8, ref_mbmi->sb_type);
+ const int ref_mi_row = xd->mi_row + mi_row_offset;
+ const int ref_mi_col = xd->mi_col + mi_col_offset;
+
+ for (int plane = 0; plane < num_planes; ++plane) {
+ struct macroblockd_plane *const pd = &xd->plane[plane];
+ setup_pred_plane(&pd->dst, ref_bsize, ctxt->tmp_buf[plane],
+ ctxt->tmp_width[plane], ctxt->tmp_height[plane],
+ ctxt->tmp_stride[plane], mi_row_offset, mi_col_offset,
+ NULL, pd->subsampling_x, pd->subsampling_y);
+ }
+
+ const MV_REFERENCE_FRAME frame = ref_mbmi->ref_frame[0];
+
+ const RefCntBuffer *const ref_buf = get_ref_frame_buf(ctxt->cm, frame);
+ const struct scale_factors *const sf =
+ get_ref_scale_factors_const(ctxt->cm, frame);
+
+ xd->block_ref_scale_factors[0] = sf;
+ if ((!av1_is_valid_scale(sf)))
+ aom_internal_error(xd->error_info, AOM_CODEC_UNSUP_BITSTREAM,
+ "Reference frame has invalid dimensions");
+
+ av1_setup_pre_planes(xd, 0, &ref_buf->buf, ref_mi_row, ref_mi_col, sf,
+ num_planes);
+}
+
+void av1_setup_build_prediction_by_above_pred(
+ MACROBLOCKD *xd, int rel_mi_col, uint8_t above_mi_width,
+ MB_MODE_INFO *above_mbmi, struct build_prediction_ctxt *ctxt,
+ const int num_planes) {
+ const BLOCK_SIZE a_bsize = AOMMAX(BLOCK_8X8, above_mbmi->sb_type);
+ const int above_mi_col = xd->mi_col + rel_mi_col;
+
+ av1_modify_neighbor_predictor_for_obmc(above_mbmi);
+
+ for (int j = 0; j < num_planes; ++j) {
+ struct macroblockd_plane *const pd = &xd->plane[j];
+ setup_pred_plane(&pd->dst, a_bsize, ctxt->tmp_buf[j], ctxt->tmp_width[j],
+ ctxt->tmp_height[j], ctxt->tmp_stride[j], 0, rel_mi_col,
+ NULL, pd->subsampling_x, pd->subsampling_y);
+ }
+
+ const int num_refs = 1 + has_second_ref(above_mbmi);
+
+ for (int ref = 0; ref < num_refs; ++ref) {
+ const MV_REFERENCE_FRAME frame = above_mbmi->ref_frame[ref];
+
+ const RefCntBuffer *const ref_buf = get_ref_frame_buf(ctxt->cm, frame);
+ const struct scale_factors *const sf =
+ get_ref_scale_factors_const(ctxt->cm, frame);
+ xd->block_ref_scale_factors[ref] = sf;
+ if ((!av1_is_valid_scale(sf)))
+ aom_internal_error(xd->error_info, AOM_CODEC_UNSUP_BITSTREAM,
+ "Reference frame has invalid dimensions");
+ av1_setup_pre_planes(xd, ref, &ref_buf->buf, xd->mi_row, above_mi_col, sf,
+ num_planes);
+ }
+
+ xd->mb_to_left_edge = 8 * MI_SIZE * (-above_mi_col);
+ xd->mb_to_right_edge =
+ ctxt->mb_to_far_edge +
+ (xd->width - rel_mi_col - above_mi_width) * MI_SIZE * 8;
+}
+
+void av1_setup_build_prediction_by_left_pred(MACROBLOCKD *xd, int rel_mi_row,
+ uint8_t left_mi_height,
+ MB_MODE_INFO *left_mbmi,
+ struct build_prediction_ctxt *ctxt,
+ const int num_planes) {
+ const BLOCK_SIZE l_bsize = AOMMAX(BLOCK_8X8, left_mbmi->sb_type);
+ const int left_mi_row = xd->mi_row + rel_mi_row;
+
+ av1_modify_neighbor_predictor_for_obmc(left_mbmi);
+
+ for (int j = 0; j < num_planes; ++j) {
+ struct macroblockd_plane *const pd = &xd->plane[j];
+ setup_pred_plane(&pd->dst, l_bsize, ctxt->tmp_buf[j], ctxt->tmp_width[j],
+ ctxt->tmp_height[j], ctxt->tmp_stride[j], rel_mi_row, 0,
+ NULL, pd->subsampling_x, pd->subsampling_y);
+ }
+
+ const int num_refs = 1 + has_second_ref(left_mbmi);
+
+ for (int ref = 0; ref < num_refs; ++ref) {
+ const MV_REFERENCE_FRAME frame = left_mbmi->ref_frame[ref];
+
+ const RefCntBuffer *const ref_buf = get_ref_frame_buf(ctxt->cm, frame);
+ const struct scale_factors *const ref_scale_factors =
+ get_ref_scale_factors_const(ctxt->cm, frame);
+
+ xd->block_ref_scale_factors[ref] = ref_scale_factors;
+ if ((!av1_is_valid_scale(ref_scale_factors)))
+ aom_internal_error(xd->error_info, AOM_CODEC_UNSUP_BITSTREAM,
+ "Reference frame has invalid dimensions");
+ av1_setup_pre_planes(xd, ref, &ref_buf->buf, left_mi_row, xd->mi_col,
+ ref_scale_factors, num_planes);
+ }
+
+ xd->mb_to_top_edge = GET_MV_SUBPEL(MI_SIZE * (-left_mi_row));
+ xd->mb_to_bottom_edge =
+ ctxt->mb_to_far_edge +
+ GET_MV_SUBPEL((xd->height - rel_mi_row - left_mi_height) * MI_SIZE);
+}
+
+static AOM_INLINE void combine_interintra(
+ INTERINTRA_MODE mode, int8_t use_wedge_interintra, int8_t wedge_index,
+ int8_t wedge_sign, BLOCK_SIZE bsize, BLOCK_SIZE plane_bsize,
+ uint8_t *comppred, int compstride, const uint8_t *interpred,
+ int interstride, const uint8_t *intrapred, int intrastride) {
+ const int bw = block_size_wide[plane_bsize];
+ const int bh = block_size_high[plane_bsize];
+
+ if (use_wedge_interintra) {
+ if (av1_is_wedge_used(bsize)) {
+ const uint8_t *mask =
+ av1_get_contiguous_soft_mask(wedge_index, wedge_sign, bsize);
+ const int subw = 2 * mi_size_wide[bsize] == bw;
+ const int subh = 2 * mi_size_high[bsize] == bh;
+ aom_blend_a64_mask(comppred, compstride, intrapred, intrastride,
+ interpred, interstride, mask, block_size_wide[bsize],
+ bw, bh, subw, subh);
+ }
+ return;
+ }
+
+ const uint8_t *mask = smooth_interintra_mask_buf[mode][plane_bsize];
+ aom_blend_a64_mask(comppred, compstride, intrapred, intrastride, interpred,
+ interstride, mask, bw, bw, bh, 0, 0);
+}
+
+#if CONFIG_AV1_HIGHBITDEPTH
+static AOM_INLINE void combine_interintra_highbd(
+ INTERINTRA_MODE mode, int8_t use_wedge_interintra, int8_t wedge_index,
+ int8_t wedge_sign, BLOCK_SIZE bsize, BLOCK_SIZE plane_bsize,
+ uint8_t *comppred8, int compstride, const uint8_t *interpred8,
+ int interstride, const uint8_t *intrapred8, int intrastride, int bd) {
+ const int bw = block_size_wide[plane_bsize];
+ const int bh = block_size_high[plane_bsize];
+
+ if (use_wedge_interintra) {
+ if (av1_is_wedge_used(bsize)) {
+ const uint8_t *mask =
+ av1_get_contiguous_soft_mask(wedge_index, wedge_sign, bsize);
+ const int subh = 2 * mi_size_high[bsize] == bh;
+ const int subw = 2 * mi_size_wide[bsize] == bw;
+ aom_highbd_blend_a64_mask(comppred8, compstride, intrapred8, intrastride,
+ interpred8, interstride, mask,
+ block_size_wide[bsize], bw, bh, subw, subh, bd);
+ }
+ return;
+ }
+
+ uint8_t mask[MAX_SB_SQUARE];
+ build_smooth_interintra_mask(mask, bw, plane_bsize, mode);
+ aom_highbd_blend_a64_mask(comppred8, compstride, intrapred8, intrastride,
+ interpred8, interstride, mask, bw, bw, bh, 0, 0,
+ bd);
+}
+#endif
+
+void av1_build_intra_predictors_for_interintra(const AV1_COMMON *cm,
+ MACROBLOCKD *xd,
+ BLOCK_SIZE bsize, int plane,
+ const BUFFER_SET *ctx,
+ uint8_t *dst, int dst_stride) {
+ struct macroblockd_plane *const pd = &xd->plane[plane];
+ const int ssx = xd->plane[plane].subsampling_x;
+ const int ssy = xd->plane[plane].subsampling_y;
+ BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, ssx, ssy);
+ PREDICTION_MODE mode = interintra_to_intra_mode[xd->mi[0]->interintra_mode];
+ assert(xd->mi[0]->angle_delta[PLANE_TYPE_Y] == 0);
+ assert(xd->mi[0]->angle_delta[PLANE_TYPE_UV] == 0);
+ assert(xd->mi[0]->filter_intra_mode_info.use_filter_intra == 0);
+ assert(xd->mi[0]->use_intrabc == 0);
+
+ av1_predict_intra_block(cm, xd, pd->width, pd->height,
+ max_txsize_rect_lookup[plane_bsize], mode, 0, 0,
+ FILTER_INTRA_MODES, ctx->plane[plane],
+ ctx->stride[plane], dst, dst_stride, 0, 0, plane);
+}
+
+void av1_combine_interintra(MACROBLOCKD *xd, BLOCK_SIZE bsize, int plane,
+ const uint8_t *inter_pred, int inter_stride,
+ const uint8_t *intra_pred, int intra_stride) {
+ const int ssx = xd->plane[plane].subsampling_x;
+ const int ssy = xd->plane[plane].subsampling_y;
+ const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, ssx, ssy);
+#if CONFIG_AV1_HIGHBITDEPTH
+ if (is_cur_buf_hbd(xd)) {
+ combine_interintra_highbd(
+ xd->mi[0]->interintra_mode, xd->mi[0]->use_wedge_interintra,
+ xd->mi[0]->interintra_wedge_index, INTERINTRA_WEDGE_SIGN, bsize,
+ plane_bsize, xd->plane[plane].dst.buf, xd->plane[plane].dst.stride,
+ inter_pred, inter_stride, intra_pred, intra_stride, xd->bd);
+ return;
+ }
+#endif
+ combine_interintra(
+ xd->mi[0]->interintra_mode, xd->mi[0]->use_wedge_interintra,
+ xd->mi[0]->interintra_wedge_index, INTERINTRA_WEDGE_SIGN, bsize,
+ plane_bsize, xd->plane[plane].dst.buf, xd->plane[plane].dst.stride,
+ inter_pred, inter_stride, intra_pred, intra_stride);
+}
+
+// build interintra_predictors for one plane
+void av1_build_interintra_predictor(const AV1_COMMON *cm, MACROBLOCKD *xd,
+ uint8_t *pred, int stride,
+ const BUFFER_SET *ctx, int plane,
+ BLOCK_SIZE bsize) {
+ assert(bsize < BLOCK_SIZES_ALL);
+ if (is_cur_buf_hbd(xd)) {
+ DECLARE_ALIGNED(16, uint16_t, intrapredictor[MAX_SB_SQUARE]);
+ av1_build_intra_predictors_for_interintra(
+ cm, xd, bsize, plane, ctx, CONVERT_TO_BYTEPTR(intrapredictor),
+ MAX_SB_SIZE);
+ av1_combine_interintra(xd, bsize, plane, pred, stride,
+ CONVERT_TO_BYTEPTR(intrapredictor), MAX_SB_SIZE);
+ } else {
+ DECLARE_ALIGNED(16, uint8_t, intrapredictor[MAX_SB_SQUARE]);
+ av1_build_intra_predictors_for_interintra(cm, xd, bsize, plane, ctx,
+ intrapredictor, MAX_SB_SIZE);
+ av1_combine_interintra(xd, bsize, plane, pred, stride, intrapredictor,
+ MAX_SB_SIZE);
+ }
+}