diff options
Diffstat (limited to 'libs/libaom/src/av1/common/reconinter.c')
-rw-r--r-- | libs/libaom/src/av1/common/reconinter.c | 1426 |
1 files changed, 1426 insertions, 0 deletions
diff --git a/libs/libaom/src/av1/common/reconinter.c b/libs/libaom/src/av1/common/reconinter.c new file mode 100644 index 000000000..287adddcc --- /dev/null +++ b/libs/libaom/src/av1/common/reconinter.c @@ -0,0 +1,1426 @@ +/* + * Copyright (c) 2016, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ + +#include <assert.h> +#include <stdio.h> +#include <limits.h> + +#include "config/aom_config.h" +#include "config/aom_dsp_rtcd.h" +#include "config/aom_scale_rtcd.h" + +#include "aom/aom_integer.h" +#include "aom_dsp/blend.h" + +#include "av1/common/av1_common_int.h" +#include "av1/common/blockd.h" +#include "av1/common/mvref_common.h" +#include "av1/common/obmc.h" +#include "av1/common/reconinter.h" +#include "av1/common/reconintra.h" + +// This function will determine whether or not to create a warped +// prediction. +int av1_allow_warp(const MB_MODE_INFO *const mbmi, + const WarpTypesAllowed *const warp_types, + const WarpedMotionParams *const gm_params, + int build_for_obmc, const struct scale_factors *const sf, + WarpedMotionParams *final_warp_params) { + // Note: As per the spec, we must test the fixed point scales here, which are + // at a higher precision (1 << 14) than the xs and ys in subpel_params (that + // have 1 << 10 precision). + if (av1_is_scaled(sf)) return 0; + + if (final_warp_params != NULL) *final_warp_params = default_warp_params; + + if (build_for_obmc) return 0; + + if (warp_types->local_warp_allowed && !mbmi->wm_params.invalid) { + if (final_warp_params != NULL) + memcpy(final_warp_params, &mbmi->wm_params, sizeof(*final_warp_params)); + return 1; + } else if (warp_types->global_warp_allowed && !gm_params->invalid) { + if (final_warp_params != NULL) + memcpy(final_warp_params, gm_params, sizeof(*final_warp_params)); + return 1; + } + + return 0; +} + +void av1_init_inter_params(InterPredParams *inter_pred_params, int block_width, + int block_height, int pix_row, int pix_col, + int subsampling_x, int subsampling_y, int bit_depth, + int use_hbd_buf, int is_intrabc, + const struct scale_factors *sf, + const struct buf_2d *ref_buf, + int_interpfilters interp_filters) { + inter_pred_params->block_width = block_width; + inter_pred_params->block_height = block_height; + inter_pred_params->pix_row = pix_row; + inter_pred_params->pix_col = pix_col; + inter_pred_params->subsampling_x = subsampling_x; + inter_pred_params->subsampling_y = subsampling_y; + inter_pred_params->bit_depth = bit_depth; + inter_pred_params->use_hbd_buf = use_hbd_buf; + inter_pred_params->is_intrabc = is_intrabc; + inter_pred_params->scale_factors = sf; + inter_pred_params->ref_frame_buf = *ref_buf; + inter_pred_params->mode = TRANSLATION_PRED; + inter_pred_params->comp_mode = UNIFORM_SINGLE; + + if (is_intrabc) { + inter_pred_params->interp_filter_params[0] = &av1_intrabc_filter_params; + inter_pred_params->interp_filter_params[1] = &av1_intrabc_filter_params; + } else { + inter_pred_params->interp_filter_params[0] = + av1_get_interp_filter_params_with_block_size( + interp_filters.as_filters.x_filter, block_width); + inter_pred_params->interp_filter_params[1] = + av1_get_interp_filter_params_with_block_size( + interp_filters.as_filters.y_filter, block_height); + } +} + +void av1_init_comp_mode(InterPredParams *inter_pred_params) { + inter_pred_params->comp_mode = UNIFORM_COMP; +} + +void av1_init_warp_params(InterPredParams *inter_pred_params, + const WarpTypesAllowed *warp_types, int ref, + const MACROBLOCKD *xd, const MB_MODE_INFO *mi) { + if (inter_pred_params->block_height < 8 || inter_pred_params->block_width < 8) + return; + + if (xd->cur_frame_force_integer_mv) return; + + if (av1_allow_warp(mi, warp_types, &xd->global_motion[mi->ref_frame[ref]], 0, + inter_pred_params->scale_factors, + &inter_pred_params->warp_params)) + inter_pred_params->mode = WARP_PRED; +} + +void av1_init_mask_comp(InterPredParams *inter_pred_params, BLOCK_SIZE bsize, + const INTERINTER_COMPOUND_DATA *mask_comp) { + inter_pred_params->sb_type = bsize; + inter_pred_params->mask_comp = *mask_comp; + + if (inter_pred_params->conv_params.compound_index == 1) { + inter_pred_params->conv_params.do_average = 0; + inter_pred_params->comp_mode = MASK_COMP; + } +} + +void av1_make_inter_predictor(const uint8_t *src, int src_stride, uint8_t *dst, + int dst_stride, + InterPredParams *inter_pred_params, + const SubpelParams *subpel_params) { + assert(IMPLIES(inter_pred_params->conv_params.is_compound, + inter_pred_params->conv_params.dst != NULL)); + + // TODO(jingning): av1_warp_plane() can be further cleaned up. + if (inter_pred_params->mode == WARP_PRED) { + av1_warp_plane( + &inter_pred_params->warp_params, inter_pred_params->use_hbd_buf, + inter_pred_params->bit_depth, inter_pred_params->ref_frame_buf.buf0, + inter_pred_params->ref_frame_buf.width, + inter_pred_params->ref_frame_buf.height, + inter_pred_params->ref_frame_buf.stride, dst, + inter_pred_params->pix_col, inter_pred_params->pix_row, + inter_pred_params->block_width, inter_pred_params->block_height, + dst_stride, inter_pred_params->subsampling_x, + inter_pred_params->subsampling_y, &inter_pred_params->conv_params); + } else if (inter_pred_params->mode == TRANSLATION_PRED) { +#if CONFIG_AV1_HIGHBITDEPTH + if (inter_pred_params->use_hbd_buf) { + highbd_inter_predictor( + src, src_stride, dst, dst_stride, subpel_params, + inter_pred_params->scale_factors, inter_pred_params->block_width, + inter_pred_params->block_height, &inter_pred_params->conv_params, + inter_pred_params->interp_filter_params, + inter_pred_params->bit_depth); + } else { + inter_predictor( + src, src_stride, dst, dst_stride, subpel_params, + inter_pred_params->scale_factors, inter_pred_params->block_width, + inter_pred_params->block_height, &inter_pred_params->conv_params, + inter_pred_params->interp_filter_params); + } +#else + inter_predictor( + src, src_stride, dst, dst_stride, subpel_params, + inter_pred_params->scale_factors, inter_pred_params->block_width, + inter_pred_params->block_height, &inter_pred_params->conv_params, + inter_pred_params->interp_filter_params); +#endif + } +} + +static const uint8_t wedge_master_oblique_odd[MASK_MASTER_SIZE] = { + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 6, 18, + 37, 53, 60, 63, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, + 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, +}; +static const uint8_t wedge_master_oblique_even[MASK_MASTER_SIZE] = { + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 4, 11, 27, + 46, 58, 62, 63, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, + 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, +}; +static const uint8_t wedge_master_vertical[MASK_MASTER_SIZE] = { + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 7, 21, + 43, 57, 62, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, + 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, +}; + +static AOM_INLINE void shift_copy(const uint8_t *src, uint8_t *dst, int shift, + int width) { + if (shift >= 0) { + memcpy(dst + shift, src, width - shift); + memset(dst, src[0], shift); + } else { + shift = -shift; + memcpy(dst, src + shift, width - shift); + memset(dst + width - shift, src[width - 1], shift); + } +} + +/* clang-format off */ +DECLARE_ALIGNED(16, static uint8_t, + wedge_signflip_lookup[BLOCK_SIZES_ALL][MAX_WEDGE_TYPES]) = { + { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used + { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used + { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used + { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, }, + { 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, }, + { 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, }, + { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, }, + { 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, }, + { 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, }, + { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, }, + { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used + { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used + { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used + { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used + { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used + { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used + { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used + { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used + { 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, }, + { 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, }, + { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used + { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used +}; +/* clang-format on */ + +// [negative][direction] +DECLARE_ALIGNED( + 16, static uint8_t, + wedge_mask_obl[2][WEDGE_DIRECTIONS][MASK_MASTER_SIZE * MASK_MASTER_SIZE]); + +// 4 * MAX_WEDGE_SQUARE is an easy to compute and fairly tight upper bound +// on the sum of all mask sizes up to an including MAX_WEDGE_SQUARE. +DECLARE_ALIGNED(16, static uint8_t, + wedge_mask_buf[2 * MAX_WEDGE_TYPES * 4 * MAX_WEDGE_SQUARE]); + +DECLARE_ALIGNED(16, static uint8_t, + smooth_interintra_mask_buf[INTERINTRA_MODES][BLOCK_SIZES_ALL] + [MAX_WEDGE_SQUARE]); + +static wedge_masks_type wedge_masks[BLOCK_SIZES_ALL][2]; + +static const wedge_code_type wedge_codebook_16_hgtw[16] = { + { WEDGE_OBLIQUE27, 4, 4 }, { WEDGE_OBLIQUE63, 4, 4 }, + { WEDGE_OBLIQUE117, 4, 4 }, { WEDGE_OBLIQUE153, 4, 4 }, + { WEDGE_HORIZONTAL, 4, 2 }, { WEDGE_HORIZONTAL, 4, 4 }, + { WEDGE_HORIZONTAL, 4, 6 }, { WEDGE_VERTICAL, 4, 4 }, + { WEDGE_OBLIQUE27, 4, 2 }, { WEDGE_OBLIQUE27, 4, 6 }, + { WEDGE_OBLIQUE153, 4, 2 }, { WEDGE_OBLIQUE153, 4, 6 }, + { WEDGE_OBLIQUE63, 2, 4 }, { WEDGE_OBLIQUE63, 6, 4 }, + { WEDGE_OBLIQUE117, 2, 4 }, { WEDGE_OBLIQUE117, 6, 4 }, +}; + +static const wedge_code_type wedge_codebook_16_hltw[16] = { + { WEDGE_OBLIQUE27, 4, 4 }, { WEDGE_OBLIQUE63, 4, 4 }, + { WEDGE_OBLIQUE117, 4, 4 }, { WEDGE_OBLIQUE153, 4, 4 }, + { WEDGE_VERTICAL, 2, 4 }, { WEDGE_VERTICAL, 4, 4 }, + { WEDGE_VERTICAL, 6, 4 }, { WEDGE_HORIZONTAL, 4, 4 }, + { WEDGE_OBLIQUE27, 4, 2 }, { WEDGE_OBLIQUE27, 4, 6 }, + { WEDGE_OBLIQUE153, 4, 2 }, { WEDGE_OBLIQUE153, 4, 6 }, + { WEDGE_OBLIQUE63, 2, 4 }, { WEDGE_OBLIQUE63, 6, 4 }, + { WEDGE_OBLIQUE117, 2, 4 }, { WEDGE_OBLIQUE117, 6, 4 }, +}; + +static const wedge_code_type wedge_codebook_16_heqw[16] = { + { WEDGE_OBLIQUE27, 4, 4 }, { WEDGE_OBLIQUE63, 4, 4 }, + { WEDGE_OBLIQUE117, 4, 4 }, { WEDGE_OBLIQUE153, 4, 4 }, + { WEDGE_HORIZONTAL, 4, 2 }, { WEDGE_HORIZONTAL, 4, 6 }, + { WEDGE_VERTICAL, 2, 4 }, { WEDGE_VERTICAL, 6, 4 }, + { WEDGE_OBLIQUE27, 4, 2 }, { WEDGE_OBLIQUE27, 4, 6 }, + { WEDGE_OBLIQUE153, 4, 2 }, { WEDGE_OBLIQUE153, 4, 6 }, + { WEDGE_OBLIQUE63, 2, 4 }, { WEDGE_OBLIQUE63, 6, 4 }, + { WEDGE_OBLIQUE117, 2, 4 }, { WEDGE_OBLIQUE117, 6, 4 }, +}; + +const wedge_params_type av1_wedge_params_lookup[BLOCK_SIZES_ALL] = { + { 0, NULL, NULL, NULL }, + { 0, NULL, NULL, NULL }, + { 0, NULL, NULL, NULL }, + { MAX_WEDGE_TYPES, wedge_codebook_16_heqw, wedge_signflip_lookup[BLOCK_8X8], + wedge_masks[BLOCK_8X8] }, + { MAX_WEDGE_TYPES, wedge_codebook_16_hgtw, wedge_signflip_lookup[BLOCK_8X16], + wedge_masks[BLOCK_8X16] }, + { MAX_WEDGE_TYPES, wedge_codebook_16_hltw, wedge_signflip_lookup[BLOCK_16X8], + wedge_masks[BLOCK_16X8] }, + { MAX_WEDGE_TYPES, wedge_codebook_16_heqw, wedge_signflip_lookup[BLOCK_16X16], + wedge_masks[BLOCK_16X16] }, + { MAX_WEDGE_TYPES, wedge_codebook_16_hgtw, wedge_signflip_lookup[BLOCK_16X32], + wedge_masks[BLOCK_16X32] }, + { MAX_WEDGE_TYPES, wedge_codebook_16_hltw, wedge_signflip_lookup[BLOCK_32X16], + wedge_masks[BLOCK_32X16] }, + { MAX_WEDGE_TYPES, wedge_codebook_16_heqw, wedge_signflip_lookup[BLOCK_32X32], + wedge_masks[BLOCK_32X32] }, + { 0, NULL, NULL, NULL }, + { 0, NULL, NULL, NULL }, + { 0, NULL, NULL, NULL }, + { 0, NULL, NULL, NULL }, + { 0, NULL, NULL, NULL }, + { 0, NULL, NULL, NULL }, + { 0, NULL, NULL, NULL }, + { 0, NULL, NULL, NULL }, + { MAX_WEDGE_TYPES, wedge_codebook_16_hgtw, wedge_signflip_lookup[BLOCK_8X32], + wedge_masks[BLOCK_8X32] }, + { MAX_WEDGE_TYPES, wedge_codebook_16_hltw, wedge_signflip_lookup[BLOCK_32X8], + wedge_masks[BLOCK_32X8] }, + { 0, NULL, NULL, NULL }, + { 0, NULL, NULL, NULL }, +}; + +static const uint8_t *get_wedge_mask_inplace(int wedge_index, int neg, + BLOCK_SIZE sb_type) { + const uint8_t *master; + const int bh = block_size_high[sb_type]; + const int bw = block_size_wide[sb_type]; + const wedge_code_type *a = + av1_wedge_params_lookup[sb_type].codebook + wedge_index; + int woff, hoff; + const uint8_t wsignflip = + av1_wedge_params_lookup[sb_type].signflip[wedge_index]; + + assert(wedge_index >= 0 && wedge_index < get_wedge_types_lookup(sb_type)); + woff = (a->x_offset * bw) >> 3; + hoff = (a->y_offset * bh) >> 3; + master = wedge_mask_obl[neg ^ wsignflip][a->direction] + + MASK_MASTER_STRIDE * (MASK_MASTER_SIZE / 2 - hoff) + + MASK_MASTER_SIZE / 2 - woff; + return master; +} + +const uint8_t *av1_get_compound_type_mask( + const INTERINTER_COMPOUND_DATA *const comp_data, BLOCK_SIZE sb_type) { + assert(is_masked_compound_type(comp_data->type)); + (void)sb_type; + switch (comp_data->type) { + case COMPOUND_WEDGE: + return av1_get_contiguous_soft_mask(comp_data->wedge_index, + comp_data->wedge_sign, sb_type); + case COMPOUND_DIFFWTD: return comp_data->seg_mask; + default: assert(0); return NULL; + } +} + +static AOM_INLINE void diffwtd_mask_d16( + uint8_t *mask, int which_inverse, int mask_base, const CONV_BUF_TYPE *src0, + int src0_stride, const CONV_BUF_TYPE *src1, int src1_stride, int h, int w, + ConvolveParams *conv_params, int bd) { + int round = + 2 * FILTER_BITS - conv_params->round_0 - conv_params->round_1 + (bd - 8); + int i, j, m, diff; + for (i = 0; i < h; ++i) { + for (j = 0; j < w; ++j) { + diff = abs(src0[i * src0_stride + j] - src1[i * src1_stride + j]); + diff = ROUND_POWER_OF_TWO(diff, round); + m = clamp(mask_base + (diff / DIFF_FACTOR), 0, AOM_BLEND_A64_MAX_ALPHA); + mask[i * w + j] = which_inverse ? AOM_BLEND_A64_MAX_ALPHA - m : m; + } + } +} + +void av1_build_compound_diffwtd_mask_d16_c( + uint8_t *mask, DIFFWTD_MASK_TYPE mask_type, const CONV_BUF_TYPE *src0, + int src0_stride, const CONV_BUF_TYPE *src1, int src1_stride, int h, int w, + ConvolveParams *conv_params, int bd) { + switch (mask_type) { + case DIFFWTD_38: + diffwtd_mask_d16(mask, 0, 38, src0, src0_stride, src1, src1_stride, h, w, + conv_params, bd); + break; + case DIFFWTD_38_INV: + diffwtd_mask_d16(mask, 1, 38, src0, src0_stride, src1, src1_stride, h, w, + conv_params, bd); + break; + default: assert(0); + } +} + +static AOM_INLINE void diffwtd_mask(uint8_t *mask, int which_inverse, + int mask_base, const uint8_t *src0, + int src0_stride, const uint8_t *src1, + int src1_stride, int h, int w) { + int i, j, m, diff; + for (i = 0; i < h; ++i) { + for (j = 0; j < w; ++j) { + diff = + abs((int)src0[i * src0_stride + j] - (int)src1[i * src1_stride + j]); + m = clamp(mask_base + (diff / DIFF_FACTOR), 0, AOM_BLEND_A64_MAX_ALPHA); + mask[i * w + j] = which_inverse ? AOM_BLEND_A64_MAX_ALPHA - m : m; + } + } +} + +void av1_build_compound_diffwtd_mask_c(uint8_t *mask, + DIFFWTD_MASK_TYPE mask_type, + const uint8_t *src0, int src0_stride, + const uint8_t *src1, int src1_stride, + int h, int w) { + switch (mask_type) { + case DIFFWTD_38: + diffwtd_mask(mask, 0, 38, src0, src0_stride, src1, src1_stride, h, w); + break; + case DIFFWTD_38_INV: + diffwtd_mask(mask, 1, 38, src0, src0_stride, src1, src1_stride, h, w); + break; + default: assert(0); + } +} + +static AOM_FORCE_INLINE void diffwtd_mask_highbd( + uint8_t *mask, int which_inverse, int mask_base, const uint16_t *src0, + int src0_stride, const uint16_t *src1, int src1_stride, int h, int w, + const unsigned int bd) { + assert(bd >= 8); + if (bd == 8) { + if (which_inverse) { + for (int i = 0; i < h; ++i) { + for (int j = 0; j < w; ++j) { + int diff = abs((int)src0[j] - (int)src1[j]) / DIFF_FACTOR; + unsigned int m = negative_to_zero(mask_base + diff); + m = AOMMIN(m, AOM_BLEND_A64_MAX_ALPHA); + mask[j] = AOM_BLEND_A64_MAX_ALPHA - m; + } + src0 += src0_stride; + src1 += src1_stride; + mask += w; + } + } else { + for (int i = 0; i < h; ++i) { + for (int j = 0; j < w; ++j) { + int diff = abs((int)src0[j] - (int)src1[j]) / DIFF_FACTOR; + unsigned int m = negative_to_zero(mask_base + diff); + m = AOMMIN(m, AOM_BLEND_A64_MAX_ALPHA); + mask[j] = m; + } + src0 += src0_stride; + src1 += src1_stride; + mask += w; + } + } + } else { + const unsigned int bd_shift = bd - 8; + if (which_inverse) { + for (int i = 0; i < h; ++i) { + for (int j = 0; j < w; ++j) { + int diff = + (abs((int)src0[j] - (int)src1[j]) >> bd_shift) / DIFF_FACTOR; + unsigned int m = negative_to_zero(mask_base + diff); + m = AOMMIN(m, AOM_BLEND_A64_MAX_ALPHA); + mask[j] = AOM_BLEND_A64_MAX_ALPHA - m; + } + src0 += src0_stride; + src1 += src1_stride; + mask += w; + } + } else { + for (int i = 0; i < h; ++i) { + for (int j = 0; j < w; ++j) { + int diff = + (abs((int)src0[j] - (int)src1[j]) >> bd_shift) / DIFF_FACTOR; + unsigned int m = negative_to_zero(mask_base + diff); + m = AOMMIN(m, AOM_BLEND_A64_MAX_ALPHA); + mask[j] = m; + } + src0 += src0_stride; + src1 += src1_stride; + mask += w; + } + } + } +} + +void av1_build_compound_diffwtd_mask_highbd_c( + uint8_t *mask, DIFFWTD_MASK_TYPE mask_type, const uint8_t *src0, + int src0_stride, const uint8_t *src1, int src1_stride, int h, int w, + int bd) { + switch (mask_type) { + case DIFFWTD_38: + diffwtd_mask_highbd(mask, 0, 38, CONVERT_TO_SHORTPTR(src0), src0_stride, + CONVERT_TO_SHORTPTR(src1), src1_stride, h, w, bd); + break; + case DIFFWTD_38_INV: + diffwtd_mask_highbd(mask, 1, 38, CONVERT_TO_SHORTPTR(src0), src0_stride, + CONVERT_TO_SHORTPTR(src1), src1_stride, h, w, bd); + break; + default: assert(0); + } +} + +static AOM_INLINE void init_wedge_master_masks() { + int i, j; + const int w = MASK_MASTER_SIZE; + const int h = MASK_MASTER_SIZE; + const int stride = MASK_MASTER_STRIDE; + // Note: index [0] stores the masters, and [1] its complement. + // Generate prototype by shifting the masters + int shift = h / 4; + for (i = 0; i < h; i += 2) { + shift_copy(wedge_master_oblique_even, + &wedge_mask_obl[0][WEDGE_OBLIQUE63][i * stride], shift, + MASK_MASTER_SIZE); + shift--; + shift_copy(wedge_master_oblique_odd, + &wedge_mask_obl[0][WEDGE_OBLIQUE63][(i + 1) * stride], shift, + MASK_MASTER_SIZE); + memcpy(&wedge_mask_obl[0][WEDGE_VERTICAL][i * stride], + wedge_master_vertical, + MASK_MASTER_SIZE * sizeof(wedge_master_vertical[0])); + memcpy(&wedge_mask_obl[0][WEDGE_VERTICAL][(i + 1) * stride], + wedge_master_vertical, + MASK_MASTER_SIZE * sizeof(wedge_master_vertical[0])); + } + + for (i = 0; i < h; ++i) { + for (j = 0; j < w; ++j) { + const int msk = wedge_mask_obl[0][WEDGE_OBLIQUE63][i * stride + j]; + wedge_mask_obl[0][WEDGE_OBLIQUE27][j * stride + i] = msk; + wedge_mask_obl[0][WEDGE_OBLIQUE117][i * stride + w - 1 - j] = + wedge_mask_obl[0][WEDGE_OBLIQUE153][(w - 1 - j) * stride + i] = + (1 << WEDGE_WEIGHT_BITS) - msk; + wedge_mask_obl[1][WEDGE_OBLIQUE63][i * stride + j] = + wedge_mask_obl[1][WEDGE_OBLIQUE27][j * stride + i] = + (1 << WEDGE_WEIGHT_BITS) - msk; + wedge_mask_obl[1][WEDGE_OBLIQUE117][i * stride + w - 1 - j] = + wedge_mask_obl[1][WEDGE_OBLIQUE153][(w - 1 - j) * stride + i] = msk; + const int mskx = wedge_mask_obl[0][WEDGE_VERTICAL][i * stride + j]; + wedge_mask_obl[0][WEDGE_HORIZONTAL][j * stride + i] = mskx; + wedge_mask_obl[1][WEDGE_VERTICAL][i * stride + j] = + wedge_mask_obl[1][WEDGE_HORIZONTAL][j * stride + i] = + (1 << WEDGE_WEIGHT_BITS) - mskx; + } + } +} + +static AOM_INLINE void init_wedge_masks() { + uint8_t *dst = wedge_mask_buf; + BLOCK_SIZE bsize; + memset(wedge_masks, 0, sizeof(wedge_masks)); + for (bsize = BLOCK_4X4; bsize < BLOCK_SIZES_ALL; ++bsize) { + const wedge_params_type *wedge_params = &av1_wedge_params_lookup[bsize]; + const int wtypes = wedge_params->wedge_types; + if (wtypes == 0) continue; + const uint8_t *mask; + const int bw = block_size_wide[bsize]; + const int bh = block_size_high[bsize]; + int w; + for (w = 0; w < wtypes; ++w) { + mask = get_wedge_mask_inplace(w, 0, bsize); + aom_convolve_copy(mask, MASK_MASTER_STRIDE, dst, bw, NULL, 0, NULL, 0, bw, + bh); + wedge_params->masks[0][w] = dst; + dst += bw * bh; + + mask = get_wedge_mask_inplace(w, 1, bsize); + aom_convolve_copy(mask, MASK_MASTER_STRIDE, dst, bw, NULL, 0, NULL, 0, bw, + bh); + wedge_params->masks[1][w] = dst; + dst += bw * bh; + } + assert(sizeof(wedge_mask_buf) >= (size_t)(dst - wedge_mask_buf)); + } +} + +/* clang-format off */ +static const uint8_t ii_weights1d[MAX_SB_SIZE] = { + 60, 58, 56, 54, 52, 50, 48, 47, 45, 44, 42, 41, 39, 38, 37, 35, 34, 33, 32, + 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 22, 21, 20, 19, 19, 18, 18, 17, 16, + 16, 15, 15, 14, 14, 13, 13, 12, 12, 12, 11, 11, 10, 10, 10, 9, 9, 9, 8, + 8, 8, 8, 7, 7, 7, 7, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 4, 4, + 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, + 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 +}; +static uint8_t ii_size_scales[BLOCK_SIZES_ALL] = { + 32, 16, 16, 16, 8, 8, 8, 4, + 4, 4, 2, 2, 2, 1, 1, 1, + 8, 8, 4, 4, 2, 2 +}; +/* clang-format on */ + +static AOM_INLINE void build_smooth_interintra_mask(uint8_t *mask, int stride, + BLOCK_SIZE plane_bsize, + INTERINTRA_MODE mode) { + int i, j; + const int bw = block_size_wide[plane_bsize]; + const int bh = block_size_high[plane_bsize]; + const int size_scale = ii_size_scales[plane_bsize]; + + switch (mode) { + case II_V_PRED: + for (i = 0; i < bh; ++i) { + memset(mask, ii_weights1d[i * size_scale], bw * sizeof(mask[0])); + mask += stride; + } + break; + + case II_H_PRED: + for (i = 0; i < bh; ++i) { + for (j = 0; j < bw; ++j) mask[j] = ii_weights1d[j * size_scale]; + mask += stride; + } + break; + + case II_SMOOTH_PRED: + for (i = 0; i < bh; ++i) { + for (j = 0; j < bw; ++j) + mask[j] = ii_weights1d[(i < j ? i : j) * size_scale]; + mask += stride; + } + break; + + case II_DC_PRED: + default: + for (i = 0; i < bh; ++i) { + memset(mask, 32, bw * sizeof(mask[0])); + mask += stride; + } + break; + } +} + +static AOM_INLINE void init_smooth_interintra_masks() { + for (int m = 0; m < INTERINTRA_MODES; ++m) { + for (int bs = 0; bs < BLOCK_SIZES_ALL; ++bs) { + const int bw = block_size_wide[bs]; + const int bh = block_size_high[bs]; + if (bw > MAX_WEDGE_SIZE || bh > MAX_WEDGE_SIZE) continue; + build_smooth_interintra_mask(smooth_interintra_mask_buf[m][bs], bw, bs, + m); + } + } +} + +// Equation of line: f(x, y) = a[0]*(x - a[2]*w/8) + a[1]*(y - a[3]*h/8) = 0 +void av1_init_wedge_masks() { + init_wedge_master_masks(); + init_wedge_masks(); + init_smooth_interintra_masks(); +} + +static AOM_INLINE void build_masked_compound_no_round( + uint8_t *dst, int dst_stride, const CONV_BUF_TYPE *src0, int src0_stride, + const CONV_BUF_TYPE *src1, int src1_stride, + const INTERINTER_COMPOUND_DATA *const comp_data, BLOCK_SIZE sb_type, int h, + int w, InterPredParams *inter_pred_params) { + const int ssy = inter_pred_params->subsampling_y; + const int ssx = inter_pred_params->subsampling_x; + const uint8_t *mask = av1_get_compound_type_mask(comp_data, sb_type); + const int mask_stride = block_size_wide[sb_type]; +#if CONFIG_AV1_HIGHBITDEPTH + if (inter_pred_params->use_hbd_buf) { + aom_highbd_blend_a64_d16_mask(dst, dst_stride, src0, src0_stride, src1, + src1_stride, mask, mask_stride, w, h, ssx, + ssy, &inter_pred_params->conv_params, + inter_pred_params->bit_depth); + } else { + aom_lowbd_blend_a64_d16_mask(dst, dst_stride, src0, src0_stride, src1, + src1_stride, mask, mask_stride, w, h, ssx, ssy, + &inter_pred_params->conv_params); + } +#else + aom_lowbd_blend_a64_d16_mask(dst, dst_stride, src0, src0_stride, src1, + src1_stride, mask, mask_stride, w, h, ssx, ssy, + &inter_pred_params->conv_params); +#endif +} + +void av1_make_masked_inter_predictor(const uint8_t *pre, int pre_stride, + uint8_t *dst, int dst_stride, + InterPredParams *inter_pred_params, + const SubpelParams *subpel_params) { + const INTERINTER_COMPOUND_DATA *comp_data = &inter_pred_params->mask_comp; + BLOCK_SIZE sb_type = inter_pred_params->sb_type; + + // We're going to call av1_make_inter_predictor to generate a prediction into + // a temporary buffer, then will blend that temporary buffer with that from + // the other reference. + DECLARE_ALIGNED(32, uint8_t, tmp_buf[2 * MAX_SB_SQUARE]); + uint8_t *tmp_dst = + inter_pred_params->use_hbd_buf ? CONVERT_TO_BYTEPTR(tmp_buf) : tmp_buf; + + const int tmp_buf_stride = MAX_SB_SIZE; + CONV_BUF_TYPE *org_dst = inter_pred_params->conv_params.dst; + int org_dst_stride = inter_pred_params->conv_params.dst_stride; + CONV_BUF_TYPE *tmp_buf16 = (CONV_BUF_TYPE *)tmp_buf; + inter_pred_params->conv_params.dst = tmp_buf16; + inter_pred_params->conv_params.dst_stride = tmp_buf_stride; + assert(inter_pred_params->conv_params.do_average == 0); + + // This will generate a prediction in tmp_buf for the second reference + av1_make_inter_predictor(pre, pre_stride, tmp_dst, MAX_SB_SIZE, + inter_pred_params, subpel_params); + + if (!inter_pred_params->conv_params.plane && + comp_data->type == COMPOUND_DIFFWTD) { + av1_build_compound_diffwtd_mask_d16( + comp_data->seg_mask, comp_data->mask_type, org_dst, org_dst_stride, + tmp_buf16, tmp_buf_stride, inter_pred_params->block_height, + inter_pred_params->block_width, &inter_pred_params->conv_params, + inter_pred_params->bit_depth); + } + build_masked_compound_no_round( + dst, dst_stride, org_dst, org_dst_stride, tmp_buf16, tmp_buf_stride, + comp_data, sb_type, inter_pred_params->block_height, + inter_pred_params->block_width, inter_pred_params); +} + +void av1_build_one_inter_predictor( + uint8_t *dst, int dst_stride, const MV *const src_mv, + InterPredParams *inter_pred_params, MACROBLOCKD *xd, int mi_x, int mi_y, + int ref, CalcSubpelParamsFunc calc_subpel_params_func) { + SubpelParams subpel_params; + uint8_t *src; + int src_stride; + calc_subpel_params_func(src_mv, inter_pred_params, xd, mi_x, mi_y, ref, &src, + &subpel_params, &src_stride); + + if (inter_pred_params->comp_mode == UNIFORM_SINGLE || + inter_pred_params->comp_mode == UNIFORM_COMP) { + av1_make_inter_predictor(src, src_stride, dst, dst_stride, + inter_pred_params, &subpel_params); + } else { + av1_make_masked_inter_predictor(src, src_stride, dst, dst_stride, + inter_pred_params, &subpel_params); + } +} + +// True if the following hold: +// 1. Not intrabc and not build_for_obmc +// 2. A U or V plane +// 3. If the block size differs from the base block size +// 4. If sub-sampled, none of the previous blocks around the sub-sample +// are intrabc or inter-blocks +static bool is_sub8x8_inter(const MACROBLOCKD *xd, int plane, BLOCK_SIZE bsize, + int is_intrabc, int build_for_obmc) { + if (is_intrabc || build_for_obmc) { + return false; + } + + const struct macroblockd_plane *const pd = &xd->plane[plane]; + const int ss_x = pd->subsampling_x; + const int ss_y = pd->subsampling_y; + if ((block_size_wide[bsize] >= 8 || !ss_x) && + (block_size_high[bsize] >= 8 || !ss_y)) { + return false; + } + + // For sub8x8 chroma blocks, we may be covering more than one luma block's + // worth of pixels. Thus (mi_x, mi_y) may not be the correct coordinates for + // the top-left corner of the prediction source - the correct top-left corner + // is at (pre_x, pre_y). + const int row_start = (block_size_high[bsize] == 4) && ss_y ? -1 : 0; + const int col_start = (block_size_wide[bsize] == 4) && ss_x ? -1 : 0; + + for (int row = row_start; row <= 0; ++row) { + for (int col = col_start; col <= 0; ++col) { + const MB_MODE_INFO *this_mbmi = xd->mi[row * xd->mi_stride + col]; + if (!is_inter_block(this_mbmi)) return false; + if (is_intrabc_block(this_mbmi)) return false; + } + } + return true; +} + +static void build_inter_predictors_sub8x8( + const AV1_COMMON *cm, MACROBLOCKD *xd, int plane, const MB_MODE_INFO *mi, + int bw, int bh, int mi_x, int mi_y, + CalcSubpelParamsFunc calc_subpel_params_func) { + const BLOCK_SIZE bsize = mi->sb_type; + struct macroblockd_plane *const pd = &xd->plane[plane]; + const bool ss_x = pd->subsampling_x; + const bool ss_y = pd->subsampling_y; + const int b4_w = block_size_wide[bsize] >> ss_x; + const int b4_h = block_size_high[bsize] >> ss_y; + const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, ss_x, ss_y); + const int b8_w = block_size_wide[plane_bsize]; + const int b8_h = block_size_high[plane_bsize]; + const int is_compound = has_second_ref(mi); + assert(!is_compound); + assert(!is_intrabc_block(mi)); + + // For sub8x8 chroma blocks, we may be covering more than one luma block's + // worth of pixels. Thus (mi_x, mi_y) may not be the correct coordinates for + // the top-left corner of the prediction source - the correct top-left corner + // is at (pre_x, pre_y). + const int row_start = (block_size_high[bsize] == 4) && ss_y ? -1 : 0; + const int col_start = (block_size_wide[bsize] == 4) && ss_x ? -1 : 0; + const int pre_x = (mi_x + MI_SIZE * col_start) >> ss_x; + const int pre_y = (mi_y + MI_SIZE * row_start) >> ss_y; + + int row = row_start; + for (int y = 0; y < b8_h; y += b4_h) { + int col = col_start; + for (int x = 0; x < b8_w; x += b4_w) { + MB_MODE_INFO *this_mbmi = xd->mi[row * xd->mi_stride + col]; + int tmp_dst_stride = 8; + assert(bw < 8 || bh < 8); + (void)bw; + (void)bh; + struct buf_2d *const dst_buf = &pd->dst; + uint8_t *dst = dst_buf->buf + dst_buf->stride * y + x; + int ref = 0; + const RefCntBuffer *ref_buf = + get_ref_frame_buf(cm, this_mbmi->ref_frame[ref]); + const struct scale_factors *ref_scale_factors = + get_ref_scale_factors_const(cm, this_mbmi->ref_frame[ref]); + const struct scale_factors *const sf = ref_scale_factors; + const struct buf_2d pre_buf = { + NULL, + (plane == 1) ? ref_buf->buf.u_buffer : ref_buf->buf.v_buffer, + ref_buf->buf.uv_crop_width, + ref_buf->buf.uv_crop_height, + ref_buf->buf.uv_stride, + }; + + const MV mv = this_mbmi->mv[ref].as_mv; + + InterPredParams inter_pred_params; + av1_init_inter_params(&inter_pred_params, b4_w, b4_h, pre_y + y, + pre_x + x, pd->subsampling_x, pd->subsampling_y, + xd->bd, is_cur_buf_hbd(xd), mi->use_intrabc, sf, + &pre_buf, this_mbmi->interp_filters); + inter_pred_params.conv_params = get_conv_params_no_round( + ref, plane, xd->tmp_conv_dst, tmp_dst_stride, is_compound, xd->bd); + inter_pred_params.conv_params.use_dist_wtd_comp_avg = 0; + + av1_build_one_inter_predictor(dst, dst_buf->stride, &mv, + &inter_pred_params, xd, mi_x + x, mi_y + y, + ref, calc_subpel_params_func); + + ++col; + } + ++row; + } +} + +static void build_inter_predictors_8x8_and_bigger( + const AV1_COMMON *cm, MACROBLOCKD *xd, int plane, const MB_MODE_INFO *mi, + int build_for_obmc, int bw, int bh, int mi_x, int mi_y, + CalcSubpelParamsFunc calc_subpel_params_func) { + const int is_compound = has_second_ref(mi); + const int is_intrabc = is_intrabc_block(mi); + assert(IMPLIES(is_intrabc, !is_compound)); + struct macroblockd_plane *const pd = &xd->plane[plane]; + struct buf_2d *const dst_buf = &pd->dst; + uint8_t *const dst = dst_buf->buf; + + int is_global[2] = { 0, 0 }; + for (int ref = 0; ref < 1 + is_compound; ++ref) { + const WarpedMotionParams *const wm = &xd->global_motion[mi->ref_frame[ref]]; + is_global[ref] = is_global_mv_block(mi, wm->wmtype); + } + + const BLOCK_SIZE bsize = mi->sb_type; + const int ss_x = pd->subsampling_x; + const int ss_y = pd->subsampling_y; + const int row_start = + (block_size_high[bsize] == 4) && ss_y && !build_for_obmc ? -1 : 0; + const int col_start = + (block_size_wide[bsize] == 4) && ss_x && !build_for_obmc ? -1 : 0; + const int pre_x = (mi_x + MI_SIZE * col_start) >> ss_x; + const int pre_y = (mi_y + MI_SIZE * row_start) >> ss_y; + + for (int ref = 0; ref < 1 + is_compound; ++ref) { + const struct scale_factors *const sf = + is_intrabc ? &cm->sf_identity : xd->block_ref_scale_factors[ref]; + struct buf_2d *const pre_buf = is_intrabc ? dst_buf : &pd->pre[ref]; + const MV mv = mi->mv[ref].as_mv; + const WarpTypesAllowed warp_types = { is_global[ref], + mi->motion_mode == WARPED_CAUSAL }; + + InterPredParams inter_pred_params; + av1_init_inter_params(&inter_pred_params, bw, bh, pre_y, pre_x, + pd->subsampling_x, pd->subsampling_y, xd->bd, + is_cur_buf_hbd(xd), mi->use_intrabc, sf, pre_buf, + mi->interp_filters); + if (is_compound) av1_init_comp_mode(&inter_pred_params); + inter_pred_params.conv_params = get_conv_params_no_round( + ref, plane, xd->tmp_conv_dst, MAX_SB_SIZE, is_compound, xd->bd); + + av1_dist_wtd_comp_weight_assign( + cm, mi, 0, &inter_pred_params.conv_params.fwd_offset, + &inter_pred_params.conv_params.bck_offset, + &inter_pred_params.conv_params.use_dist_wtd_comp_avg, is_compound); + + if (!build_for_obmc) + av1_init_warp_params(&inter_pred_params, &warp_types, ref, xd, mi); + + if (is_masked_compound_type(mi->interinter_comp.type)) { + av1_init_mask_comp(&inter_pred_params, mi->sb_type, &mi->interinter_comp); + // Assign physical buffer. + inter_pred_params.mask_comp.seg_mask = xd->seg_mask; + } + + av1_build_one_inter_predictor(dst, dst_buf->stride, &mv, &inter_pred_params, + xd, mi_x, mi_y, ref, calc_subpel_params_func); + } +} + +void av1_build_inter_predictors(const AV1_COMMON *cm, MACROBLOCKD *xd, + int plane, const MB_MODE_INFO *mi, + int build_for_obmc, int bw, int bh, int mi_x, + int mi_y, + CalcSubpelParamsFunc calc_subpel_params_func) { + if (is_sub8x8_inter(xd, plane, mi->sb_type, is_intrabc_block(mi), + build_for_obmc)) { + build_inter_predictors_sub8x8(cm, xd, plane, mi, bw, bh, mi_x, mi_y, + calc_subpel_params_func); + } else { + build_inter_predictors_8x8_and_bigger(cm, xd, plane, mi, build_for_obmc, bw, + bh, mi_x, mi_y, + calc_subpel_params_func); + } +} + +void av1_dist_wtd_comp_weight_assign(const AV1_COMMON *cm, + const MB_MODE_INFO *mbmi, int order_idx, + int *fwd_offset, int *bck_offset, + int *use_dist_wtd_comp_avg, + int is_compound) { + assert(fwd_offset != NULL && bck_offset != NULL); + if (!is_compound || mbmi->compound_idx) { + *use_dist_wtd_comp_avg = 0; + return; + } + + *use_dist_wtd_comp_avg = 1; + const RefCntBuffer *const bck_buf = get_ref_frame_buf(cm, mbmi->ref_frame[0]); + const RefCntBuffer *const fwd_buf = get_ref_frame_buf(cm, mbmi->ref_frame[1]); + const int cur_frame_index = cm->cur_frame->order_hint; + int bck_frame_index = 0, fwd_frame_index = 0; + + if (bck_buf != NULL) bck_frame_index = bck_buf->order_hint; + if (fwd_buf != NULL) fwd_frame_index = fwd_buf->order_hint; + + int d0 = clamp(abs(get_relative_dist(&cm->seq_params.order_hint_info, + fwd_frame_index, cur_frame_index)), + 0, MAX_FRAME_DISTANCE); + int d1 = clamp(abs(get_relative_dist(&cm->seq_params.order_hint_info, + cur_frame_index, bck_frame_index)), + 0, MAX_FRAME_DISTANCE); + + const int order = d0 <= d1; + + if (d0 == 0 || d1 == 0) { + *fwd_offset = quant_dist_lookup_table[order_idx][3][order]; + *bck_offset = quant_dist_lookup_table[order_idx][3][1 - order]; + return; + } + + int i; + for (i = 0; i < 3; ++i) { + int c0 = quant_dist_weight[i][order]; + int c1 = quant_dist_weight[i][!order]; + int d0_c0 = d0 * c0; + int d1_c1 = d1 * c1; + if ((d0 > d1 && d0_c0 < d1_c1) || (d0 <= d1 && d0_c0 > d1_c1)) break; + } + + *fwd_offset = quant_dist_lookup_table[order_idx][i][order]; + *bck_offset = quant_dist_lookup_table[order_idx][i][1 - order]; +} + +void av1_setup_dst_planes(struct macroblockd_plane *planes, BLOCK_SIZE bsize, + const YV12_BUFFER_CONFIG *src, int mi_row, int mi_col, + const int plane_start, const int plane_end) { + // We use AOMMIN(num_planes, MAX_MB_PLANE) instead of num_planes to quiet + // the static analysis warnings. + for (int i = plane_start; i < AOMMIN(plane_end, MAX_MB_PLANE); ++i) { + struct macroblockd_plane *const pd = &planes[i]; + const int is_uv = i > 0; + setup_pred_plane(&pd->dst, bsize, src->buffers[i], src->crop_widths[is_uv], + src->crop_heights[is_uv], src->strides[is_uv], mi_row, + mi_col, NULL, pd->subsampling_x, pd->subsampling_y); + } +} + +void av1_setup_pre_planes(MACROBLOCKD *xd, int idx, + const YV12_BUFFER_CONFIG *src, int mi_row, int mi_col, + const struct scale_factors *sf, + const int num_planes) { + if (src != NULL) { + // We use AOMMIN(num_planes, MAX_MB_PLANE) instead of num_planes to quiet + // the static analysis warnings. + for (int i = 0; i < AOMMIN(num_planes, MAX_MB_PLANE); ++i) { + struct macroblockd_plane *const pd = &xd->plane[i]; + const int is_uv = i > 0; + setup_pred_plane(&pd->pre[idx], xd->mi[0]->sb_type, src->buffers[i], + src->crop_widths[is_uv], src->crop_heights[is_uv], + src->strides[is_uv], mi_row, mi_col, sf, + pd->subsampling_x, pd->subsampling_y); + } + } +} + +// obmc_mask_N[overlap_position] +static const uint8_t obmc_mask_1[1] = { 64 }; +DECLARE_ALIGNED(2, static const uint8_t, obmc_mask_2[2]) = { 45, 64 }; + +DECLARE_ALIGNED(4, static const uint8_t, obmc_mask_4[4]) = { 39, 50, 59, 64 }; + +static const uint8_t obmc_mask_8[8] = { 36, 42, 48, 53, 57, 61, 64, 64 }; + +static const uint8_t obmc_mask_16[16] = { 34, 37, 40, 43, 46, 49, 52, 54, + 56, 58, 60, 61, 64, 64, 64, 64 }; + +static const uint8_t obmc_mask_32[32] = { 33, 35, 36, 38, 40, 41, 43, 44, + 45, 47, 48, 50, 51, 52, 53, 55, + 56, 57, 58, 59, 60, 60, 61, 62, + 64, 64, 64, 64, 64, 64, 64, 64 }; + +static const uint8_t obmc_mask_64[64] = { + 33, 34, 35, 35, 36, 37, 38, 39, 40, 40, 41, 42, 43, 44, 44, 44, + 45, 46, 47, 47, 48, 49, 50, 51, 51, 51, 52, 52, 53, 54, 55, 56, + 56, 56, 57, 57, 58, 58, 59, 60, 60, 60, 60, 60, 61, 62, 62, 62, + 62, 62, 63, 63, 63, 63, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, +}; + +const uint8_t *av1_get_obmc_mask(int length) { + switch (length) { + case 1: return obmc_mask_1; + case 2: return obmc_mask_2; + case 4: return obmc_mask_4; + case 8: return obmc_mask_8; + case 16: return obmc_mask_16; + case 32: return obmc_mask_32; + case 64: return obmc_mask_64; + default: assert(0); return NULL; + } +} + +static INLINE void increment_int_ptr(MACROBLOCKD *xd, int rel_mi_row, + int rel_mi_col, uint8_t op_mi_size, + int dir, MB_MODE_INFO *mi, void *fun_ctxt, + const int num_planes) { + (void)xd; + (void)rel_mi_row; + (void)rel_mi_col; + (void)op_mi_size; + (void)dir; + (void)mi; + ++*(int *)fun_ctxt; + (void)num_planes; +} + +void av1_count_overlappable_neighbors(const AV1_COMMON *cm, MACROBLOCKD *xd) { + MB_MODE_INFO *mbmi = xd->mi[0]; + + mbmi->overlappable_neighbors[0] = 0; + mbmi->overlappable_neighbors[1] = 0; + + if (!is_motion_variation_allowed_bsize(mbmi->sb_type)) return; + + foreach_overlappable_nb_above(cm, xd, INT_MAX, increment_int_ptr, + &mbmi->overlappable_neighbors[0]); + foreach_overlappable_nb_left(cm, xd, INT_MAX, increment_int_ptr, + &mbmi->overlappable_neighbors[1]); +} + +// HW does not support < 4x4 prediction. To limit the bandwidth requirement, if +// block-size of current plane is smaller than 8x8, always only blend with the +// left neighbor(s) (skip blending with the above side). +#define DISABLE_CHROMA_U8X8_OBMC 0 // 0: one-sided obmc; 1: disable + +int av1_skip_u4x4_pred_in_obmc(BLOCK_SIZE bsize, + const struct macroblockd_plane *pd, int dir) { + assert(is_motion_variation_allowed_bsize(bsize)); + + const BLOCK_SIZE bsize_plane = + get_plane_block_size(bsize, pd->subsampling_x, pd->subsampling_y); + switch (bsize_plane) { +#if DISABLE_CHROMA_U8X8_OBMC + case BLOCK_4X4: + case BLOCK_8X4: + case BLOCK_4X8: return 1; break; +#else + case BLOCK_4X4: + case BLOCK_8X4: + case BLOCK_4X8: return dir == 0; break; +#endif + default: return 0; + } +} + +void av1_modify_neighbor_predictor_for_obmc(MB_MODE_INFO *mbmi) { + mbmi->ref_frame[1] = NONE_FRAME; + mbmi->interinter_comp.type = COMPOUND_AVERAGE; + + return; +} + +struct obmc_inter_pred_ctxt { + uint8_t **adjacent; + int *adjacent_stride; +}; + +static INLINE void build_obmc_inter_pred_above( + MACROBLOCKD *xd, int rel_mi_row, int rel_mi_col, uint8_t op_mi_size, + int dir, MB_MODE_INFO *above_mi, void *fun_ctxt, const int num_planes) { + (void)above_mi; + (void)rel_mi_row; + (void)dir; + struct obmc_inter_pred_ctxt *ctxt = (struct obmc_inter_pred_ctxt *)fun_ctxt; + const BLOCK_SIZE bsize = xd->mi[0]->sb_type; + const int overlap = + AOMMIN(block_size_high[bsize], block_size_high[BLOCK_64X64]) >> 1; + + for (int plane = 0; plane < num_planes; ++plane) { + const struct macroblockd_plane *pd = &xd->plane[plane]; + const int bw = (op_mi_size * MI_SIZE) >> pd->subsampling_x; + const int bh = overlap >> pd->subsampling_y; + const int plane_col = (rel_mi_col * MI_SIZE) >> pd->subsampling_x; + + if (av1_skip_u4x4_pred_in_obmc(bsize, pd, 0)) continue; + + const int dst_stride = pd->dst.stride; + uint8_t *const dst = &pd->dst.buf[plane_col]; + const int tmp_stride = ctxt->adjacent_stride[plane]; + const uint8_t *const tmp = &ctxt->adjacent[plane][plane_col]; + const uint8_t *const mask = av1_get_obmc_mask(bh); +#if CONFIG_AV1_HIGHBITDEPTH + const int is_hbd = is_cur_buf_hbd(xd); + if (is_hbd) + aom_highbd_blend_a64_vmask(dst, dst_stride, dst, dst_stride, tmp, + tmp_stride, mask, bw, bh, xd->bd); + else + aom_blend_a64_vmask(dst, dst_stride, dst, dst_stride, tmp, tmp_stride, + mask, bw, bh); +#else + aom_blend_a64_vmask(dst, dst_stride, dst, dst_stride, tmp, tmp_stride, mask, + bw, bh); +#endif + } +} + +static INLINE void build_obmc_inter_pred_left( + MACROBLOCKD *xd, int rel_mi_row, int rel_mi_col, uint8_t op_mi_size, + int dir, MB_MODE_INFO *left_mi, void *fun_ctxt, const int num_planes) { + (void)left_mi; + (void)rel_mi_col; + (void)dir; + struct obmc_inter_pred_ctxt *ctxt = (struct obmc_inter_pred_ctxt *)fun_ctxt; + const BLOCK_SIZE bsize = xd->mi[0]->sb_type; + const int overlap = + AOMMIN(block_size_wide[bsize], block_size_wide[BLOCK_64X64]) >> 1; + + for (int plane = 0; plane < num_planes; ++plane) { + const struct macroblockd_plane *pd = &xd->plane[plane]; + const int bw = overlap >> pd->subsampling_x; + const int bh = (op_mi_size * MI_SIZE) >> pd->subsampling_y; + const int plane_row = (rel_mi_row * MI_SIZE) >> pd->subsampling_y; + + if (av1_skip_u4x4_pred_in_obmc(bsize, pd, 1)) continue; + + const int dst_stride = pd->dst.stride; + uint8_t *const dst = &pd->dst.buf[plane_row * dst_stride]; + const int tmp_stride = ctxt->adjacent_stride[plane]; + const uint8_t *const tmp = &ctxt->adjacent[plane][plane_row * tmp_stride]; + const uint8_t *const mask = av1_get_obmc_mask(bw); + +#if CONFIG_AV1_HIGHBITDEPTH + const int is_hbd = is_cur_buf_hbd(xd); + if (is_hbd) + aom_highbd_blend_a64_hmask(dst, dst_stride, dst, dst_stride, tmp, + tmp_stride, mask, bw, bh, xd->bd); + else + aom_blend_a64_hmask(dst, dst_stride, dst, dst_stride, tmp, tmp_stride, + mask, bw, bh); +#else + aom_blend_a64_hmask(dst, dst_stride, dst, dst_stride, tmp, tmp_stride, mask, + bw, bh); +#endif + } +} + +// This function combines motion compensated predictions that are generated by +// top/left neighboring blocks' inter predictors with the regular inter +// prediction. We assume the original prediction (bmc) is stored in +// xd->plane[].dst.buf +void av1_build_obmc_inter_prediction(const AV1_COMMON *cm, MACROBLOCKD *xd, + uint8_t *above[MAX_MB_PLANE], + int above_stride[MAX_MB_PLANE], + uint8_t *left[MAX_MB_PLANE], + int left_stride[MAX_MB_PLANE]) { + const BLOCK_SIZE bsize = xd->mi[0]->sb_type; + + // handle above row + struct obmc_inter_pred_ctxt ctxt_above = { above, above_stride }; + foreach_overlappable_nb_above(cm, xd, + max_neighbor_obmc[mi_size_wide_log2[bsize]], + build_obmc_inter_pred_above, &ctxt_above); + + // handle left column + struct obmc_inter_pred_ctxt ctxt_left = { left, left_stride }; + foreach_overlappable_nb_left(cm, xd, + max_neighbor_obmc[mi_size_high_log2[bsize]], + build_obmc_inter_pred_left, &ctxt_left); +} + +void av1_setup_address_for_obmc(MACROBLOCKD *xd, int mi_row_offset, + int mi_col_offset, MB_MODE_INFO *ref_mbmi, + struct build_prediction_ctxt *ctxt, + const int num_planes) { + const BLOCK_SIZE ref_bsize = AOMMAX(BLOCK_8X8, ref_mbmi->sb_type); + const int ref_mi_row = xd->mi_row + mi_row_offset; + const int ref_mi_col = xd->mi_col + mi_col_offset; + + for (int plane = 0; plane < num_planes; ++plane) { + struct macroblockd_plane *const pd = &xd->plane[plane]; + setup_pred_plane(&pd->dst, ref_bsize, ctxt->tmp_buf[plane], + ctxt->tmp_width[plane], ctxt->tmp_height[plane], + ctxt->tmp_stride[plane], mi_row_offset, mi_col_offset, + NULL, pd->subsampling_x, pd->subsampling_y); + } + + const MV_REFERENCE_FRAME frame = ref_mbmi->ref_frame[0]; + + const RefCntBuffer *const ref_buf = get_ref_frame_buf(ctxt->cm, frame); + const struct scale_factors *const sf = + get_ref_scale_factors_const(ctxt->cm, frame); + + xd->block_ref_scale_factors[0] = sf; + if ((!av1_is_valid_scale(sf))) + aom_internal_error(xd->error_info, AOM_CODEC_UNSUP_BITSTREAM, + "Reference frame has invalid dimensions"); + + av1_setup_pre_planes(xd, 0, &ref_buf->buf, ref_mi_row, ref_mi_col, sf, + num_planes); +} + +void av1_setup_build_prediction_by_above_pred( + MACROBLOCKD *xd, int rel_mi_col, uint8_t above_mi_width, + MB_MODE_INFO *above_mbmi, struct build_prediction_ctxt *ctxt, + const int num_planes) { + const BLOCK_SIZE a_bsize = AOMMAX(BLOCK_8X8, above_mbmi->sb_type); + const int above_mi_col = xd->mi_col + rel_mi_col; + + av1_modify_neighbor_predictor_for_obmc(above_mbmi); + + for (int j = 0; j < num_planes; ++j) { + struct macroblockd_plane *const pd = &xd->plane[j]; + setup_pred_plane(&pd->dst, a_bsize, ctxt->tmp_buf[j], ctxt->tmp_width[j], + ctxt->tmp_height[j], ctxt->tmp_stride[j], 0, rel_mi_col, + NULL, pd->subsampling_x, pd->subsampling_y); + } + + const int num_refs = 1 + has_second_ref(above_mbmi); + + for (int ref = 0; ref < num_refs; ++ref) { + const MV_REFERENCE_FRAME frame = above_mbmi->ref_frame[ref]; + + const RefCntBuffer *const ref_buf = get_ref_frame_buf(ctxt->cm, frame); + const struct scale_factors *const sf = + get_ref_scale_factors_const(ctxt->cm, frame); + xd->block_ref_scale_factors[ref] = sf; + if ((!av1_is_valid_scale(sf))) + aom_internal_error(xd->error_info, AOM_CODEC_UNSUP_BITSTREAM, + "Reference frame has invalid dimensions"); + av1_setup_pre_planes(xd, ref, &ref_buf->buf, xd->mi_row, above_mi_col, sf, + num_planes); + } + + xd->mb_to_left_edge = 8 * MI_SIZE * (-above_mi_col); + xd->mb_to_right_edge = + ctxt->mb_to_far_edge + + (xd->width - rel_mi_col - above_mi_width) * MI_SIZE * 8; +} + +void av1_setup_build_prediction_by_left_pred(MACROBLOCKD *xd, int rel_mi_row, + uint8_t left_mi_height, + MB_MODE_INFO *left_mbmi, + struct build_prediction_ctxt *ctxt, + const int num_planes) { + const BLOCK_SIZE l_bsize = AOMMAX(BLOCK_8X8, left_mbmi->sb_type); + const int left_mi_row = xd->mi_row + rel_mi_row; + + av1_modify_neighbor_predictor_for_obmc(left_mbmi); + + for (int j = 0; j < num_planes; ++j) { + struct macroblockd_plane *const pd = &xd->plane[j]; + setup_pred_plane(&pd->dst, l_bsize, ctxt->tmp_buf[j], ctxt->tmp_width[j], + ctxt->tmp_height[j], ctxt->tmp_stride[j], rel_mi_row, 0, + NULL, pd->subsampling_x, pd->subsampling_y); + } + + const int num_refs = 1 + has_second_ref(left_mbmi); + + for (int ref = 0; ref < num_refs; ++ref) { + const MV_REFERENCE_FRAME frame = left_mbmi->ref_frame[ref]; + + const RefCntBuffer *const ref_buf = get_ref_frame_buf(ctxt->cm, frame); + const struct scale_factors *const ref_scale_factors = + get_ref_scale_factors_const(ctxt->cm, frame); + + xd->block_ref_scale_factors[ref] = ref_scale_factors; + if ((!av1_is_valid_scale(ref_scale_factors))) + aom_internal_error(xd->error_info, AOM_CODEC_UNSUP_BITSTREAM, + "Reference frame has invalid dimensions"); + av1_setup_pre_planes(xd, ref, &ref_buf->buf, left_mi_row, xd->mi_col, + ref_scale_factors, num_planes); + } + + xd->mb_to_top_edge = GET_MV_SUBPEL(MI_SIZE * (-left_mi_row)); + xd->mb_to_bottom_edge = + ctxt->mb_to_far_edge + + GET_MV_SUBPEL((xd->height - rel_mi_row - left_mi_height) * MI_SIZE); +} + +static AOM_INLINE void combine_interintra( + INTERINTRA_MODE mode, int8_t use_wedge_interintra, int8_t wedge_index, + int8_t wedge_sign, BLOCK_SIZE bsize, BLOCK_SIZE plane_bsize, + uint8_t *comppred, int compstride, const uint8_t *interpred, + int interstride, const uint8_t *intrapred, int intrastride) { + const int bw = block_size_wide[plane_bsize]; + const int bh = block_size_high[plane_bsize]; + + if (use_wedge_interintra) { + if (av1_is_wedge_used(bsize)) { + const uint8_t *mask = + av1_get_contiguous_soft_mask(wedge_index, wedge_sign, bsize); + const int subw = 2 * mi_size_wide[bsize] == bw; + const int subh = 2 * mi_size_high[bsize] == bh; + aom_blend_a64_mask(comppred, compstride, intrapred, intrastride, + interpred, interstride, mask, block_size_wide[bsize], + bw, bh, subw, subh); + } + return; + } + + const uint8_t *mask = smooth_interintra_mask_buf[mode][plane_bsize]; + aom_blend_a64_mask(comppred, compstride, intrapred, intrastride, interpred, + interstride, mask, bw, bw, bh, 0, 0); +} + +#if CONFIG_AV1_HIGHBITDEPTH +static AOM_INLINE void combine_interintra_highbd( + INTERINTRA_MODE mode, int8_t use_wedge_interintra, int8_t wedge_index, + int8_t wedge_sign, BLOCK_SIZE bsize, BLOCK_SIZE plane_bsize, + uint8_t *comppred8, int compstride, const uint8_t *interpred8, + int interstride, const uint8_t *intrapred8, int intrastride, int bd) { + const int bw = block_size_wide[plane_bsize]; + const int bh = block_size_high[plane_bsize]; + + if (use_wedge_interintra) { + if (av1_is_wedge_used(bsize)) { + const uint8_t *mask = + av1_get_contiguous_soft_mask(wedge_index, wedge_sign, bsize); + const int subh = 2 * mi_size_high[bsize] == bh; + const int subw = 2 * mi_size_wide[bsize] == bw; + aom_highbd_blend_a64_mask(comppred8, compstride, intrapred8, intrastride, + interpred8, interstride, mask, + block_size_wide[bsize], bw, bh, subw, subh, bd); + } + return; + } + + uint8_t mask[MAX_SB_SQUARE]; + build_smooth_interintra_mask(mask, bw, plane_bsize, mode); + aom_highbd_blend_a64_mask(comppred8, compstride, intrapred8, intrastride, + interpred8, interstride, mask, bw, bw, bh, 0, 0, + bd); +} +#endif + +void av1_build_intra_predictors_for_interintra(const AV1_COMMON *cm, + MACROBLOCKD *xd, + BLOCK_SIZE bsize, int plane, + const BUFFER_SET *ctx, + uint8_t *dst, int dst_stride) { + struct macroblockd_plane *const pd = &xd->plane[plane]; + const int ssx = xd->plane[plane].subsampling_x; + const int ssy = xd->plane[plane].subsampling_y; + BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, ssx, ssy); + PREDICTION_MODE mode = interintra_to_intra_mode[xd->mi[0]->interintra_mode]; + assert(xd->mi[0]->angle_delta[PLANE_TYPE_Y] == 0); + assert(xd->mi[0]->angle_delta[PLANE_TYPE_UV] == 0); + assert(xd->mi[0]->filter_intra_mode_info.use_filter_intra == 0); + assert(xd->mi[0]->use_intrabc == 0); + + av1_predict_intra_block(cm, xd, pd->width, pd->height, + max_txsize_rect_lookup[plane_bsize], mode, 0, 0, + FILTER_INTRA_MODES, ctx->plane[plane], + ctx->stride[plane], dst, dst_stride, 0, 0, plane); +} + +void av1_combine_interintra(MACROBLOCKD *xd, BLOCK_SIZE bsize, int plane, + const uint8_t *inter_pred, int inter_stride, + const uint8_t *intra_pred, int intra_stride) { + const int ssx = xd->plane[plane].subsampling_x; + const int ssy = xd->plane[plane].subsampling_y; + const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, ssx, ssy); +#if CONFIG_AV1_HIGHBITDEPTH + if (is_cur_buf_hbd(xd)) { + combine_interintra_highbd( + xd->mi[0]->interintra_mode, xd->mi[0]->use_wedge_interintra, + xd->mi[0]->interintra_wedge_index, INTERINTRA_WEDGE_SIGN, bsize, + plane_bsize, xd->plane[plane].dst.buf, xd->plane[plane].dst.stride, + inter_pred, inter_stride, intra_pred, intra_stride, xd->bd); + return; + } +#endif + combine_interintra( + xd->mi[0]->interintra_mode, xd->mi[0]->use_wedge_interintra, + xd->mi[0]->interintra_wedge_index, INTERINTRA_WEDGE_SIGN, bsize, + plane_bsize, xd->plane[plane].dst.buf, xd->plane[plane].dst.stride, + inter_pred, inter_stride, intra_pred, intra_stride); +} + +// build interintra_predictors for one plane +void av1_build_interintra_predictor(const AV1_COMMON *cm, MACROBLOCKD *xd, + uint8_t *pred, int stride, + const BUFFER_SET *ctx, int plane, + BLOCK_SIZE bsize) { + assert(bsize < BLOCK_SIZES_ALL); + if (is_cur_buf_hbd(xd)) { + DECLARE_ALIGNED(16, uint16_t, intrapredictor[MAX_SB_SQUARE]); + av1_build_intra_predictors_for_interintra( + cm, xd, bsize, plane, ctx, CONVERT_TO_BYTEPTR(intrapredictor), + MAX_SB_SIZE); + av1_combine_interintra(xd, bsize, plane, pred, stride, + CONVERT_TO_BYTEPTR(intrapredictor), MAX_SB_SIZE); + } else { + DECLARE_ALIGNED(16, uint8_t, intrapredictor[MAX_SB_SQUARE]); + av1_build_intra_predictors_for_interintra(cm, xd, bsize, plane, ctx, + intrapredictor, MAX_SB_SIZE); + av1_combine_interintra(xd, bsize, plane, pred, stride, intrapredictor, + MAX_SB_SIZE); + } +} |