summaryrefslogtreecommitdiff
path: root/js/src/new-regexp/regexp-compiler.cc
diff options
context:
space:
mode:
Diffstat (limited to 'js/src/new-regexp/regexp-compiler.cc')
-rw-r--r--js/src/new-regexp/regexp-compiler.cc3831
1 files changed, 0 insertions, 3831 deletions
diff --git a/js/src/new-regexp/regexp-compiler.cc b/js/src/new-regexp/regexp-compiler.cc
deleted file mode 100644
index 98771354c..000000000
--- a/js/src/new-regexp/regexp-compiler.cc
+++ /dev/null
@@ -1,3831 +0,0 @@
-// Copyright 2019 the V8 project authors. All rights reserved.
-// Use of this source code is governed by a BSD-style license that can be
-// found in the LICENSE file.
-
-#include "new-regexp/regexp-compiler.h"
-
-#include "new-regexp/regexp-macro-assembler-arch.h"
-#ifdef V8_INTL_SUPPORT
-#include "new-regexp/special-case.h"
-#endif // V8_INTL_SUPPORT
-
-#ifdef V8_INTL_SUPPORT
-#include "unicode/locid.h"
-#include "unicode/uniset.h"
-#include "unicode/utypes.h"
-#endif // V8_INTL_SUPPORT
-
-namespace v8 {
-namespace internal {
-
-using namespace regexp_compiler_constants; // NOLINT(build/namespaces)
-
-// -------------------------------------------------------------------
-// Implementation of the Irregexp regular expression engine.
-//
-// The Irregexp regular expression engine is intended to be a complete
-// implementation of ECMAScript regular expressions. It generates either
-// bytecodes or native code.
-
-// The Irregexp regexp engine is structured in three steps.
-// 1) The parser generates an abstract syntax tree. See ast.cc.
-// 2) From the AST a node network is created. The nodes are all
-// subclasses of RegExpNode. The nodes represent states when
-// executing a regular expression. Several optimizations are
-// performed on the node network.
-// 3) From the nodes we generate either byte codes or native code
-// that can actually execute the regular expression (perform
-// the search). The code generation step is described in more
-// detail below.
-
-// Code generation.
-//
-// The nodes are divided into four main categories.
-// * Choice nodes
-// These represent places where the regular expression can
-// match in more than one way. For example on entry to an
-// alternation (foo|bar) or a repetition (*, +, ? or {}).
-// * Action nodes
-// These represent places where some action should be
-// performed. Examples include recording the current position
-// in the input string to a register (in order to implement
-// captures) or other actions on register for example in order
-// to implement the counters needed for {} repetitions.
-// * Matching nodes
-// These attempt to match some element part of the input string.
-// Examples of elements include character classes, plain strings
-// or back references.
-// * End nodes
-// These are used to implement the actions required on finding
-// a successful match or failing to find a match.
-//
-// The code generated (whether as byte codes or native code) maintains
-// some state as it runs. This consists of the following elements:
-//
-// * The capture registers. Used for string captures.
-// * Other registers. Used for counters etc.
-// * The current position.
-// * The stack of backtracking information. Used when a matching node
-// fails to find a match and needs to try an alternative.
-//
-// Conceptual regular expression execution model:
-//
-// There is a simple conceptual model of regular expression execution
-// which will be presented first. The actual code generated is a more
-// efficient simulation of the simple conceptual model:
-//
-// * Choice nodes are implemented as follows:
-// For each choice except the last {
-// push current position
-// push backtrack code location
-// <generate code to test for choice>
-// backtrack code location:
-// pop current position
-// }
-// <generate code to test for last choice>
-//
-// * Actions nodes are generated as follows
-// <push affected registers on backtrack stack>
-// <generate code to perform action>
-// push backtrack code location
-// <generate code to test for following nodes>
-// backtrack code location:
-// <pop affected registers to restore their state>
-// <pop backtrack location from stack and go to it>
-//
-// * Matching nodes are generated as follows:
-// if input string matches at current position
-// update current position
-// <generate code to test for following nodes>
-// else
-// <pop backtrack location from stack and go to it>
-//
-// Thus it can be seen that the current position is saved and restored
-// by the choice nodes, whereas the registers are saved and restored by
-// by the action nodes that manipulate them.
-//
-// The other interesting aspect of this model is that nodes are generated
-// at the point where they are needed by a recursive call to Emit(). If
-// the node has already been code generated then the Emit() call will
-// generate a jump to the previously generated code instead. In order to
-// limit recursion it is possible for the Emit() function to put the node
-// on a work list for later generation and instead generate a jump. The
-// destination of the jump is resolved later when the code is generated.
-//
-// Actual regular expression code generation.
-//
-// Code generation is actually more complicated than the above. In order
-// to improve the efficiency of the generated code some optimizations are
-// performed
-//
-// * Choice nodes have 1-character lookahead.
-// A choice node looks at the following character and eliminates some of
-// the choices immediately based on that character. This is not yet
-// implemented.
-// * Simple greedy loops store reduced backtracking information.
-// A quantifier like /.*foo/m will greedily match the whole input. It will
-// then need to backtrack to a point where it can match "foo". The naive
-// implementation of this would push each character position onto the
-// backtracking stack, then pop them off one by one. This would use space
-// proportional to the length of the input string. However since the "."
-// can only match in one way and always has a constant length (in this case
-// of 1) it suffices to store the current position on the top of the stack
-// once. Matching now becomes merely incrementing the current position and
-// backtracking becomes decrementing the current position and checking the
-// result against the stored current position. This is faster and saves
-// space.
-// * The current state is virtualized.
-// This is used to defer expensive operations until it is clear that they
-// are needed and to generate code for a node more than once, allowing
-// specialized an efficient versions of the code to be created. This is
-// explained in the section below.
-//
-// Execution state virtualization.
-//
-// Instead of emitting code, nodes that manipulate the state can record their
-// manipulation in an object called the Trace. The Trace object can record a
-// current position offset, an optional backtrack code location on the top of
-// the virtualized backtrack stack and some register changes. When a node is
-// to be emitted it can flush the Trace or update it. Flushing the Trace
-// will emit code to bring the actual state into line with the virtual state.
-// Avoiding flushing the state can postpone some work (e.g. updates of capture
-// registers). Postponing work can save time when executing the regular
-// expression since it may be found that the work never has to be done as a
-// failure to match can occur. In addition it is much faster to jump to a
-// known backtrack code location than it is to pop an unknown backtrack
-// location from the stack and jump there.
-//
-// The virtual state found in the Trace affects code generation. For example
-// the virtual state contains the difference between the actual current
-// position and the virtual current position, and matching code needs to use
-// this offset to attempt a match in the correct location of the input
-// string. Therefore code generated for a non-trivial trace is specialized
-// to that trace. The code generator therefore has the ability to generate
-// code for each node several times. In order to limit the size of the
-// generated code there is an arbitrary limit on how many specialized sets of
-// code may be generated for a given node. If the limit is reached, the
-// trace is flushed and a generic version of the code for a node is emitted.
-// This is subsequently used for that node. The code emitted for non-generic
-// trace is not recorded in the node and so it cannot currently be reused in
-// the event that code generation is requested for an identical trace.
-
-void RegExpTree::AppendToText(RegExpText* text, Zone* zone) { UNREACHABLE(); }
-
-void RegExpAtom::AppendToText(RegExpText* text, Zone* zone) {
- text->AddElement(TextElement::Atom(this), zone);
-}
-
-void RegExpCharacterClass::AppendToText(RegExpText* text, Zone* zone) {
- text->AddElement(TextElement::CharClass(this), zone);
-}
-
-void RegExpText::AppendToText(RegExpText* text, Zone* zone) {
- for (int i = 0; i < elements()->length(); i++)
- text->AddElement(elements()->at(i), zone);
-}
-
-TextElement TextElement::Atom(RegExpAtom* atom) {
- return TextElement(ATOM, atom);
-}
-
-TextElement TextElement::CharClass(RegExpCharacterClass* char_class) {
- return TextElement(CHAR_CLASS, char_class);
-}
-
-int TextElement::length() const {
- switch (text_type()) {
- case ATOM:
- return atom()->length();
-
- case CHAR_CLASS:
- return 1;
- }
- UNREACHABLE();
-}
-
-class RecursionCheck {
- public:
- explicit RecursionCheck(RegExpCompiler* compiler) : compiler_(compiler) {
- compiler->IncrementRecursionDepth();
- }
- ~RecursionCheck() { compiler_->DecrementRecursionDepth(); }
-
- private:
- RegExpCompiler* compiler_;
-};
-
-// Attempts to compile the regexp using an Irregexp code generator. Returns
-// a fixed array or a null handle depending on whether it succeeded.
-RegExpCompiler::RegExpCompiler(Isolate* isolate, Zone* zone, int capture_count,
- bool one_byte)
- : next_register_(2 * (capture_count + 1)),
- unicode_lookaround_stack_register_(kNoRegister),
- unicode_lookaround_position_register_(kNoRegister),
- work_list_(nullptr),
- recursion_depth_(0),
- one_byte_(one_byte),
- reg_exp_too_big_(false),
- limiting_recursion_(false),
- optimize_(FLAG_regexp_optimization),
- read_backward_(false),
- current_expansion_factor_(1),
- frequency_collator_(),
- isolate_(isolate),
- zone_(zone) {
- accept_ = new (zone) EndNode(EndNode::ACCEPT, zone);
- DCHECK_GE(RegExpMacroAssembler::kMaxRegister, next_register_ - 1);
-}
-
-RegExpCompiler::CompilationResult RegExpCompiler::Assemble(
- Isolate* isolate, RegExpMacroAssembler* macro_assembler, RegExpNode* start,
- int capture_count, Handle<String> pattern) {
- macro_assembler_ = macro_assembler;
-
- ZoneVector<RegExpNode*> work_list(zone());
- work_list_ = &work_list;
- Label fail;
- macro_assembler_->PushBacktrack(&fail);
- Trace new_trace;
- start->Emit(this, &new_trace);
- macro_assembler_->BindJumpTarget(&fail);
- macro_assembler_->Fail();
- while (!work_list.empty()) {
- RegExpNode* node = work_list.back();
- work_list.pop_back();
- node->set_on_work_list(false);
- if (!node->label()->is_bound()) node->Emit(this, &new_trace);
- }
- if (reg_exp_too_big_) {
- macro_assembler_->AbortedCodeGeneration();
- return CompilationResult::RegExpTooBig();
- }
-
- Handle<HeapObject> code = macro_assembler_->GetCode(pattern);
- isolate->IncreaseTotalRegexpCodeGenerated(code);
- work_list_ = nullptr;
-
- return {*code, next_register_};
-}
-
-bool Trace::DeferredAction::Mentions(int that) {
- if (action_type() == ActionNode::CLEAR_CAPTURES) {
- Interval range = static_cast<DeferredClearCaptures*>(this)->range();
- return range.Contains(that);
- } else {
- return reg() == that;
- }
-}
-
-bool Trace::mentions_reg(int reg) {
- for (DeferredAction* action = actions_; action != nullptr;
- action = action->next()) {
- if (action->Mentions(reg)) return true;
- }
- return false;
-}
-
-bool Trace::GetStoredPosition(int reg, int* cp_offset) {
- DCHECK_EQ(0, *cp_offset);
- for (DeferredAction* action = actions_; action != nullptr;
- action = action->next()) {
- if (action->Mentions(reg)) {
- if (action->action_type() == ActionNode::STORE_POSITION) {
- *cp_offset = static_cast<DeferredCapture*>(action)->cp_offset();
- return true;
- } else {
- return false;
- }
- }
- }
- return false;
-}
-
-// A (dynamically-sized) set of unsigned integers that behaves especially well
-// on small integers (< kFirstLimit). May do zone-allocation.
-class DynamicBitSet : public ZoneObject {
- public:
- V8_EXPORT_PRIVATE bool Get(unsigned value) const {
- if (value < kFirstLimit) {
- return (first_ & (1 << value)) != 0;
- } else if (remaining_ == nullptr) {
- return false;
- } else {
- return remaining_->Contains(value);
- }
- }
-
- // Destructively set a value in this set.
- void Set(unsigned value, Zone* zone) {
- if (value < kFirstLimit) {
- first_ |= (1 << value);
- } else {
- if (remaining_ == nullptr)
- remaining_ = new (zone) ZoneList<unsigned>(1, zone);
- if (remaining_->is_empty() || !remaining_->Contains(value))
- remaining_->Add(value, zone);
- }
- }
-
- private:
- static constexpr unsigned kFirstLimit = 32;
-
- uint32_t first_ = 0;
- ZoneList<unsigned>* remaining_ = nullptr;
-};
-
-int Trace::FindAffectedRegisters(DynamicBitSet* affected_registers,
- Zone* zone) {
- int max_register = RegExpCompiler::kNoRegister;
- for (DeferredAction* action = actions_; action != nullptr;
- action = action->next()) {
- if (action->action_type() == ActionNode::CLEAR_CAPTURES) {
- Interval range = static_cast<DeferredClearCaptures*>(action)->range();
- for (int i = range.from(); i <= range.to(); i++)
- affected_registers->Set(i, zone);
- if (range.to() > max_register) max_register = range.to();
- } else {
- affected_registers->Set(action->reg(), zone);
- if (action->reg() > max_register) max_register = action->reg();
- }
- }
- return max_register;
-}
-
-void Trace::RestoreAffectedRegisters(RegExpMacroAssembler* assembler,
- int max_register,
- const DynamicBitSet& registers_to_pop,
- const DynamicBitSet& registers_to_clear) {
- for (int reg = max_register; reg >= 0; reg--) {
- if (registers_to_pop.Get(reg)) {
- assembler->PopRegister(reg);
- } else if (registers_to_clear.Get(reg)) {
- int clear_to = reg;
- while (reg > 0 && registers_to_clear.Get(reg - 1)) {
- reg--;
- }
- assembler->ClearRegisters(reg, clear_to);
- }
- }
-}
-
-void Trace::PerformDeferredActions(RegExpMacroAssembler* assembler,
- int max_register,
- const DynamicBitSet& affected_registers,
- DynamicBitSet* registers_to_pop,
- DynamicBitSet* registers_to_clear,
- Zone* zone) {
- // The "+1" is to avoid a push_limit of zero if stack_limit_slack() is 1.
- const int push_limit = (assembler->stack_limit_slack() + 1) / 2;
-
- // Count pushes performed to force a stack limit check occasionally.
- int pushes = 0;
-
- for (int reg = 0; reg <= max_register; reg++) {
- if (!affected_registers.Get(reg)) {
- continue;
- }
-
- // The chronologically first deferred action in the trace
- // is used to infer the action needed to restore a register
- // to its previous state (or not, if it's safe to ignore it).
- enum DeferredActionUndoType { IGNORE, RESTORE, CLEAR };
- DeferredActionUndoType undo_action = IGNORE;
-
- int value = 0;
- bool absolute = false;
- bool clear = false;
- static const int kNoStore = kMinInt;
- int store_position = kNoStore;
- // This is a little tricky because we are scanning the actions in reverse
- // historical order (newest first).
- for (DeferredAction* action = actions_; action != nullptr;
- action = action->next()) {
- if (action->Mentions(reg)) {
- switch (action->action_type()) {
- case ActionNode::SET_REGISTER_FOR_LOOP: {
- Trace::DeferredSetRegisterForLoop* psr =
- static_cast<Trace::DeferredSetRegisterForLoop*>(action);
- if (!absolute) {
- value += psr->value();
- absolute = true;
- }
- // SET_REGISTER_FOR_LOOP is only used for newly introduced loop
- // counters. They can have a significant previous value if they
- // occur in a loop. TODO(lrn): Propagate this information, so
- // we can set undo_action to IGNORE if we know there is no value to
- // restore.
- undo_action = RESTORE;
- DCHECK_EQ(store_position, kNoStore);
- DCHECK(!clear);
- break;
- }
- case ActionNode::INCREMENT_REGISTER:
- if (!absolute) {
- value++;
- }
- DCHECK_EQ(store_position, kNoStore);
- DCHECK(!clear);
- undo_action = RESTORE;
- break;
- case ActionNode::STORE_POSITION: {
- Trace::DeferredCapture* pc =
- static_cast<Trace::DeferredCapture*>(action);
- if (!clear && store_position == kNoStore) {
- store_position = pc->cp_offset();
- }
-
- // For captures we know that stores and clears alternate.
- // Other register, are never cleared, and if the occur
- // inside a loop, they might be assigned more than once.
- if (reg <= 1) {
- // Registers zero and one, aka "capture zero", is
- // always set correctly if we succeed. There is no
- // need to undo a setting on backtrack, because we
- // will set it again or fail.
- undo_action = IGNORE;
- } else {
- undo_action = pc->is_capture() ? CLEAR : RESTORE;
- }
- DCHECK(!absolute);
- DCHECK_EQ(value, 0);
- break;
- }
- case ActionNode::CLEAR_CAPTURES: {
- // Since we're scanning in reverse order, if we've already
- // set the position we have to ignore historically earlier
- // clearing operations.
- if (store_position == kNoStore) {
- clear = true;
- }
- undo_action = RESTORE;
- DCHECK(!absolute);
- DCHECK_EQ(value, 0);
- break;
- }
- default:
- UNREACHABLE();
- break;
- }
- }
- }
- // Prepare for the undo-action (e.g., push if it's going to be popped).
- if (undo_action == RESTORE) {
- pushes++;
- RegExpMacroAssembler::StackCheckFlag stack_check =
- RegExpMacroAssembler::kNoStackLimitCheck;
- if (pushes == push_limit) {
- stack_check = RegExpMacroAssembler::kCheckStackLimit;
- pushes = 0;
- }
-
- assembler->PushRegister(reg, stack_check);
- registers_to_pop->Set(reg, zone);
- } else if (undo_action == CLEAR) {
- registers_to_clear->Set(reg, zone);
- }
- // Perform the chronologically last action (or accumulated increment)
- // for the register.
- if (store_position != kNoStore) {
- assembler->WriteCurrentPositionToRegister(reg, store_position);
- } else if (clear) {
- assembler->ClearRegisters(reg, reg);
- } else if (absolute) {
- assembler->SetRegister(reg, value);
- } else if (value != 0) {
- assembler->AdvanceRegister(reg, value);
- }
- }
-}
-
-// This is called as we come into a loop choice node and some other tricky
-// nodes. It normalizes the state of the code generator to ensure we can
-// generate generic code.
-void Trace::Flush(RegExpCompiler* compiler, RegExpNode* successor) {
- RegExpMacroAssembler* assembler = compiler->macro_assembler();
-
- DCHECK(!is_trivial());
-
- if (actions_ == nullptr && backtrack() == nullptr) {
- // Here we just have some deferred cp advances to fix and we are back to
- // a normal situation. We may also have to forget some information gained
- // through a quick check that was already performed.
- if (cp_offset_ != 0) assembler->AdvanceCurrentPosition(cp_offset_);
- // Create a new trivial state and generate the node with that.
- Trace new_state;
- successor->Emit(compiler, &new_state);
- return;
- }
-
- // Generate deferred actions here along with code to undo them again.
- DynamicBitSet affected_registers;
-
- if (backtrack() != nullptr) {
- // Here we have a concrete backtrack location. These are set up by choice
- // nodes and so they indicate that we have a deferred save of the current
- // position which we may need to emit here.
- assembler->PushCurrentPosition();
- }
-
- int max_register =
- FindAffectedRegisters(&affected_registers, compiler->zone());
- DynamicBitSet registers_to_pop;
- DynamicBitSet registers_to_clear;
- PerformDeferredActions(assembler, max_register, affected_registers,
- &registers_to_pop, &registers_to_clear,
- compiler->zone());
- if (cp_offset_ != 0) {
- assembler->AdvanceCurrentPosition(cp_offset_);
- }
-
- // Create a new trivial state and generate the node with that.
- Label undo;
- assembler->PushBacktrack(&undo);
- if (successor->KeepRecursing(compiler)) {
- Trace new_state;
- successor->Emit(compiler, &new_state);
- } else {
- compiler->AddWork(successor);
- assembler->GoTo(successor->label());
- }
-
- // On backtrack we need to restore state.
- assembler->BindJumpTarget(&undo);
- RestoreAffectedRegisters(assembler, max_register, registers_to_pop,
- registers_to_clear);
- if (backtrack() == nullptr) {
- assembler->Backtrack();
- } else {
- assembler->PopCurrentPosition();
- assembler->GoTo(backtrack());
- }
-}
-
-void NegativeSubmatchSuccess::Emit(RegExpCompiler* compiler, Trace* trace) {
- RegExpMacroAssembler* assembler = compiler->macro_assembler();
-
- // Omit flushing the trace. We discard the entire stack frame anyway.
-
- if (!label()->is_bound()) {
- // We are completely independent of the trace, since we ignore it,
- // so this code can be used as the generic version.
- assembler->Bind(label());
- }
-
- // Throw away everything on the backtrack stack since the start
- // of the negative submatch and restore the character position.
- assembler->ReadCurrentPositionFromRegister(current_position_register_);
- assembler->ReadStackPointerFromRegister(stack_pointer_register_);
- if (clear_capture_count_ > 0) {
- // Clear any captures that might have been performed during the success
- // of the body of the negative look-ahead.
- int clear_capture_end = clear_capture_start_ + clear_capture_count_ - 1;
- assembler->ClearRegisters(clear_capture_start_, clear_capture_end);
- }
- // Now that we have unwound the stack we find at the top of the stack the
- // backtrack that the BeginSubmatch node got.
- assembler->Backtrack();
-}
-
-void EndNode::Emit(RegExpCompiler* compiler, Trace* trace) {
- if (!trace->is_trivial()) {
- trace->Flush(compiler, this);
- return;
- }
- RegExpMacroAssembler* assembler = compiler->macro_assembler();
- if (!label()->is_bound()) {
- assembler->Bind(label());
- }
- switch (action_) {
- case ACCEPT:
- assembler->Succeed();
- return;
- case BACKTRACK:
- assembler->GoTo(trace->backtrack());
- return;
- case NEGATIVE_SUBMATCH_SUCCESS:
- // This case is handled in a different virtual method.
- UNREACHABLE();
- }
- UNIMPLEMENTED();
-}
-
-void GuardedAlternative::AddGuard(Guard* guard, Zone* zone) {
- if (guards_ == nullptr) guards_ = new (zone) ZoneList<Guard*>(1, zone);
- guards_->Add(guard, zone);
-}
-
-ActionNode* ActionNode::SetRegisterForLoop(int reg, int val,
- RegExpNode* on_success) {
- ActionNode* result =
- new (on_success->zone()) ActionNode(SET_REGISTER_FOR_LOOP, on_success);
- result->data_.u_store_register.reg = reg;
- result->data_.u_store_register.value = val;
- return result;
-}
-
-ActionNode* ActionNode::IncrementRegister(int reg, RegExpNode* on_success) {
- ActionNode* result =
- new (on_success->zone()) ActionNode(INCREMENT_REGISTER, on_success);
- result->data_.u_increment_register.reg = reg;
- return result;
-}
-
-ActionNode* ActionNode::StorePosition(int reg, bool is_capture,
- RegExpNode* on_success) {
- ActionNode* result =
- new (on_success->zone()) ActionNode(STORE_POSITION, on_success);
- result->data_.u_position_register.reg = reg;
- result->data_.u_position_register.is_capture = is_capture;
- return result;
-}
-
-ActionNode* ActionNode::ClearCaptures(Interval range, RegExpNode* on_success) {
- ActionNode* result =
- new (on_success->zone()) ActionNode(CLEAR_CAPTURES, on_success);
- result->data_.u_clear_captures.range_from = range.from();
- result->data_.u_clear_captures.range_to = range.to();
- return result;
-}
-
-ActionNode* ActionNode::BeginSubmatch(int stack_reg, int position_reg,
- RegExpNode* on_success) {
- ActionNode* result =
- new (on_success->zone()) ActionNode(BEGIN_SUBMATCH, on_success);
- result->data_.u_submatch.stack_pointer_register = stack_reg;
- result->data_.u_submatch.current_position_register = position_reg;
- return result;
-}
-
-ActionNode* ActionNode::PositiveSubmatchSuccess(int stack_reg, int position_reg,
- int clear_register_count,
- int clear_register_from,
- RegExpNode* on_success) {
- ActionNode* result = new (on_success->zone())
- ActionNode(POSITIVE_SUBMATCH_SUCCESS, on_success);
- result->data_.u_submatch.stack_pointer_register = stack_reg;
- result->data_.u_submatch.current_position_register = position_reg;
- result->data_.u_submatch.clear_register_count = clear_register_count;
- result->data_.u_submatch.clear_register_from = clear_register_from;
- return result;
-}
-
-ActionNode* ActionNode::EmptyMatchCheck(int start_register,
- int repetition_register,
- int repetition_limit,
- RegExpNode* on_success) {
- ActionNode* result =
- new (on_success->zone()) ActionNode(EMPTY_MATCH_CHECK, on_success);
- result->data_.u_empty_match_check.start_register = start_register;
- result->data_.u_empty_match_check.repetition_register = repetition_register;
- result->data_.u_empty_match_check.repetition_limit = repetition_limit;
- return result;
-}
-
-#define DEFINE_ACCEPT(Type) \
- void Type##Node::Accept(NodeVisitor* visitor) { visitor->Visit##Type(this); }
-FOR_EACH_NODE_TYPE(DEFINE_ACCEPT)
-#undef DEFINE_ACCEPT
-
-// -------------------------------------------------------------------
-// Emit code.
-
-void ChoiceNode::GenerateGuard(RegExpMacroAssembler* macro_assembler,
- Guard* guard, Trace* trace) {
- switch (guard->op()) {
- case Guard::LT:
- DCHECK(!trace->mentions_reg(guard->reg()));
- macro_assembler->IfRegisterGE(guard->reg(), guard->value(),
- trace->backtrack());
- break;
- case Guard::GEQ:
- DCHECK(!trace->mentions_reg(guard->reg()));
- macro_assembler->IfRegisterLT(guard->reg(), guard->value(),
- trace->backtrack());
- break;
- }
-}
-
-// Returns the number of characters in the equivalence class, omitting those
-// that cannot occur in the source string because it is Latin1.
-static int GetCaseIndependentLetters(Isolate* isolate, uc16 character,
- bool one_byte_subject,
- unibrow::uchar* letters,
- int letter_length) {
-#ifdef V8_INTL_SUPPORT
- if (RegExpCaseFolding::IgnoreSet().contains(character)) {
- letters[0] = character;
- return 1;
- }
- bool in_special_add_set =
- RegExpCaseFolding::SpecialAddSet().contains(character);
-
- icu::UnicodeSet set;
- set.add(character);
- set = set.closeOver(USET_CASE_INSENSITIVE);
-
- UChar32 canon = 0;
- if (in_special_add_set) {
- canon = RegExpCaseFolding::Canonicalize(character);
- }
-
- int32_t range_count = set.getRangeCount();
- int items = 0;
- for (int32_t i = 0; i < range_count; i++) {
- UChar32 start = set.getRangeStart(i);
- UChar32 end = set.getRangeEnd(i);
- CHECK(end - start + items <= letter_length);
- for (UChar32 cu = start; cu <= end; cu++) {
- if (one_byte_subject && cu > String::kMaxOneByteCharCode) break;
- if (in_special_add_set && RegExpCaseFolding::Canonicalize(cu) != canon) {
- continue;
- }
- letters[items++] = (unibrow::uchar)(cu);
- }
- }
- return items;
-#else
- int length =
- isolate->jsregexp_uncanonicalize()->get(character, '\0', letters);
- // Unibrow returns 0 or 1 for characters where case independence is
- // trivial.
- if (length == 0) {
- letters[0] = character;
- length = 1;
- }
-
- if (one_byte_subject) {
- int new_length = 0;
- for (int i = 0; i < length; i++) {
- if (letters[i] <= String::kMaxOneByteCharCode) {
- letters[new_length++] = letters[i];
- }
- }
- length = new_length;
- }
-
- return length;
-#endif // V8_INTL_SUPPORT
-}
-
-static inline bool EmitSimpleCharacter(Isolate* isolate,
- RegExpCompiler* compiler, uc16 c,
- Label* on_failure, int cp_offset,
- bool check, bool preloaded) {
- RegExpMacroAssembler* assembler = compiler->macro_assembler();
- bool bound_checked = false;
- if (!preloaded) {
- assembler->LoadCurrentCharacter(cp_offset, on_failure, check);
- bound_checked = true;
- }
- assembler->CheckNotCharacter(c, on_failure);
- return bound_checked;
-}
-
-// Only emits non-letters (things that don't have case). Only used for case
-// independent matches.
-static inline bool EmitAtomNonLetter(Isolate* isolate, RegExpCompiler* compiler,
- uc16 c, Label* on_failure, int cp_offset,
- bool check, bool preloaded) {
- RegExpMacroAssembler* macro_assembler = compiler->macro_assembler();
- bool one_byte = compiler->one_byte();
- unibrow::uchar chars[4];
- int length = GetCaseIndependentLetters(isolate, c, one_byte, chars, 4);
- if (length < 1) {
- // This can't match. Must be an one-byte subject and a non-one-byte
- // character. We do not need to do anything since the one-byte pass
- // already handled this.
- return false; // Bounds not checked.
- }
- bool checked = false;
- // We handle the length > 1 case in a later pass.
- if (length == 1) {
- if (one_byte && c > String::kMaxOneByteCharCodeU) {
- // Can't match - see above.
- return false; // Bounds not checked.
- }
- if (!preloaded) {
- macro_assembler->LoadCurrentCharacter(cp_offset, on_failure, check);
- checked = check;
- }
- macro_assembler->CheckNotCharacter(c, on_failure);
- }
- return checked;
-}
-
-static bool ShortCutEmitCharacterPair(RegExpMacroAssembler* macro_assembler,
- bool one_byte, uc16 c1, uc16 c2,
- Label* on_failure) {
- uc16 char_mask;
- if (one_byte) {
- char_mask = String::kMaxOneByteCharCode;
- } else {
- char_mask = String::kMaxUtf16CodeUnit;
- }
- uc16 exor = c1 ^ c2;
- // Check whether exor has only one bit set.
- if (((exor - 1) & exor) == 0) {
- // If c1 and c2 differ only by one bit.
- // Ecma262UnCanonicalize always gives the highest number last.
- DCHECK(c2 > c1);
- uc16 mask = char_mask ^ exor;
- macro_assembler->CheckNotCharacterAfterAnd(c1, mask, on_failure);
- return true;
- }
- DCHECK(c2 > c1);
- uc16 diff = c2 - c1;
- if (((diff - 1) & diff) == 0 && c1 >= diff) {
- // If the characters differ by 2^n but don't differ by one bit then
- // subtract the difference from the found character, then do the or
- // trick. We avoid the theoretical case where negative numbers are
- // involved in order to simplify code generation.
- uc16 mask = char_mask ^ diff;
- macro_assembler->CheckNotCharacterAfterMinusAnd(c1 - diff, diff, mask,
- on_failure);
- return true;
- }
- return false;
-}
-
-// Only emits letters (things that have case). Only used for case independent
-// matches.
-static inline bool EmitAtomLetter(Isolate* isolate, RegExpCompiler* compiler,
- uc16 c, Label* on_failure, int cp_offset,
- bool check, bool preloaded) {
- RegExpMacroAssembler* macro_assembler = compiler->macro_assembler();
- bool one_byte = compiler->one_byte();
- unibrow::uchar chars[4];
- int length = GetCaseIndependentLetters(isolate, c, one_byte, chars, 4);
- if (length <= 1) return false;
- // We may not need to check against the end of the input string
- // if this character lies before a character that matched.
- if (!preloaded) {
- macro_assembler->LoadCurrentCharacter(cp_offset, on_failure, check);
- }
- Label ok;
- switch (length) {
- case 2: {
- if (ShortCutEmitCharacterPair(macro_assembler, one_byte, chars[0],
- chars[1], on_failure)) {
- } else {
- macro_assembler->CheckCharacter(chars[0], &ok);
- macro_assembler->CheckNotCharacter(chars[1], on_failure);
- macro_assembler->Bind(&ok);
- }
- break;
- }
- case 4:
- macro_assembler->CheckCharacter(chars[3], &ok);
- V8_FALLTHROUGH;
- case 3:
- macro_assembler->CheckCharacter(chars[0], &ok);
- macro_assembler->CheckCharacter(chars[1], &ok);
- macro_assembler->CheckNotCharacter(chars[2], on_failure);
- macro_assembler->Bind(&ok);
- break;
- default:
- UNREACHABLE();
- }
- return true;
-}
-
-static void EmitBoundaryTest(RegExpMacroAssembler* masm, int border,
- Label* fall_through, Label* above_or_equal,
- Label* below) {
- if (below != fall_through) {
- masm->CheckCharacterLT(border, below);
- if (above_or_equal != fall_through) masm->GoTo(above_or_equal);
- } else {
- masm->CheckCharacterGT(border - 1, above_or_equal);
- }
-}
-
-static void EmitDoubleBoundaryTest(RegExpMacroAssembler* masm, int first,
- int last, Label* fall_through,
- Label* in_range, Label* out_of_range) {
- if (in_range == fall_through) {
- if (first == last) {
- masm->CheckNotCharacter(first, out_of_range);
- } else {
- masm->CheckCharacterNotInRange(first, last, out_of_range);
- }
- } else {
- if (first == last) {
- masm->CheckCharacter(first, in_range);
- } else {
- masm->CheckCharacterInRange(first, last, in_range);
- }
- if (out_of_range != fall_through) masm->GoTo(out_of_range);
- }
-}
-
-// even_label is for ranges[i] to ranges[i + 1] where i - start_index is even.
-// odd_label is for ranges[i] to ranges[i + 1] where i - start_index is odd.
-static void EmitUseLookupTable(RegExpMacroAssembler* masm,
- ZoneList<int>* ranges, int start_index,
- int end_index, int min_char, Label* fall_through,
- Label* even_label, Label* odd_label) {
- static const int kSize = RegExpMacroAssembler::kTableSize;
- static const int kMask = RegExpMacroAssembler::kTableMask;
-
- int base = (min_char & ~kMask);
- USE(base);
-
- // Assert that everything is on one kTableSize page.
- for (int i = start_index; i <= end_index; i++) {
- DCHECK_EQ(ranges->at(i) & ~kMask, base);
- }
- DCHECK(start_index == 0 || (ranges->at(start_index - 1) & ~kMask) <= base);
-
- char templ[kSize];
- Label* on_bit_set;
- Label* on_bit_clear;
- int bit;
- if (even_label == fall_through) {
- on_bit_set = odd_label;
- on_bit_clear = even_label;
- bit = 1;
- } else {
- on_bit_set = even_label;
- on_bit_clear = odd_label;
- bit = 0;
- }
- for (int i = 0; i < (ranges->at(start_index) & kMask) && i < kSize; i++) {
- templ[i] = bit;
- }
- int j = 0;
- bit ^= 1;
- for (int i = start_index; i < end_index; i++) {
- for (j = (ranges->at(i) & kMask); j < (ranges->at(i + 1) & kMask); j++) {
- templ[j] = bit;
- }
- bit ^= 1;
- }
- for (int i = j; i < kSize; i++) {
- templ[i] = bit;
- }
- Factory* factory = masm->isolate()->factory();
- // TODO(erikcorry): Cache these.
- Handle<ByteArray> ba = factory->NewByteArray(kSize, AllocationType::kOld);
- for (int i = 0; i < kSize; i++) {
- ba->set(i, templ[i]);
- }
- masm->CheckBitInTable(ba, on_bit_set);
- if (on_bit_clear != fall_through) masm->GoTo(on_bit_clear);
-}
-
-static void CutOutRange(RegExpMacroAssembler* masm, ZoneList<int>* ranges,
- int start_index, int end_index, int cut_index,
- Label* even_label, Label* odd_label) {
- bool odd = (((cut_index - start_index) & 1) == 1);
- Label* in_range_label = odd ? odd_label : even_label;
- Label dummy;
- EmitDoubleBoundaryTest(masm, ranges->at(cut_index),
- ranges->at(cut_index + 1) - 1, &dummy, in_range_label,
- &dummy);
- DCHECK(!dummy.is_linked());
- // Cut out the single range by rewriting the array. This creates a new
- // range that is a merger of the two ranges on either side of the one we
- // are cutting out. The oddity of the labels is preserved.
- for (int j = cut_index; j > start_index; j--) {
- ranges->at(j) = ranges->at(j - 1);
- }
- for (int j = cut_index + 1; j < end_index; j++) {
- ranges->at(j) = ranges->at(j + 1);
- }
-}
-
-// Unicode case. Split the search space into kSize spaces that are handled
-// with recursion.
-static void SplitSearchSpace(ZoneList<int>* ranges, int start_index,
- int end_index, int* new_start_index,
- int* new_end_index, int* border) {
- static const int kSize = RegExpMacroAssembler::kTableSize;
- static const int kMask = RegExpMacroAssembler::kTableMask;
-
- int first = ranges->at(start_index);
- int last = ranges->at(end_index) - 1;
-
- *new_start_index = start_index;
- *border = (ranges->at(start_index) & ~kMask) + kSize;
- while (*new_start_index < end_index) {
- if (ranges->at(*new_start_index) > *border) break;
- (*new_start_index)++;
- }
- // new_start_index is the index of the first edge that is beyond the
- // current kSize space.
-
- // For very large search spaces we do a binary chop search of the non-Latin1
- // space instead of just going to the end of the current kSize space. The
- // heuristics are complicated a little by the fact that any 128-character
- // encoding space can be quickly tested with a table lookup, so we don't
- // wish to do binary chop search at a smaller granularity than that. A
- // 128-character space can take up a lot of space in the ranges array if,
- // for example, we only want to match every second character (eg. the lower
- // case characters on some Unicode pages).
- int binary_chop_index = (end_index + start_index) / 2;
- // The first test ensures that we get to the code that handles the Latin1
- // range with a single not-taken branch, speeding up this important
- // character range (even non-Latin1 charset-based text has spaces and
- // punctuation).
- if (*border - 1 > String::kMaxOneByteCharCode && // Latin1 case.
- end_index - start_index > (*new_start_index - start_index) * 2 &&
- last - first > kSize * 2 && binary_chop_index > *new_start_index &&
- ranges->at(binary_chop_index) >= first + 2 * kSize) {
- int scan_forward_for_section_border = binary_chop_index;
- int new_border = (ranges->at(binary_chop_index) | kMask) + 1;
-
- while (scan_forward_for_section_border < end_index) {
- if (ranges->at(scan_forward_for_section_border) > new_border) {
- *new_start_index = scan_forward_for_section_border;
- *border = new_border;
- break;
- }
- scan_forward_for_section_border++;
- }
- }
-
- DCHECK(*new_start_index > start_index);
- *new_end_index = *new_start_index - 1;
- if (ranges->at(*new_end_index) == *border) {
- (*new_end_index)--;
- }
- if (*border >= ranges->at(end_index)) {
- *border = ranges->at(end_index);
- *new_start_index = end_index; // Won't be used.
- *new_end_index = end_index - 1;
- }
-}
-
-// Gets a series of segment boundaries representing a character class. If the
-// character is in the range between an even and an odd boundary (counting from
-// start_index) then go to even_label, otherwise go to odd_label. We already
-// know that the character is in the range of min_char to max_char inclusive.
-// Either label can be nullptr indicating backtracking. Either label can also
-// be equal to the fall_through label.
-static void GenerateBranches(RegExpMacroAssembler* masm, ZoneList<int>* ranges,
- int start_index, int end_index, uc32 min_char,
- uc32 max_char, Label* fall_through,
- Label* even_label, Label* odd_label) {
- DCHECK_LE(min_char, String::kMaxUtf16CodeUnit);
- DCHECK_LE(max_char, String::kMaxUtf16CodeUnit);
-
- int first = ranges->at(start_index);
- int last = ranges->at(end_index) - 1;
-
- DCHECK_LT(min_char, first);
-
- // Just need to test if the character is before or on-or-after
- // a particular character.
- if (start_index == end_index) {
- EmitBoundaryTest(masm, first, fall_through, even_label, odd_label);
- return;
- }
-
- // Another almost trivial case: There is one interval in the middle that is
- // different from the end intervals.
- if (start_index + 1 == end_index) {
- EmitDoubleBoundaryTest(masm, first, last, fall_through, even_label,
- odd_label);
- return;
- }
-
- // It's not worth using table lookup if there are very few intervals in the
- // character class.
- if (end_index - start_index <= 6) {
- // It is faster to test for individual characters, so we look for those
- // first, then try arbitrary ranges in the second round.
- static int kNoCutIndex = -1;
- int cut = kNoCutIndex;
- for (int i = start_index; i < end_index; i++) {
- if (ranges->at(i) == ranges->at(i + 1) - 1) {
- cut = i;
- break;
- }
- }
- if (cut == kNoCutIndex) cut = start_index;
- CutOutRange(masm, ranges, start_index, end_index, cut, even_label,
- odd_label);
- DCHECK_GE(end_index - start_index, 2);
- GenerateBranches(masm, ranges, start_index + 1, end_index - 1, min_char,
- max_char, fall_through, even_label, odd_label);
- return;
- }
-
- // If there are a lot of intervals in the regexp, then we will use tables to
- // determine whether the character is inside or outside the character class.
- static const int kBits = RegExpMacroAssembler::kTableSizeBits;
-
- if ((max_char >> kBits) == (min_char >> kBits)) {
- EmitUseLookupTable(masm, ranges, start_index, end_index, min_char,
- fall_through, even_label, odd_label);
- return;
- }
-
- if ((min_char >> kBits) != (first >> kBits)) {
- masm->CheckCharacterLT(first, odd_label);
- GenerateBranches(masm, ranges, start_index + 1, end_index, first, max_char,
- fall_through, odd_label, even_label);
- return;
- }
-
- int new_start_index = 0;
- int new_end_index = 0;
- int border = 0;
-
- SplitSearchSpace(ranges, start_index, end_index, &new_start_index,
- &new_end_index, &border);
-
- Label handle_rest;
- Label* above = &handle_rest;
- if (border == last + 1) {
- // We didn't find any section that started after the limit, so everything
- // above the border is one of the terminal labels.
- above = (end_index & 1) != (start_index & 1) ? odd_label : even_label;
- DCHECK(new_end_index == end_index - 1);
- }
-
- DCHECK_LE(start_index, new_end_index);
- DCHECK_LE(new_start_index, end_index);
- DCHECK_LT(start_index, new_start_index);
- DCHECK_LT(new_end_index, end_index);
- DCHECK(new_end_index + 1 == new_start_index ||
- (new_end_index + 2 == new_start_index &&
- border == ranges->at(new_end_index + 1)));
- DCHECK_LT(min_char, border - 1);
- DCHECK_LT(border, max_char);
- DCHECK_LT(ranges->at(new_end_index), border);
- DCHECK(border < ranges->at(new_start_index) ||
- (border == ranges->at(new_start_index) &&
- new_start_index == end_index && new_end_index == end_index - 1 &&
- border == last + 1));
- DCHECK(new_start_index == 0 || border >= ranges->at(new_start_index - 1));
-
- masm->CheckCharacterGT(border - 1, above);
- Label dummy;
- GenerateBranches(masm, ranges, start_index, new_end_index, min_char,
- border - 1, &dummy, even_label, odd_label);
- if (handle_rest.is_linked()) {
- masm->Bind(&handle_rest);
- bool flip = (new_start_index & 1) != (start_index & 1);
- GenerateBranches(masm, ranges, new_start_index, end_index, border, max_char,
- &dummy, flip ? odd_label : even_label,
- flip ? even_label : odd_label);
- }
-}
-
-static void EmitCharClass(RegExpMacroAssembler* macro_assembler,
- RegExpCharacterClass* cc, bool one_byte,
- Label* on_failure, int cp_offset, bool check_offset,
- bool preloaded, Zone* zone) {
- ZoneList<CharacterRange>* ranges = cc->ranges(zone);
- CharacterRange::Canonicalize(ranges);
-
- int max_char;
- if (one_byte) {
- max_char = String::kMaxOneByteCharCode;
- } else {
- max_char = String::kMaxUtf16CodeUnit;
- }
-
- int range_count = ranges->length();
-
- int last_valid_range = range_count - 1;
- while (last_valid_range >= 0) {
- CharacterRange& range = ranges->at(last_valid_range);
- if (range.from() <= max_char) {
- break;
- }
- last_valid_range--;
- }
-
- if (last_valid_range < 0) {
- if (!cc->is_negated()) {
- macro_assembler->GoTo(on_failure);
- }
- if (check_offset) {
- macro_assembler->CheckPosition(cp_offset, on_failure);
- }
- return;
- }
-
- if (last_valid_range == 0 && ranges->at(0).IsEverything(max_char)) {
- if (cc->is_negated()) {
- macro_assembler->GoTo(on_failure);
- } else {
- // This is a common case hit by non-anchored expressions.
- if (check_offset) {
- macro_assembler->CheckPosition(cp_offset, on_failure);
- }
- }
- return;
- }
-
- if (!preloaded) {
- macro_assembler->LoadCurrentCharacter(cp_offset, on_failure, check_offset);
- }
-
- if (cc->is_standard(zone) && macro_assembler->CheckSpecialCharacterClass(
- cc->standard_type(), on_failure)) {
- return;
- }
-
- // A new list with ascending entries. Each entry is a code unit
- // where there is a boundary between code units that are part of
- // the class and code units that are not. Normally we insert an
- // entry at zero which goes to the failure label, but if there
- // was already one there we fall through for success on that entry.
- // Subsequent entries have alternating meaning (success/failure).
- ZoneList<int>* range_boundaries =
- new (zone) ZoneList<int>(last_valid_range, zone);
-
- bool zeroth_entry_is_failure = !cc->is_negated();
-
- for (int i = 0; i <= last_valid_range; i++) {
- CharacterRange& range = ranges->at(i);
- if (range.from() == 0) {
- DCHECK_EQ(i, 0);
- zeroth_entry_is_failure = !zeroth_entry_is_failure;
- } else {
- range_boundaries->Add(range.from(), zone);
- }
- range_boundaries->Add(range.to() + 1, zone);
- }
- int end_index = range_boundaries->length() - 1;
- if (range_boundaries->at(end_index) > max_char) {
- end_index--;
- }
-
- Label fall_through;
- GenerateBranches(macro_assembler, range_boundaries,
- 0, // start_index.
- end_index,
- 0, // min_char.
- max_char, &fall_through,
- zeroth_entry_is_failure ? &fall_through : on_failure,
- zeroth_entry_is_failure ? on_failure : &fall_through);
- macro_assembler->Bind(&fall_through);
-}
-
-RegExpNode::~RegExpNode() = default;
-
-RegExpNode::LimitResult RegExpNode::LimitVersions(RegExpCompiler* compiler,
- Trace* trace) {
- // If we are generating a greedy loop then don't stop and don't reuse code.
- if (trace->stop_node() != nullptr) {
- return CONTINUE;
- }
-
- RegExpMacroAssembler* macro_assembler = compiler->macro_assembler();
- if (trace->is_trivial()) {
- if (label_.is_bound() || on_work_list() || !KeepRecursing(compiler)) {
- // If a generic version is already scheduled to be generated or we have
- // recursed too deeply then just generate a jump to that code.
- macro_assembler->GoTo(&label_);
- // This will queue it up for generation of a generic version if it hasn't
- // already been queued.
- compiler->AddWork(this);
- return DONE;
- }
- // Generate generic version of the node and bind the label for later use.
- macro_assembler->Bind(&label_);
- return CONTINUE;
- }
-
- // We are being asked to make a non-generic version. Keep track of how many
- // non-generic versions we generate so as not to overdo it.
- trace_count_++;
- if (KeepRecursing(compiler) && compiler->optimize() &&
- trace_count_ < kMaxCopiesCodeGenerated) {
- return CONTINUE;
- }
-
- // If we get here code has been generated for this node too many times or
- // recursion is too deep. Time to switch to a generic version. The code for
- // generic versions above can handle deep recursion properly.
- bool was_limiting = compiler->limiting_recursion();
- compiler->set_limiting_recursion(true);
- trace->Flush(compiler, this);
- compiler->set_limiting_recursion(was_limiting);
- return DONE;
-}
-
-bool RegExpNode::KeepRecursing(RegExpCompiler* compiler) {
- return !compiler->limiting_recursion() &&
- compiler->recursion_depth() <= RegExpCompiler::kMaxRecursion;
-}
-
-void ActionNode::FillInBMInfo(Isolate* isolate, int offset, int budget,
- BoyerMooreLookahead* bm, bool not_at_start) {
- if (action_type_ == POSITIVE_SUBMATCH_SUCCESS) {
- // Anything may follow a positive submatch success, thus we need to accept
- // all characters from this position onwards.
- bm->SetRest(offset);
- } else {
- on_success()->FillInBMInfo(isolate, offset, budget - 1, bm, not_at_start);
- }
- SaveBMInfo(bm, not_at_start, offset);
-}
-
-void ActionNode::GetQuickCheckDetails(QuickCheckDetails* details,
- RegExpCompiler* compiler, int filled_in,
- bool not_at_start) {
- if (action_type_ == SET_REGISTER_FOR_LOOP) {
- on_success()->GetQuickCheckDetailsFromLoopEntry(details, compiler,
- filled_in, not_at_start);
- } else {
- on_success()->GetQuickCheckDetails(details, compiler, filled_in,
- not_at_start);
- }
-}
-
-void AssertionNode::FillInBMInfo(Isolate* isolate, int offset, int budget,
- BoyerMooreLookahead* bm, bool not_at_start) {
- // Match the behaviour of EatsAtLeast on this node.
- if (assertion_type() == AT_START && not_at_start) return;
- on_success()->FillInBMInfo(isolate, offset, budget - 1, bm, not_at_start);
- SaveBMInfo(bm, not_at_start, offset);
-}
-
-void NegativeLookaroundChoiceNode::GetQuickCheckDetails(
- QuickCheckDetails* details, RegExpCompiler* compiler, int filled_in,
- bool not_at_start) {
- RegExpNode* node = continue_node();
- return node->GetQuickCheckDetails(details, compiler, filled_in, not_at_start);
-}
-
-// Takes the left-most 1-bit and smears it out, setting all bits to its right.
-static inline uint32_t SmearBitsRight(uint32_t v) {
- v |= v >> 1;
- v |= v >> 2;
- v |= v >> 4;
- v |= v >> 8;
- v |= v >> 16;
- return v;
-}
-
-bool QuickCheckDetails::Rationalize(bool asc) {
- bool found_useful_op = false;
- uint32_t char_mask;
- if (asc) {
- char_mask = String::kMaxOneByteCharCode;
- } else {
- char_mask = String::kMaxUtf16CodeUnit;
- }
- mask_ = 0;
- value_ = 0;
- int char_shift = 0;
- for (int i = 0; i < characters_; i++) {
- Position* pos = &positions_[i];
- if ((pos->mask & String::kMaxOneByteCharCode) != 0) {
- found_useful_op = true;
- }
- mask_ |= (pos->mask & char_mask) << char_shift;
- value_ |= (pos->value & char_mask) << char_shift;
- char_shift += asc ? 8 : 16;
- }
- return found_useful_op;
-}
-
-int RegExpNode::EatsAtLeast(bool not_at_start) {
- return not_at_start ? eats_at_least_.eats_at_least_from_not_start
- : eats_at_least_.eats_at_least_from_possibly_start;
-}
-
-EatsAtLeastInfo RegExpNode::EatsAtLeastFromLoopEntry() {
- // SET_REGISTER_FOR_LOOP is only used to initialize loop counters, and it
- // implies that the following node must be a LoopChoiceNode. If we need to
- // set registers to constant values for other reasons, we could introduce a
- // new action type SET_REGISTER that doesn't imply anything about its
- // successor.
- UNREACHABLE();
-}
-
-void RegExpNode::GetQuickCheckDetailsFromLoopEntry(QuickCheckDetails* details,
- RegExpCompiler* compiler,
- int characters_filled_in,
- bool not_at_start) {
- // See comment in RegExpNode::EatsAtLeastFromLoopEntry.
- UNREACHABLE();
-}
-
-EatsAtLeastInfo LoopChoiceNode::EatsAtLeastFromLoopEntry() {
- DCHECK_EQ(alternatives_->length(), 2); // There's just loop and continue.
-
- if (read_backward()) {
- // Can't do anything special for a backward loop, so return the basic values
- // that we got during analysis.
- return *eats_at_least_info();
- }
-
- // Figure out how much the loop body itself eats, not including anything in
- // the continuation case. In general, the nodes in the loop body should report
- // that they eat at least the number eaten by the continuation node, since any
- // successful match in the loop body must also include the continuation node.
- // However, in some cases involving positive lookaround, the loop body under-
- // reports its appetite, so use saturated math here to avoid negative numbers.
- uint8_t loop_body_from_not_start = base::saturated_cast<uint8_t>(
- loop_node_->EatsAtLeast(true) - continue_node_->EatsAtLeast(true));
- uint8_t loop_body_from_possibly_start = base::saturated_cast<uint8_t>(
- loop_node_->EatsAtLeast(false) - continue_node_->EatsAtLeast(true));
-
- // Limit the number of loop iterations to avoid overflow in subsequent steps.
- int loop_iterations = base::saturated_cast<uint8_t>(min_loop_iterations());
-
- EatsAtLeastInfo result;
- result.eats_at_least_from_not_start =
- base::saturated_cast<uint8_t>(loop_iterations * loop_body_from_not_start +
- continue_node_->EatsAtLeast(true));
- if (loop_iterations > 0 && loop_body_from_possibly_start > 0) {
- // First loop iteration eats at least one, so all subsequent iterations
- // and the after-loop chunk are guaranteed to not be at the start.
- result.eats_at_least_from_possibly_start = base::saturated_cast<uint8_t>(
- loop_body_from_possibly_start +
- (loop_iterations - 1) * loop_body_from_not_start +
- continue_node_->EatsAtLeast(true));
- } else {
- // Loop body might eat nothing, so only continue node contributes.
- result.eats_at_least_from_possibly_start =
- continue_node_->EatsAtLeast(false);
- }
- return result;
-}
-
-bool RegExpNode::EmitQuickCheck(RegExpCompiler* compiler,
- Trace* bounds_check_trace, Trace* trace,
- bool preload_has_checked_bounds,
- Label* on_possible_success,
- QuickCheckDetails* details,
- bool fall_through_on_failure,
- ChoiceNode* predecessor) {
- DCHECK_NOT_NULL(predecessor);
- if (details->characters() == 0) return false;
- GetQuickCheckDetails(details, compiler, 0,
- trace->at_start() == Trace::FALSE_VALUE);
- if (details->cannot_match()) return false;
- if (!details->Rationalize(compiler->one_byte())) return false;
- DCHECK(details->characters() == 1 ||
- compiler->macro_assembler()->CanReadUnaligned());
- uint32_t mask = details->mask();
- uint32_t value = details->value();
-
- RegExpMacroAssembler* assembler = compiler->macro_assembler();
-
- if (trace->characters_preloaded() != details->characters()) {
- DCHECK(trace->cp_offset() == bounds_check_trace->cp_offset());
- // The bounds check is performed using the minimum number of characters
- // any choice would eat, so if the bounds check fails, then none of the
- // choices can succeed, so we can just immediately backtrack, rather
- // than go to the next choice. The number of characters preloaded may be
- // less than the number used for the bounds check.
- int eats_at_least = predecessor->EatsAtLeast(
- bounds_check_trace->at_start() == Trace::FALSE_VALUE);
- DCHECK_GE(eats_at_least, details->characters());
- assembler->LoadCurrentCharacter(
- trace->cp_offset(), bounds_check_trace->backtrack(),
- !preload_has_checked_bounds, details->characters(), eats_at_least);
- }
-
- bool need_mask = true;
-
- if (details->characters() == 1) {
- // If number of characters preloaded is 1 then we used a byte or 16 bit
- // load so the value is already masked down.
- uint32_t char_mask;
- if (compiler->one_byte()) {
- char_mask = String::kMaxOneByteCharCode;
- } else {
- char_mask = String::kMaxUtf16CodeUnit;
- }
- if ((mask & char_mask) == char_mask) need_mask = false;
- mask &= char_mask;
- } else {
- // For 2-character preloads in one-byte mode or 1-character preloads in
- // two-byte mode we also use a 16 bit load with zero extend.
- static const uint32_t kTwoByteMask = 0xFFFF;
- static const uint32_t kFourByteMask = 0xFFFFFFFF;
- if (details->characters() == 2 && compiler->one_byte()) {
- if ((mask & kTwoByteMask) == kTwoByteMask) need_mask = false;
- } else if (details->characters() == 1 && !compiler->one_byte()) {
- if ((mask & kTwoByteMask) == kTwoByteMask) need_mask = false;
- } else {
- if (mask == kFourByteMask) need_mask = false;
- }
- }
-
- if (fall_through_on_failure) {
- if (need_mask) {
- assembler->CheckCharacterAfterAnd(value, mask, on_possible_success);
- } else {
- assembler->CheckCharacter(value, on_possible_success);
- }
- } else {
- if (need_mask) {
- assembler->CheckNotCharacterAfterAnd(value, mask, trace->backtrack());
- } else {
- assembler->CheckNotCharacter(value, trace->backtrack());
- }
- }
- return true;
-}
-
-// Here is the meat of GetQuickCheckDetails (see also the comment on the
-// super-class in the .h file).
-//
-// We iterate along the text object, building up for each character a
-// mask and value that can be used to test for a quick failure to match.
-// The masks and values for the positions will be combined into a single
-// machine word for the current character width in order to be used in
-// generating a quick check.
-void TextNode::GetQuickCheckDetails(QuickCheckDetails* details,
- RegExpCompiler* compiler,
- int characters_filled_in,
- bool not_at_start) {
- // Do not collect any quick check details if the text node reads backward,
- // since it reads in the opposite direction than we use for quick checks.
- if (read_backward()) return;
- Isolate* isolate = compiler->macro_assembler()->isolate();
- DCHECK(characters_filled_in < details->characters());
- int characters = details->characters();
- int char_mask;
- if (compiler->one_byte()) {
- char_mask = String::kMaxOneByteCharCode;
- } else {
- char_mask = String::kMaxUtf16CodeUnit;
- }
- for (int k = 0; k < elements()->length(); k++) {
- TextElement elm = elements()->at(k);
- if (elm.text_type() == TextElement::ATOM) {
- Vector<const uc16> quarks = elm.atom()->data();
- for (int i = 0; i < characters && i < quarks.length(); i++) {
- QuickCheckDetails::Position* pos =
- details->positions(characters_filled_in);
- uc16 c = quarks[i];
- if (elm.atom()->ignore_case()) {
- unibrow::uchar chars[4];
- int length = GetCaseIndependentLetters(
- isolate, c, compiler->one_byte(), chars, 4);
- if (length == 0) {
- // This can happen because all case variants are non-Latin1, but we
- // know the input is Latin1.
- details->set_cannot_match();
- pos->determines_perfectly = false;
- return;
- }
- if (length == 1) {
- // This letter has no case equivalents, so it's nice and simple
- // and the mask-compare will determine definitely whether we have
- // a match at this character position.
- pos->mask = char_mask;
- pos->value = chars[0];
- pos->determines_perfectly = true;
- } else {
- uint32_t common_bits = char_mask;
- uint32_t bits = chars[0];
- for (int j = 1; j < length; j++) {
- uint32_t differing_bits = ((chars[j] & common_bits) ^ bits);
- common_bits ^= differing_bits;
- bits &= common_bits;
- }
- // If length is 2 and common bits has only one zero in it then
- // our mask and compare instruction will determine definitely
- // whether we have a match at this character position. Otherwise
- // it can only be an approximate check.
- uint32_t one_zero = (common_bits | ~char_mask);
- if (length == 2 && ((~one_zero) & ((~one_zero) - 1)) == 0) {
- pos->determines_perfectly = true;
- }
- pos->mask = common_bits;
- pos->value = bits;
- }
- } else {
- // Don't ignore case. Nice simple case where the mask-compare will
- // determine definitely whether we have a match at this character
- // position.
- if (c > char_mask) {
- details->set_cannot_match();
- pos->determines_perfectly = false;
- return;
- }
- pos->mask = char_mask;
- pos->value = c;
- pos->determines_perfectly = true;
- }
- characters_filled_in++;
- DCHECK(characters_filled_in <= details->characters());
- if (characters_filled_in == details->characters()) {
- return;
- }
- }
- } else {
- QuickCheckDetails::Position* pos =
- details->positions(characters_filled_in);
- RegExpCharacterClass* tree = elm.char_class();
- ZoneList<CharacterRange>* ranges = tree->ranges(zone());
- DCHECK(!ranges->is_empty());
- if (tree->is_negated()) {
- // A quick check uses multi-character mask and compare. There is no
- // useful way to incorporate a negative char class into this scheme
- // so we just conservatively create a mask and value that will always
- // succeed.
- pos->mask = 0;
- pos->value = 0;
- } else {
- int first_range = 0;
- while (ranges->at(first_range).from() > char_mask) {
- first_range++;
- if (first_range == ranges->length()) {
- details->set_cannot_match();
- pos->determines_perfectly = false;
- return;
- }
- }
- CharacterRange range = ranges->at(first_range);
- uc16 from = range.from();
- uc16 to = range.to();
- if (to > char_mask) {
- to = char_mask;
- }
- uint32_t differing_bits = (from ^ to);
- // A mask and compare is only perfect if the differing bits form a
- // number like 00011111 with one single block of trailing 1s.
- if ((differing_bits & (differing_bits + 1)) == 0 &&
- from + differing_bits == to) {
- pos->determines_perfectly = true;
- }
- uint32_t common_bits = ~SmearBitsRight(differing_bits);
- uint32_t bits = (from & common_bits);
- for (int i = first_range + 1; i < ranges->length(); i++) {
- CharacterRange range = ranges->at(i);
- uc16 from = range.from();
- uc16 to = range.to();
- if (from > char_mask) continue;
- if (to > char_mask) to = char_mask;
- // Here we are combining more ranges into the mask and compare
- // value. With each new range the mask becomes more sparse and
- // so the chances of a false positive rise. A character class
- // with multiple ranges is assumed never to be equivalent to a
- // mask and compare operation.
- pos->determines_perfectly = false;
- uint32_t new_common_bits = (from ^ to);
- new_common_bits = ~SmearBitsRight(new_common_bits);
- common_bits &= new_common_bits;
- bits &= new_common_bits;
- uint32_t differing_bits = (from & common_bits) ^ bits;
- common_bits ^= differing_bits;
- bits &= common_bits;
- }
- pos->mask = common_bits;
- pos->value = bits;
- }
- characters_filled_in++;
- DCHECK(characters_filled_in <= details->characters());
- if (characters_filled_in == details->characters()) {
- return;
- }
- }
- }
- DCHECK(characters_filled_in != details->characters());
- if (!details->cannot_match()) {
- on_success()->GetQuickCheckDetails(details, compiler, characters_filled_in,
- true);
- }
-}
-
-void QuickCheckDetails::Clear() {
- for (int i = 0; i < characters_; i++) {
- positions_[i].mask = 0;
- positions_[i].value = 0;
- positions_[i].determines_perfectly = false;
- }
- characters_ = 0;
-}
-
-void QuickCheckDetails::Advance(int by, bool one_byte) {
- if (by >= characters_ || by < 0) {
- DCHECK_IMPLIES(by < 0, characters_ == 0);
- Clear();
- return;
- }
- DCHECK_LE(characters_ - by, 4);
- DCHECK_LE(characters_, 4);
- for (int i = 0; i < characters_ - by; i++) {
- positions_[i] = positions_[by + i];
- }
- for (int i = characters_ - by; i < characters_; i++) {
- positions_[i].mask = 0;
- positions_[i].value = 0;
- positions_[i].determines_perfectly = false;
- }
- characters_ -= by;
- // We could change mask_ and value_ here but we would never advance unless
- // they had already been used in a check and they won't be used again because
- // it would gain us nothing. So there's no point.
-}
-
-void QuickCheckDetails::Merge(QuickCheckDetails* other, int from_index) {
- DCHECK(characters_ == other->characters_);
- if (other->cannot_match_) {
- return;
- }
- if (cannot_match_) {
- *this = *other;
- return;
- }
- for (int i = from_index; i < characters_; i++) {
- QuickCheckDetails::Position* pos = positions(i);
- QuickCheckDetails::Position* other_pos = other->positions(i);
- if (pos->mask != other_pos->mask || pos->value != other_pos->value ||
- !other_pos->determines_perfectly) {
- // Our mask-compare operation will be approximate unless we have the
- // exact same operation on both sides of the alternation.
- pos->determines_perfectly = false;
- }
- pos->mask &= other_pos->mask;
- pos->value &= pos->mask;
- other_pos->value &= pos->mask;
- uc16 differing_bits = (pos->value ^ other_pos->value);
- pos->mask &= ~differing_bits;
- pos->value &= pos->mask;
- }
-}
-
-class VisitMarker {
- public:
- explicit VisitMarker(NodeInfo* info) : info_(info) {
- DCHECK(!info->visited);
- info->visited = true;
- }
- ~VisitMarker() { info_->visited = false; }
-
- private:
- NodeInfo* info_;
-};
-
-// Temporarily sets traversed_loop_initialization_node_.
-class LoopInitializationMarker {
- public:
- explicit LoopInitializationMarker(LoopChoiceNode* node) : node_(node) {
- DCHECK(!node_->traversed_loop_initialization_node_);
- node_->traversed_loop_initialization_node_ = true;
- }
- ~LoopInitializationMarker() {
- DCHECK(node_->traversed_loop_initialization_node_);
- node_->traversed_loop_initialization_node_ = false;
- }
-
- private:
- LoopChoiceNode* node_;
- DISALLOW_COPY_AND_ASSIGN(LoopInitializationMarker);
-};
-
-// Temporarily decrements min_loop_iterations_.
-class IterationDecrementer {
- public:
- explicit IterationDecrementer(LoopChoiceNode* node) : node_(node) {
- DCHECK_GT(node_->min_loop_iterations_, 0);
- --node_->min_loop_iterations_;
- }
- ~IterationDecrementer() { ++node_->min_loop_iterations_; }
-
- private:
- LoopChoiceNode* node_;
- DISALLOW_COPY_AND_ASSIGN(IterationDecrementer);
-};
-
-RegExpNode* SeqRegExpNode::FilterOneByte(int depth) {
- if (info()->replacement_calculated) return replacement();
- if (depth < 0) return this;
- DCHECK(!info()->visited);
- VisitMarker marker(info());
- return FilterSuccessor(depth - 1);
-}
-
-RegExpNode* SeqRegExpNode::FilterSuccessor(int depth) {
- RegExpNode* next = on_success_->FilterOneByte(depth - 1);
- if (next == nullptr) return set_replacement(nullptr);
- on_success_ = next;
- return set_replacement(this);
-}
-
-// We need to check for the following characters: 0x39C 0x3BC 0x178.
-bool RangeContainsLatin1Equivalents(CharacterRange range) {
- // TODO(dcarney): this could be a lot more efficient.
- return range.Contains(0x039C) || range.Contains(0x03BC) ||
- range.Contains(0x0178);
-}
-
-static bool RangesContainLatin1Equivalents(ZoneList<CharacterRange>* ranges) {
- for (int i = 0; i < ranges->length(); i++) {
- // TODO(dcarney): this could be a lot more efficient.
- if (RangeContainsLatin1Equivalents(ranges->at(i))) return true;
- }
- return false;
-}
-
-RegExpNode* TextNode::FilterOneByte(int depth) {
- if (info()->replacement_calculated) return replacement();
- if (depth < 0) return this;
- DCHECK(!info()->visited);
- VisitMarker marker(info());
- int element_count = elements()->length();
- for (int i = 0; i < element_count; i++) {
- TextElement elm = elements()->at(i);
- if (elm.text_type() == TextElement::ATOM) {
- Vector<const uc16> quarks = elm.atom()->data();
- for (int j = 0; j < quarks.length(); j++) {
- uc16 c = quarks[j];
- if (elm.atom()->ignore_case()) {
- c = unibrow::Latin1::TryConvertToLatin1(c);
- }
- if (c > unibrow::Latin1::kMaxChar) return set_replacement(nullptr);
- // Replace quark in case we converted to Latin-1.
- uc16* writable_quarks = const_cast<uc16*>(quarks.begin());
- writable_quarks[j] = c;
- }
- } else {
- DCHECK(elm.text_type() == TextElement::CHAR_CLASS);
- RegExpCharacterClass* cc = elm.char_class();
- ZoneList<CharacterRange>* ranges = cc->ranges(zone());
- CharacterRange::Canonicalize(ranges);
- // Now they are in order so we only need to look at the first.
- int range_count = ranges->length();
- if (cc->is_negated()) {
- if (range_count != 0 && ranges->at(0).from() == 0 &&
- ranges->at(0).to() >= String::kMaxOneByteCharCode) {
- // This will be handled in a later filter.
- if (IgnoreCase(cc->flags()) && RangesContainLatin1Equivalents(ranges))
- continue;
- return set_replacement(nullptr);
- }
- } else {
- if (range_count == 0 ||
- ranges->at(0).from() > String::kMaxOneByteCharCode) {
- // This will be handled in a later filter.
- if (IgnoreCase(cc->flags()) && RangesContainLatin1Equivalents(ranges))
- continue;
- return set_replacement(nullptr);
- }
- }
- }
- }
- return FilterSuccessor(depth - 1);
-}
-
-RegExpNode* LoopChoiceNode::FilterOneByte(int depth) {
- if (info()->replacement_calculated) return replacement();
- if (depth < 0) return this;
- if (info()->visited) return this;
- {
- VisitMarker marker(info());
-
- RegExpNode* continue_replacement = continue_node_->FilterOneByte(depth - 1);
- // If we can't continue after the loop then there is no sense in doing the
- // loop.
- if (continue_replacement == nullptr) return set_replacement(nullptr);
- }
-
- return ChoiceNode::FilterOneByte(depth - 1);
-}
-
-RegExpNode* ChoiceNode::FilterOneByte(int depth) {
- if (info()->replacement_calculated) return replacement();
- if (depth < 0) return this;
- if (info()->visited) return this;
- VisitMarker marker(info());
- int choice_count = alternatives_->length();
-
- for (int i = 0; i < choice_count; i++) {
- GuardedAlternative alternative = alternatives_->at(i);
- if (alternative.guards() != nullptr &&
- alternative.guards()->length() != 0) {
- set_replacement(this);
- return this;
- }
- }
-
- int surviving = 0;
- RegExpNode* survivor = nullptr;
- for (int i = 0; i < choice_count; i++) {
- GuardedAlternative alternative = alternatives_->at(i);
- RegExpNode* replacement = alternative.node()->FilterOneByte(depth - 1);
- DCHECK(replacement != this); // No missing EMPTY_MATCH_CHECK.
- if (replacement != nullptr) {
- alternatives_->at(i).set_node(replacement);
- surviving++;
- survivor = replacement;
- }
- }
- if (surviving < 2) return set_replacement(survivor);
-
- set_replacement(this);
- if (surviving == choice_count) {
- return this;
- }
- // Only some of the nodes survived the filtering. We need to rebuild the
- // alternatives list.
- ZoneList<GuardedAlternative>* new_alternatives =
- new (zone()) ZoneList<GuardedAlternative>(surviving, zone());
- for (int i = 0; i < choice_count; i++) {
- RegExpNode* replacement =
- alternatives_->at(i).node()->FilterOneByte(depth - 1);
- if (replacement != nullptr) {
- alternatives_->at(i).set_node(replacement);
- new_alternatives->Add(alternatives_->at(i), zone());
- }
- }
- alternatives_ = new_alternatives;
- return this;
-}
-
-RegExpNode* NegativeLookaroundChoiceNode::FilterOneByte(int depth) {
- if (info()->replacement_calculated) return replacement();
- if (depth < 0) return this;
- if (info()->visited) return this;
- VisitMarker marker(info());
- // Alternative 0 is the negative lookahead, alternative 1 is what comes
- // afterwards.
- RegExpNode* node = continue_node();
- RegExpNode* replacement = node->FilterOneByte(depth - 1);
- if (replacement == nullptr) return set_replacement(nullptr);
- alternatives_->at(kContinueIndex).set_node(replacement);
-
- RegExpNode* neg_node = lookaround_node();
- RegExpNode* neg_replacement = neg_node->FilterOneByte(depth - 1);
- // If the negative lookahead is always going to fail then
- // we don't need to check it.
- if (neg_replacement == nullptr) return set_replacement(replacement);
- alternatives_->at(kLookaroundIndex).set_node(neg_replacement);
- return set_replacement(this);
-}
-
-void LoopChoiceNode::GetQuickCheckDetails(QuickCheckDetails* details,
- RegExpCompiler* compiler,
- int characters_filled_in,
- bool not_at_start) {
- if (body_can_be_zero_length_ || info()->visited) return;
- not_at_start = not_at_start || this->not_at_start();
- DCHECK_EQ(alternatives_->length(), 2); // There's just loop and continue.
- if (traversed_loop_initialization_node_ && min_loop_iterations_ > 0 &&
- loop_node_->EatsAtLeast(not_at_start) >
- continue_node_->EatsAtLeast(true)) {
- // Loop body is guaranteed to execute at least once, and consume characters
- // when it does, meaning the only possible quick checks from this point
- // begin with the loop body. We may recursively visit this LoopChoiceNode,
- // but we temporarily decrease its minimum iteration counter so we know when
- // to check the continue case.
- IterationDecrementer next_iteration(this);
- loop_node_->GetQuickCheckDetails(details, compiler, characters_filled_in,
- not_at_start);
- } else {
- // Might not consume anything in the loop body, so treat it like a normal
- // ChoiceNode (and don't recursively visit this node again).
- VisitMarker marker(info());
- ChoiceNode::GetQuickCheckDetails(details, compiler, characters_filled_in,
- not_at_start);
- }
-}
-
-void LoopChoiceNode::GetQuickCheckDetailsFromLoopEntry(
- QuickCheckDetails* details, RegExpCompiler* compiler,
- int characters_filled_in, bool not_at_start) {
- if (traversed_loop_initialization_node_) {
- // We already entered this loop once, exited via its continuation node, and
- // followed an outer loop's back-edge to before the loop entry point. We
- // could try to reset the minimum iteration count to its starting value at
- // this point, but that seems like more trouble than it's worth. It's safe
- // to keep going with the current (possibly reduced) minimum iteration
- // count.
- GetQuickCheckDetails(details, compiler, characters_filled_in, not_at_start);
- } else {
- // We are entering a loop via its counter initialization action, meaning we
- // are guaranteed to run the loop body at least some minimum number of times
- // before running the continuation node. Set a flag so that this node knows
- // (now and any times we visit it again recursively) that it was entered
- // from the top.
- LoopInitializationMarker marker(this);
- GetQuickCheckDetails(details, compiler, characters_filled_in, not_at_start);
- }
-}
-
-void LoopChoiceNode::FillInBMInfo(Isolate* isolate, int offset, int budget,
- BoyerMooreLookahead* bm, bool not_at_start) {
- if (body_can_be_zero_length_ || budget <= 0) {
- bm->SetRest(offset);
- SaveBMInfo(bm, not_at_start, offset);
- return;
- }
- ChoiceNode::FillInBMInfo(isolate, offset, budget - 1, bm, not_at_start);
- SaveBMInfo(bm, not_at_start, offset);
-}
-
-void ChoiceNode::GetQuickCheckDetails(QuickCheckDetails* details,
- RegExpCompiler* compiler,
- int characters_filled_in,
- bool not_at_start) {
- not_at_start = (not_at_start || not_at_start_);
- int choice_count = alternatives_->length();
- DCHECK_LT(0, choice_count);
- alternatives_->at(0).node()->GetQuickCheckDetails(
- details, compiler, characters_filled_in, not_at_start);
- for (int i = 1; i < choice_count; i++) {
- QuickCheckDetails new_details(details->characters());
- RegExpNode* node = alternatives_->at(i).node();
- node->GetQuickCheckDetails(&new_details, compiler, characters_filled_in,
- not_at_start);
- // Here we merge the quick match details of the two branches.
- details->Merge(&new_details, characters_filled_in);
- }
-}
-
-namespace {
-
-// Check for [0-9A-Z_a-z].
-void EmitWordCheck(RegExpMacroAssembler* assembler, Label* word,
- Label* non_word, bool fall_through_on_word) {
- if (assembler->CheckSpecialCharacterClass(
- fall_through_on_word ? 'w' : 'W',
- fall_through_on_word ? non_word : word)) {
- // Optimized implementation available.
- return;
- }
- assembler->CheckCharacterGT('z', non_word);
- assembler->CheckCharacterLT('0', non_word);
- assembler->CheckCharacterGT('a' - 1, word);
- assembler->CheckCharacterLT('9' + 1, word);
- assembler->CheckCharacterLT('A', non_word);
- assembler->CheckCharacterLT('Z' + 1, word);
- if (fall_through_on_word) {
- assembler->CheckNotCharacter('_', non_word);
- } else {
- assembler->CheckCharacter('_', word);
- }
-}
-
-// Emit the code to check for a ^ in multiline mode (1-character lookbehind
-// that matches newline or the start of input).
-void EmitHat(RegExpCompiler* compiler, RegExpNode* on_success, Trace* trace) {
- RegExpMacroAssembler* assembler = compiler->macro_assembler();
-
- // We will load the previous character into the current character register.
- Trace new_trace(*trace);
- new_trace.InvalidateCurrentCharacter();
-
- // A positive (> 0) cp_offset means we've already successfully matched a
- // non-empty-width part of the pattern, and thus cannot be at or before the
- // start of the subject string. We can thus skip both at-start and
- // bounds-checks when loading the one-character lookbehind.
- const bool may_be_at_or_before_subject_string_start =
- new_trace.cp_offset() <= 0;
-
- Label ok;
- if (may_be_at_or_before_subject_string_start) {
- // The start of input counts as a newline in this context, so skip to ok if
- // we are at the start.
- assembler->CheckAtStart(new_trace.cp_offset(), &ok);
- }
-
- // If we've already checked that we are not at the start of input, it's okay
- // to load the previous character without bounds checks.
- const bool can_skip_bounds_check = !may_be_at_or_before_subject_string_start;
- assembler->LoadCurrentCharacter(new_trace.cp_offset() - 1,
- new_trace.backtrack(), can_skip_bounds_check);
- if (!assembler->CheckSpecialCharacterClass('n', new_trace.backtrack())) {
- // Newline means \n, \r, 0x2028 or 0x2029.
- if (!compiler->one_byte()) {
- assembler->CheckCharacterAfterAnd(0x2028, 0xFFFE, &ok);
- }
- assembler->CheckCharacter('\n', &ok);
- assembler->CheckNotCharacter('\r', new_trace.backtrack());
- }
- assembler->Bind(&ok);
- on_success->Emit(compiler, &new_trace);
-}
-
-} // namespace
-
-// Emit the code to handle \b and \B (word-boundary or non-word-boundary).
-void AssertionNode::EmitBoundaryCheck(RegExpCompiler* compiler, Trace* trace) {
- RegExpMacroAssembler* assembler = compiler->macro_assembler();
- Isolate* isolate = assembler->isolate();
- Trace::TriBool next_is_word_character = Trace::UNKNOWN;
- bool not_at_start = (trace->at_start() == Trace::FALSE_VALUE);
- BoyerMooreLookahead* lookahead = bm_info(not_at_start);
- if (lookahead == nullptr) {
- int eats_at_least =
- Min(kMaxLookaheadForBoyerMoore, EatsAtLeast(not_at_start));
- if (eats_at_least >= 1) {
- BoyerMooreLookahead* bm =
- new (zone()) BoyerMooreLookahead(eats_at_least, compiler, zone());
- FillInBMInfo(isolate, 0, kRecursionBudget, bm, not_at_start);
- if (bm->at(0)->is_non_word()) next_is_word_character = Trace::FALSE_VALUE;
- if (bm->at(0)->is_word()) next_is_word_character = Trace::TRUE_VALUE;
- }
- } else {
- if (lookahead->at(0)->is_non_word())
- next_is_word_character = Trace::FALSE_VALUE;
- if (lookahead->at(0)->is_word()) next_is_word_character = Trace::TRUE_VALUE;
- }
- bool at_boundary = (assertion_type_ == AssertionNode::AT_BOUNDARY);
- if (next_is_word_character == Trace::UNKNOWN) {
- Label before_non_word;
- Label before_word;
- if (trace->characters_preloaded() != 1) {
- assembler->LoadCurrentCharacter(trace->cp_offset(), &before_non_word);
- }
- // Fall through on non-word.
- EmitWordCheck(assembler, &before_word, &before_non_word, false);
- // Next character is not a word character.
- assembler->Bind(&before_non_word);
- Label ok;
- BacktrackIfPrevious(compiler, trace, at_boundary ? kIsNonWord : kIsWord);
- assembler->GoTo(&ok);
-
- assembler->Bind(&before_word);
- BacktrackIfPrevious(compiler, trace, at_boundary ? kIsWord : kIsNonWord);
- assembler->Bind(&ok);
- } else if (next_is_word_character == Trace::TRUE_VALUE) {
- BacktrackIfPrevious(compiler, trace, at_boundary ? kIsWord : kIsNonWord);
- } else {
- DCHECK(next_is_word_character == Trace::FALSE_VALUE);
- BacktrackIfPrevious(compiler, trace, at_boundary ? kIsNonWord : kIsWord);
- }
-}
-
-void AssertionNode::BacktrackIfPrevious(
- RegExpCompiler* compiler, Trace* trace,
- AssertionNode::IfPrevious backtrack_if_previous) {
- RegExpMacroAssembler* assembler = compiler->macro_assembler();
- Trace new_trace(*trace);
- new_trace.InvalidateCurrentCharacter();
-
- Label fall_through;
- Label* non_word = backtrack_if_previous == kIsNonWord ? new_trace.backtrack()
- : &fall_through;
- Label* word = backtrack_if_previous == kIsNonWord ? &fall_through
- : new_trace.backtrack();
-
- // A positive (> 0) cp_offset means we've already successfully matched a
- // non-empty-width part of the pattern, and thus cannot be at or before the
- // start of the subject string. We can thus skip both at-start and
- // bounds-checks when loading the one-character lookbehind.
- const bool may_be_at_or_before_subject_string_start =
- new_trace.cp_offset() <= 0;
-
- if (may_be_at_or_before_subject_string_start) {
- // The start of input counts as a non-word character, so the question is
- // decided if we are at the start.
- assembler->CheckAtStart(new_trace.cp_offset(), non_word);
- }
-
- // If we've already checked that we are not at the start of input, it's okay
- // to load the previous character without bounds checks.
- const bool can_skip_bounds_check = !may_be_at_or_before_subject_string_start;
- assembler->LoadCurrentCharacter(new_trace.cp_offset() - 1, non_word,
- can_skip_bounds_check);
- EmitWordCheck(assembler, word, non_word, backtrack_if_previous == kIsNonWord);
-
- assembler->Bind(&fall_through);
- on_success()->Emit(compiler, &new_trace);
-}
-
-void AssertionNode::GetQuickCheckDetails(QuickCheckDetails* details,
- RegExpCompiler* compiler,
- int filled_in, bool not_at_start) {
- if (assertion_type_ == AT_START && not_at_start) {
- details->set_cannot_match();
- return;
- }
- return on_success()->GetQuickCheckDetails(details, compiler, filled_in,
- not_at_start);
-}
-
-void AssertionNode::Emit(RegExpCompiler* compiler, Trace* trace) {
- RegExpMacroAssembler* assembler = compiler->macro_assembler();
- switch (assertion_type_) {
- case AT_END: {
- Label ok;
- assembler->CheckPosition(trace->cp_offset(), &ok);
- assembler->GoTo(trace->backtrack());
- assembler->Bind(&ok);
- break;
- }
- case AT_START: {
- if (trace->at_start() == Trace::FALSE_VALUE) {
- assembler->GoTo(trace->backtrack());
- return;
- }
- if (trace->at_start() == Trace::UNKNOWN) {
- assembler->CheckNotAtStart(trace->cp_offset(), trace->backtrack());
- Trace at_start_trace = *trace;
- at_start_trace.set_at_start(Trace::TRUE_VALUE);
- on_success()->Emit(compiler, &at_start_trace);
- return;
- }
- } break;
- case AFTER_NEWLINE:
- EmitHat(compiler, on_success(), trace);
- return;
- case AT_BOUNDARY:
- case AT_NON_BOUNDARY: {
- EmitBoundaryCheck(compiler, trace);
- return;
- }
- }
- on_success()->Emit(compiler, trace);
-}
-
-static bool DeterminedAlready(QuickCheckDetails* quick_check, int offset) {
- if (quick_check == nullptr) return false;
- if (offset >= quick_check->characters()) return false;
- return quick_check->positions(offset)->determines_perfectly;
-}
-
-static void UpdateBoundsCheck(int index, int* checked_up_to) {
- if (index > *checked_up_to) {
- *checked_up_to = index;
- }
-}
-
-// We call this repeatedly to generate code for each pass over the text node.
-// The passes are in increasing order of difficulty because we hope one
-// of the first passes will fail in which case we are saved the work of the
-// later passes. for example for the case independent regexp /%[asdfghjkl]a/
-// we will check the '%' in the first pass, the case independent 'a' in the
-// second pass and the character class in the last pass.
-//
-// The passes are done from right to left, so for example to test for /bar/
-// we will first test for an 'r' with offset 2, then an 'a' with offset 1
-// and then a 'b' with offset 0. This means we can avoid the end-of-input
-// bounds check most of the time. In the example we only need to check for
-// end-of-input when loading the putative 'r'.
-//
-// A slight complication involves the fact that the first character may already
-// be fetched into a register by the previous node. In this case we want to
-// do the test for that character first. We do this in separate passes. The
-// 'preloaded' argument indicates that we are doing such a 'pass'. If such a
-// pass has been performed then subsequent passes will have true in
-// first_element_checked to indicate that that character does not need to be
-// checked again.
-//
-// In addition to all this we are passed a Trace, which can
-// contain an AlternativeGeneration object. In this AlternativeGeneration
-// object we can see details of any quick check that was already passed in
-// order to get to the code we are now generating. The quick check can involve
-// loading characters, which means we do not need to recheck the bounds
-// up to the limit the quick check already checked. In addition the quick
-// check can have involved a mask and compare operation which may simplify
-// or obviate the need for further checks at some character positions.
-void TextNode::TextEmitPass(RegExpCompiler* compiler, TextEmitPassType pass,
- bool preloaded, Trace* trace,
- bool first_element_checked, int* checked_up_to) {
- RegExpMacroAssembler* assembler = compiler->macro_assembler();
- Isolate* isolate = assembler->isolate();
- bool one_byte = compiler->one_byte();
- Label* backtrack = trace->backtrack();
- QuickCheckDetails* quick_check = trace->quick_check_performed();
- int element_count = elements()->length();
- int backward_offset = read_backward() ? -Length() : 0;
- for (int i = preloaded ? 0 : element_count - 1; i >= 0; i--) {
- TextElement elm = elements()->at(i);
- int cp_offset = trace->cp_offset() + elm.cp_offset() + backward_offset;
- if (elm.text_type() == TextElement::ATOM) {
- if (SkipPass(pass, elm.atom()->ignore_case())) continue;
- Vector<const uc16> quarks = elm.atom()->data();
- for (int j = preloaded ? 0 : quarks.length() - 1; j >= 0; j--) {
- if (first_element_checked && i == 0 && j == 0) continue;
- if (DeterminedAlready(quick_check, elm.cp_offset() + j)) continue;
- uc16 quark = quarks[j];
- if (elm.atom()->ignore_case()) {
- // Everywhere else we assume that a non-Latin-1 character cannot match
- // a Latin-1 character. Avoid the cases where this is assumption is
- // invalid by using the Latin1 equivalent instead.
- quark = unibrow::Latin1::TryConvertToLatin1(quark);
- }
- bool needs_bounds_check =
- *checked_up_to < cp_offset + j || read_backward();
- bool bounds_checked = false;
- switch (pass) {
- case NON_LATIN1_MATCH:
- DCHECK(one_byte);
- if (quark > String::kMaxOneByteCharCode) {
- assembler->GoTo(backtrack);
- return;
- }
- break;
- case NON_LETTER_CHARACTER_MATCH:
- bounds_checked =
- EmitAtomNonLetter(isolate, compiler, quark, backtrack,
- cp_offset + j, needs_bounds_check, preloaded);
- break;
- case SIMPLE_CHARACTER_MATCH:
- bounds_checked = EmitSimpleCharacter(isolate, compiler, quark,
- backtrack, cp_offset + j,
- needs_bounds_check, preloaded);
- break;
- case CASE_CHARACTER_MATCH:
- bounds_checked =
- EmitAtomLetter(isolate, compiler, quark, backtrack,
- cp_offset + j, needs_bounds_check, preloaded);
- break;
- default:
- break;
- }
- if (bounds_checked) UpdateBoundsCheck(cp_offset + j, checked_up_to);
- }
- } else {
- DCHECK_EQ(TextElement::CHAR_CLASS, elm.text_type());
- if (pass == CHARACTER_CLASS_MATCH) {
- if (first_element_checked && i == 0) continue;
- if (DeterminedAlready(quick_check, elm.cp_offset())) continue;
- RegExpCharacterClass* cc = elm.char_class();
- bool bounds_check = *checked_up_to < cp_offset || read_backward();
- EmitCharClass(assembler, cc, one_byte, backtrack, cp_offset,
- bounds_check, preloaded, zone());
- UpdateBoundsCheck(cp_offset, checked_up_to);
- }
- }
- }
-}
-
-int TextNode::Length() {
- TextElement elm = elements()->last();
- DCHECK_LE(0, elm.cp_offset());
- return elm.cp_offset() + elm.length();
-}
-
-bool TextNode::SkipPass(TextEmitPassType pass, bool ignore_case) {
- if (ignore_case) {
- return pass == SIMPLE_CHARACTER_MATCH;
- } else {
- return pass == NON_LETTER_CHARACTER_MATCH || pass == CASE_CHARACTER_MATCH;
- }
-}
-
-TextNode* TextNode::CreateForCharacterRanges(Zone* zone,
- ZoneList<CharacterRange>* ranges,
- bool read_backward,
- RegExpNode* on_success,
- JSRegExp::Flags flags) {
- DCHECK_NOT_NULL(ranges);
- ZoneList<TextElement>* elms = new (zone) ZoneList<TextElement>(1, zone);
- elms->Add(TextElement::CharClass(
- new (zone) RegExpCharacterClass(zone, ranges, flags)),
- zone);
- return new (zone) TextNode(elms, read_backward, on_success);
-}
-
-TextNode* TextNode::CreateForSurrogatePair(Zone* zone, CharacterRange lead,
- CharacterRange trail,
- bool read_backward,
- RegExpNode* on_success,
- JSRegExp::Flags flags) {
- ZoneList<CharacterRange>* lead_ranges = CharacterRange::List(zone, lead);
- ZoneList<CharacterRange>* trail_ranges = CharacterRange::List(zone, trail);
- ZoneList<TextElement>* elms = new (zone) ZoneList<TextElement>(2, zone);
- elms->Add(TextElement::CharClass(
- new (zone) RegExpCharacterClass(zone, lead_ranges, flags)),
- zone);
- elms->Add(TextElement::CharClass(
- new (zone) RegExpCharacterClass(zone, trail_ranges, flags)),
- zone);
- return new (zone) TextNode(elms, read_backward, on_success);
-}
-
-// This generates the code to match a text node. A text node can contain
-// straight character sequences (possibly to be matched in a case-independent
-// way) and character classes. For efficiency we do not do this in a single
-// pass from left to right. Instead we pass over the text node several times,
-// emitting code for some character positions every time. See the comment on
-// TextEmitPass for details.
-void TextNode::Emit(RegExpCompiler* compiler, Trace* trace) {
- LimitResult limit_result = LimitVersions(compiler, trace);
- if (limit_result == DONE) return;
- DCHECK(limit_result == CONTINUE);
-
- if (trace->cp_offset() + Length() > RegExpMacroAssembler::kMaxCPOffset) {
- compiler->SetRegExpTooBig();
- return;
- }
-
- if (compiler->one_byte()) {
- int dummy = 0;
- TextEmitPass(compiler, NON_LATIN1_MATCH, false, trace, false, &dummy);
- }
-
- bool first_elt_done = false;
- int bound_checked_to = trace->cp_offset() - 1;
- bound_checked_to += trace->bound_checked_up_to();
-
- // If a character is preloaded into the current character register then
- // check that now.
- if (trace->characters_preloaded() == 1) {
- for (int pass = kFirstRealPass; pass <= kLastPass; pass++) {
- TextEmitPass(compiler, static_cast<TextEmitPassType>(pass), true, trace,
- false, &bound_checked_to);
- }
- first_elt_done = true;
- }
-
- for (int pass = kFirstRealPass; pass <= kLastPass; pass++) {
- TextEmitPass(compiler, static_cast<TextEmitPassType>(pass), false, trace,
- first_elt_done, &bound_checked_to);
- }
-
- Trace successor_trace(*trace);
- // If we advance backward, we may end up at the start.
- successor_trace.AdvanceCurrentPositionInTrace(
- read_backward() ? -Length() : Length(), compiler);
- successor_trace.set_at_start(read_backward() ? Trace::UNKNOWN
- : Trace::FALSE_VALUE);
- RecursionCheck rc(compiler);
- on_success()->Emit(compiler, &successor_trace);
-}
-
-void Trace::InvalidateCurrentCharacter() { characters_preloaded_ = 0; }
-
-void Trace::AdvanceCurrentPositionInTrace(int by, RegExpCompiler* compiler) {
- // We don't have an instruction for shifting the current character register
- // down or for using a shifted value for anything so lets just forget that
- // we preloaded any characters into it.
- characters_preloaded_ = 0;
- // Adjust the offsets of the quick check performed information. This
- // information is used to find out what we already determined about the
- // characters by means of mask and compare.
- quick_check_performed_.Advance(by, compiler->one_byte());
- cp_offset_ += by;
- if (cp_offset_ > RegExpMacroAssembler::kMaxCPOffset) {
- compiler->SetRegExpTooBig();
- cp_offset_ = 0;
- }
- bound_checked_up_to_ = Max(0, bound_checked_up_to_ - by);
-}
-
-void TextNode::MakeCaseIndependent(Isolate* isolate, bool is_one_byte) {
- int element_count = elements()->length();
- for (int i = 0; i < element_count; i++) {
- TextElement elm = elements()->at(i);
- if (elm.text_type() == TextElement::CHAR_CLASS) {
- RegExpCharacterClass* cc = elm.char_class();
-#ifdef V8_INTL_SUPPORT
- bool case_equivalents_already_added =
- NeedsUnicodeCaseEquivalents(cc->flags());
-#else
- bool case_equivalents_already_added = false;
-#endif
- if (IgnoreCase(cc->flags()) && !case_equivalents_already_added) {
- // None of the standard character classes is different in the case
- // independent case and it slows us down if we don't know that.
- if (cc->is_standard(zone())) continue;
- ZoneList<CharacterRange>* ranges = cc->ranges(zone());
- CharacterRange::AddCaseEquivalents(isolate, zone(), ranges,
- is_one_byte);
- }
- }
- }
-}
-
-int TextNode::GreedyLoopTextLength() { return Length(); }
-
-RegExpNode* TextNode::GetSuccessorOfOmnivorousTextNode(
- RegExpCompiler* compiler) {
- if (read_backward()) return nullptr;
- if (elements()->length() != 1) return nullptr;
- TextElement elm = elements()->at(0);
- if (elm.text_type() != TextElement::CHAR_CLASS) return nullptr;
- RegExpCharacterClass* node = elm.char_class();
- ZoneList<CharacterRange>* ranges = node->ranges(zone());
- CharacterRange::Canonicalize(ranges);
- if (node->is_negated()) {
- return ranges->length() == 0 ? on_success() : nullptr;
- }
- if (ranges->length() != 1) return nullptr;
- uint32_t max_char;
- if (compiler->one_byte()) {
- max_char = String::kMaxOneByteCharCode;
- } else {
- max_char = String::kMaxUtf16CodeUnit;
- }
- return ranges->at(0).IsEverything(max_char) ? on_success() : nullptr;
-}
-
-// Finds the fixed match length of a sequence of nodes that goes from
-// this alternative and back to this choice node. If there are variable
-// length nodes or other complications in the way then return a sentinel
-// value indicating that a greedy loop cannot be constructed.
-int ChoiceNode::GreedyLoopTextLengthForAlternative(
- GuardedAlternative* alternative) {
- int length = 0;
- RegExpNode* node = alternative->node();
- // Later we will generate code for all these text nodes using recursion
- // so we have to limit the max number.
- int recursion_depth = 0;
- while (node != this) {
- if (recursion_depth++ > RegExpCompiler::kMaxRecursion) {
- return kNodeIsTooComplexForGreedyLoops;
- }
- int node_length = node->GreedyLoopTextLength();
- if (node_length == kNodeIsTooComplexForGreedyLoops) {
- return kNodeIsTooComplexForGreedyLoops;
- }
- length += node_length;
- SeqRegExpNode* seq_node = static_cast<SeqRegExpNode*>(node);
- node = seq_node->on_success();
- }
- return read_backward() ? -length : length;
-}
-
-void LoopChoiceNode::AddLoopAlternative(GuardedAlternative alt) {
- DCHECK_NULL(loop_node_);
- AddAlternative(alt);
- loop_node_ = alt.node();
-}
-
-void LoopChoiceNode::AddContinueAlternative(GuardedAlternative alt) {
- DCHECK_NULL(continue_node_);
- AddAlternative(alt);
- continue_node_ = alt.node();
-}
-
-void LoopChoiceNode::Emit(RegExpCompiler* compiler, Trace* trace) {
- RegExpMacroAssembler* macro_assembler = compiler->macro_assembler();
- if (trace->stop_node() == this) {
- // Back edge of greedy optimized loop node graph.
- int text_length =
- GreedyLoopTextLengthForAlternative(&(alternatives_->at(0)));
- DCHECK_NE(kNodeIsTooComplexForGreedyLoops, text_length);
- // Update the counter-based backtracking info on the stack. This is an
- // optimization for greedy loops (see below).
- DCHECK(trace->cp_offset() == text_length);
- macro_assembler->AdvanceCurrentPosition(text_length);
- macro_assembler->GoTo(trace->loop_label());
- return;
- }
- DCHECK_NULL(trace->stop_node());
- if (!trace->is_trivial()) {
- trace->Flush(compiler, this);
- return;
- }
- ChoiceNode::Emit(compiler, trace);
-}
-
-int ChoiceNode::CalculatePreloadCharacters(RegExpCompiler* compiler,
- int eats_at_least) {
- int preload_characters = Min(4, eats_at_least);
- DCHECK_LE(preload_characters, 4);
- if (compiler->macro_assembler()->CanReadUnaligned()) {
- bool one_byte = compiler->one_byte();
- if (one_byte) {
- // We can't preload 3 characters because there is no machine instruction
- // to do that. We can't just load 4 because we could be reading
- // beyond the end of the string, which could cause a memory fault.
- if (preload_characters == 3) preload_characters = 2;
- } else {
- if (preload_characters > 2) preload_characters = 2;
- }
- } else {
- if (preload_characters > 1) preload_characters = 1;
- }
- return preload_characters;
-}
-
-// This class is used when generating the alternatives in a choice node. It
-// records the way the alternative is being code generated.
-class AlternativeGeneration : public Malloced {
- public:
- AlternativeGeneration()
- : possible_success(),
- expects_preload(false),
- after(),
- quick_check_details() {}
- Label possible_success;
- bool expects_preload;
- Label after;
- QuickCheckDetails quick_check_details;
-};
-
-// Creates a list of AlternativeGenerations. If the list has a reasonable
-// size then it is on the stack, otherwise the excess is on the heap.
-class AlternativeGenerationList {
- public:
- AlternativeGenerationList(int count, Zone* zone) : alt_gens_(count, zone) {
- for (int i = 0; i < count && i < kAFew; i++) {
- alt_gens_.Add(a_few_alt_gens_ + i, zone);
- }
- for (int i = kAFew; i < count; i++) {
- alt_gens_.Add(new AlternativeGeneration(), zone);
- }
- }
- ~AlternativeGenerationList() {
- for (int i = kAFew; i < alt_gens_.length(); i++) {
- delete alt_gens_[i];
- alt_gens_[i] = nullptr;
- }
- }
-
- AlternativeGeneration* at(int i) { return alt_gens_[i]; }
-
- private:
- static const int kAFew = 10;
- ZoneList<AlternativeGeneration*> alt_gens_;
- AlternativeGeneration a_few_alt_gens_[kAFew];
-};
-
-void BoyerMoorePositionInfo::Set(int character) {
- SetInterval(Interval(character, character));
-}
-
-namespace {
-
-ContainedInLattice AddRange(ContainedInLattice containment, const int* ranges,
- int ranges_length, Interval new_range) {
- DCHECK_EQ(1, ranges_length & 1);
- DCHECK_EQ(String::kMaxCodePoint + 1, ranges[ranges_length - 1]);
- if (containment == kLatticeUnknown) return containment;
- bool inside = false;
- int last = 0;
- for (int i = 0; i < ranges_length; inside = !inside, last = ranges[i], i++) {
- // Consider the range from last to ranges[i].
- // We haven't got to the new range yet.
- if (ranges[i] <= new_range.from()) continue;
- // New range is wholly inside last-ranges[i]. Note that new_range.to() is
- // inclusive, but the values in ranges are not.
- if (last <= new_range.from() && new_range.to() < ranges[i]) {
- return Combine(containment, inside ? kLatticeIn : kLatticeOut);
- }
- return kLatticeUnknown;
- }
- return containment;
-}
-
-int BitsetFirstSetBit(BoyerMoorePositionInfo::Bitset bitset) {
- STATIC_ASSERT(BoyerMoorePositionInfo::kMapSize ==
- 2 * kInt64Size * kBitsPerByte);
-
- // Slight fiddling is needed here, since the bitset is of length 128 while
- // CountTrailingZeros requires an integral type and std::bitset can only
- // convert to unsigned long long. So we handle the most- and least-significant
- // bits separately.
-
- {
- static constexpr BoyerMoorePositionInfo::Bitset mask(~uint64_t{0});
- BoyerMoorePositionInfo::Bitset masked_bitset = bitset & mask;
- STATIC_ASSERT(kInt64Size >= sizeof(decltype(masked_bitset.to_ullong())));
- uint64_t lsb = masked_bitset.to_ullong();
- if (lsb != 0) return base::bits::CountTrailingZeros(lsb);
- }
-
- {
- BoyerMoorePositionInfo::Bitset masked_bitset = bitset >> 64;
- uint64_t msb = masked_bitset.to_ullong();
- if (msb != 0) return 64 + base::bits::CountTrailingZeros(msb);
- }
-
- return -1;
-}
-
-} // namespace
-
-void BoyerMoorePositionInfo::SetInterval(const Interval& interval) {
- w_ = AddRange(w_, kWordRanges, kWordRangeCount, interval);
-
- if (interval.size() >= kMapSize) {
- map_count_ = kMapSize;
- map_.set();
- return;
- }
-
- for (int i = interval.from(); i <= interval.to(); i++) {
- int mod_character = (i & kMask);
- if (!map_[mod_character]) {
- map_count_++;
- map_.set(mod_character);
- }
- if (map_count_ == kMapSize) return;
- }
-}
-
-void BoyerMoorePositionInfo::SetAll() {
- w_ = kLatticeUnknown;
- if (map_count_ != kMapSize) {
- map_count_ = kMapSize;
- map_.set();
- }
-}
-
-BoyerMooreLookahead::BoyerMooreLookahead(int length, RegExpCompiler* compiler,
- Zone* zone)
- : length_(length), compiler_(compiler) {
- if (compiler->one_byte()) {
- max_char_ = String::kMaxOneByteCharCode;
- } else {
- max_char_ = String::kMaxUtf16CodeUnit;
- }
- bitmaps_ = new (zone) ZoneList<BoyerMoorePositionInfo*>(length, zone);
- for (int i = 0; i < length; i++) {
- bitmaps_->Add(new (zone) BoyerMoorePositionInfo(), zone);
- }
-}
-
-// Find the longest range of lookahead that has the fewest number of different
-// characters that can occur at a given position. Since we are optimizing two
-// different parameters at once this is a tradeoff.
-bool BoyerMooreLookahead::FindWorthwhileInterval(int* from, int* to) {
- int biggest_points = 0;
- // If more than 32 characters out of 128 can occur it is unlikely that we can
- // be lucky enough to step forwards much of the time.
- const int kMaxMax = 32;
- for (int max_number_of_chars = 4; max_number_of_chars < kMaxMax;
- max_number_of_chars *= 2) {
- biggest_points =
- FindBestInterval(max_number_of_chars, biggest_points, from, to);
- }
- if (biggest_points == 0) return false;
- return true;
-}
-
-// Find the highest-points range between 0 and length_ where the character
-// information is not too vague. 'Too vague' means that there are more than
-// max_number_of_chars that can occur at this position. Calculates the number
-// of points as the product of width-of-the-range and
-// probability-of-finding-one-of-the-characters, where the probability is
-// calculated using the frequency distribution of the sample subject string.
-int BoyerMooreLookahead::FindBestInterval(int max_number_of_chars,
- int old_biggest_points, int* from,
- int* to) {
- int biggest_points = old_biggest_points;
- static const int kSize = RegExpMacroAssembler::kTableSize;
- for (int i = 0; i < length_;) {
- while (i < length_ && Count(i) > max_number_of_chars) i++;
- if (i == length_) break;
- int remembered_from = i;
-
- BoyerMoorePositionInfo::Bitset union_bitset;
- for (; i < length_ && Count(i) <= max_number_of_chars; i++) {
- union_bitset |= bitmaps_->at(i)->raw_bitset();
- }
-
- int frequency = 0;
-
- // Iterate only over set bits.
- int j;
- while ((j = BitsetFirstSetBit(union_bitset)) != -1) {
- DCHECK(union_bitset[j]); // Sanity check.
- // Add 1 to the frequency to give a small per-character boost for
- // the cases where our sampling is not good enough and many
- // characters have a frequency of zero. This means the frequency
- // can theoretically be up to 2*kSize though we treat it mostly as
- // a fraction of kSize.
- frequency += compiler_->frequency_collator()->Frequency(j) + 1;
- union_bitset.reset(j);
- }
-
- // We use the probability of skipping times the distance we are skipping to
- // judge the effectiveness of this. Actually we have a cut-off: By
- // dividing by 2 we switch off the skipping if the probability of skipping
- // is less than 50%. This is because the multibyte mask-and-compare
- // skipping in quickcheck is more likely to do well on this case.
- bool in_quickcheck_range =
- ((i - remembered_from < 4) ||
- (compiler_->one_byte() ? remembered_from <= 4 : remembered_from <= 2));
- // Called 'probability' but it is only a rough estimate and can actually
- // be outside the 0-kSize range.
- int probability = (in_quickcheck_range ? kSize / 2 : kSize) - frequency;
- int points = (i - remembered_from) * probability;
- if (points > biggest_points) {
- *from = remembered_from;
- *to = i - 1;
- biggest_points = points;
- }
- }
- return biggest_points;
-}
-
-// Take all the characters that will not prevent a successful match if they
-// occur in the subject string in the range between min_lookahead and
-// max_lookahead (inclusive) measured from the current position. If the
-// character at max_lookahead offset is not one of these characters, then we
-// can safely skip forwards by the number of characters in the range.
-int BoyerMooreLookahead::GetSkipTable(int min_lookahead, int max_lookahead,
- Handle<ByteArray> boolean_skip_table) {
- const int kSkipArrayEntry = 0;
- const int kDontSkipArrayEntry = 1;
-
- std::memset(boolean_skip_table->GetDataStartAddress(), kSkipArrayEntry,
- boolean_skip_table->length());
-
- for (int i = max_lookahead; i >= min_lookahead; i--) {
- BoyerMoorePositionInfo::Bitset bitset = bitmaps_->at(i)->raw_bitset();
-
- // Iterate only over set bits.
- int j;
- while ((j = BitsetFirstSetBit(bitset)) != -1) {
- DCHECK(bitset[j]); // Sanity check.
- boolean_skip_table->set(j, kDontSkipArrayEntry);
- bitset.reset(j);
- }
- }
-
- const int skip = max_lookahead + 1 - min_lookahead;
- return skip;
-}
-
-// See comment above on the implementation of GetSkipTable.
-void BoyerMooreLookahead::EmitSkipInstructions(RegExpMacroAssembler* masm) {
- const int kSize = RegExpMacroAssembler::kTableSize;
-
- int min_lookahead = 0;
- int max_lookahead = 0;
-
- if (!FindWorthwhileInterval(&min_lookahead, &max_lookahead)) return;
-
- // Check if we only have a single non-empty position info, and that info
- // contains precisely one character.
- bool found_single_character = false;
- int single_character = 0;
- for (int i = max_lookahead; i >= min_lookahead; i--) {
- BoyerMoorePositionInfo* map = bitmaps_->at(i);
- if (map->map_count() == 0) continue;
-
- if (found_single_character || map->map_count() > 1) {
- found_single_character = false;
- break;
- }
-
- DCHECK(!found_single_character);
- DCHECK_EQ(map->map_count(), 1);
-
- found_single_character = true;
- single_character = BitsetFirstSetBit(map->raw_bitset());
-
- DCHECK_NE(single_character, -1);
- }
-
- int lookahead_width = max_lookahead + 1 - min_lookahead;
-
- if (found_single_character && lookahead_width == 1 && max_lookahead < 3) {
- // The mask-compare can probably handle this better.
- return;
- }
-
- if (found_single_character) {
- Label cont, again;
- masm->Bind(&again);
- masm->LoadCurrentCharacter(max_lookahead, &cont, true);
- if (max_char_ > kSize) {
- masm->CheckCharacterAfterAnd(single_character,
- RegExpMacroAssembler::kTableMask, &cont);
- } else {
- masm->CheckCharacter(single_character, &cont);
- }
- masm->AdvanceCurrentPosition(lookahead_width);
- masm->GoTo(&again);
- masm->Bind(&cont);
- return;
- }
-
- Factory* factory = masm->isolate()->factory();
- Handle<ByteArray> boolean_skip_table =
- factory->NewByteArray(kSize, AllocationType::kOld);
- int skip_distance =
- GetSkipTable(min_lookahead, max_lookahead, boolean_skip_table);
- DCHECK_NE(0, skip_distance);
-
- Label cont, again;
- masm->Bind(&again);
- masm->LoadCurrentCharacter(max_lookahead, &cont, true);
- masm->CheckBitInTable(boolean_skip_table, &cont);
- masm->AdvanceCurrentPosition(skip_distance);
- masm->GoTo(&again);
- masm->Bind(&cont);
-}
-
-/* Code generation for choice nodes.
- *
- * We generate quick checks that do a mask and compare to eliminate a
- * choice. If the quick check succeeds then it jumps to the continuation to
- * do slow checks and check subsequent nodes. If it fails (the common case)
- * it falls through to the next choice.
- *
- * Here is the desired flow graph. Nodes directly below each other imply
- * fallthrough. Alternatives 1 and 2 have quick checks. Alternative
- * 3 doesn't have a quick check so we have to call the slow check.
- * Nodes are marked Qn for quick checks and Sn for slow checks. The entire
- * regexp continuation is generated directly after the Sn node, up to the
- * next GoTo if we decide to reuse some already generated code. Some
- * nodes expect preload_characters to be preloaded into the current
- * character register. R nodes do this preloading. Vertices are marked
- * F for failures and S for success (possible success in the case of quick
- * nodes). L, V, < and > are used as arrow heads.
- *
- * ----------> R
- * |
- * V
- * Q1 -----> S1
- * | S /
- * F| /
- * | F/
- * | /
- * | R
- * | /
- * V L
- * Q2 -----> S2
- * | S /
- * F| /
- * | F/
- * | /
- * | R
- * | /
- * V L
- * S3
- * |
- * F|
- * |
- * R
- * |
- * backtrack V
- * <----------Q4
- * \ F |
- * \ |S
- * \ F V
- * \-----S4
- *
- * For greedy loops we push the current position, then generate the code that
- * eats the input specially in EmitGreedyLoop. The other choice (the
- * continuation) is generated by the normal code in EmitChoices, and steps back
- * in the input to the starting position when it fails to match. The loop code
- * looks like this (U is the unwind code that steps back in the greedy loop).
- *
- * _____
- * / \
- * V |
- * ----------> S1 |
- * /| |
- * / |S |
- * F/ \_____/
- * /
- * |<-----
- * | \
- * V |S
- * Q2 ---> U----->backtrack
- * | F /
- * S| /
- * V F /
- * S2--/
- */
-
-GreedyLoopState::GreedyLoopState(bool not_at_start) {
- counter_backtrack_trace_.set_backtrack(&label_);
- if (not_at_start) counter_backtrack_trace_.set_at_start(Trace::FALSE_VALUE);
-}
-
-void ChoiceNode::AssertGuardsMentionRegisters(Trace* trace) {
-#ifdef DEBUG
- int choice_count = alternatives_->length();
- for (int i = 0; i < choice_count - 1; i++) {
- GuardedAlternative alternative = alternatives_->at(i);
- ZoneList<Guard*>* guards = alternative.guards();
- int guard_count = (guards == nullptr) ? 0 : guards->length();
- for (int j = 0; j < guard_count; j++) {
- DCHECK(!trace->mentions_reg(guards->at(j)->reg()));
- }
- }
-#endif
-}
-
-void ChoiceNode::SetUpPreLoad(RegExpCompiler* compiler, Trace* current_trace,
- PreloadState* state) {
- if (state->eats_at_least_ == PreloadState::kEatsAtLeastNotYetInitialized) {
- // Save some time by looking at most one machine word ahead.
- state->eats_at_least_ =
- EatsAtLeast(current_trace->at_start() == Trace::FALSE_VALUE);
- }
- state->preload_characters_ =
- CalculatePreloadCharacters(compiler, state->eats_at_least_);
-
- state->preload_is_current_ =
- (current_trace->characters_preloaded() == state->preload_characters_);
- state->preload_has_checked_bounds_ = state->preload_is_current_;
-}
-
-void ChoiceNode::Emit(RegExpCompiler* compiler, Trace* trace) {
- int choice_count = alternatives_->length();
-
- if (choice_count == 1 && alternatives_->at(0).guards() == nullptr) {
- alternatives_->at(0).node()->Emit(compiler, trace);
- return;
- }
-
- AssertGuardsMentionRegisters(trace);
-
- LimitResult limit_result = LimitVersions(compiler, trace);
- if (limit_result == DONE) return;
- DCHECK(limit_result == CONTINUE);
-
- // For loop nodes we already flushed (see LoopChoiceNode::Emit), but for
- // other choice nodes we only flush if we are out of code size budget.
- if (trace->flush_budget() == 0 && trace->actions() != nullptr) {
- trace->Flush(compiler, this);
- return;
- }
-
- RecursionCheck rc(compiler);
-
- PreloadState preload;
- preload.init();
- GreedyLoopState greedy_loop_state(not_at_start());
-
- int text_length = GreedyLoopTextLengthForAlternative(&alternatives_->at(0));
- AlternativeGenerationList alt_gens(choice_count, zone());
-
- if (choice_count > 1 && text_length != kNodeIsTooComplexForGreedyLoops) {
- trace = EmitGreedyLoop(compiler, trace, &alt_gens, &preload,
- &greedy_loop_state, text_length);
- } else {
- // TODO(erikcorry): Delete this. We don't need this label, but it makes us
- // match the traces produced pre-cleanup.
- Label second_choice;
- compiler->macro_assembler()->Bind(&second_choice);
-
- preload.eats_at_least_ = EmitOptimizedUnanchoredSearch(compiler, trace);
-
- EmitChoices(compiler, &alt_gens, 0, trace, &preload);
- }
-
- // At this point we need to generate slow checks for the alternatives where
- // the quick check was inlined. We can recognize these because the associated
- // label was bound.
- int new_flush_budget = trace->flush_budget() / choice_count;
- for (int i = 0; i < choice_count; i++) {
- AlternativeGeneration* alt_gen = alt_gens.at(i);
- Trace new_trace(*trace);
- // If there are actions to be flushed we have to limit how many times
- // they are flushed. Take the budget of the parent trace and distribute
- // it fairly amongst the children.
- if (new_trace.actions() != nullptr) {
- new_trace.set_flush_budget(new_flush_budget);
- }
- bool next_expects_preload =
- i == choice_count - 1 ? false : alt_gens.at(i + 1)->expects_preload;
- EmitOutOfLineContinuation(compiler, &new_trace, alternatives_->at(i),
- alt_gen, preload.preload_characters_,
- next_expects_preload);
- }
-}
-
-Trace* ChoiceNode::EmitGreedyLoop(RegExpCompiler* compiler, Trace* trace,
- AlternativeGenerationList* alt_gens,
- PreloadState* preload,
- GreedyLoopState* greedy_loop_state,
- int text_length) {
- RegExpMacroAssembler* macro_assembler = compiler->macro_assembler();
- // Here we have special handling for greedy loops containing only text nodes
- // and other simple nodes. These are handled by pushing the current
- // position on the stack and then incrementing the current position each
- // time around the switch. On backtrack we decrement the current position
- // and check it against the pushed value. This avoids pushing backtrack
- // information for each iteration of the loop, which could take up a lot of
- // space.
- DCHECK(trace->stop_node() == nullptr);
- macro_assembler->PushCurrentPosition();
- Label greedy_match_failed;
- Trace greedy_match_trace;
- if (not_at_start()) greedy_match_trace.set_at_start(Trace::FALSE_VALUE);
- greedy_match_trace.set_backtrack(&greedy_match_failed);
- Label loop_label;
- macro_assembler->Bind(&loop_label);
- greedy_match_trace.set_stop_node(this);
- greedy_match_trace.set_loop_label(&loop_label);
- alternatives_->at(0).node()->Emit(compiler, &greedy_match_trace);
- macro_assembler->Bind(&greedy_match_failed);
-
- Label second_choice; // For use in greedy matches.
- macro_assembler->Bind(&second_choice);
-
- Trace* new_trace = greedy_loop_state->counter_backtrack_trace();
-
- EmitChoices(compiler, alt_gens, 1, new_trace, preload);
-
- macro_assembler->Bind(greedy_loop_state->label());
- // If we have unwound to the bottom then backtrack.
- macro_assembler->CheckGreedyLoop(trace->backtrack());
- // Otherwise try the second priority at an earlier position.
- macro_assembler->AdvanceCurrentPosition(-text_length);
- macro_assembler->GoTo(&second_choice);
- return new_trace;
-}
-
-int ChoiceNode::EmitOptimizedUnanchoredSearch(RegExpCompiler* compiler,
- Trace* trace) {
- int eats_at_least = PreloadState::kEatsAtLeastNotYetInitialized;
- if (alternatives_->length() != 2) return eats_at_least;
-
- GuardedAlternative alt1 = alternatives_->at(1);
- if (alt1.guards() != nullptr && alt1.guards()->length() != 0) {
- return eats_at_least;
- }
- RegExpNode* eats_anything_node = alt1.node();
- if (eats_anything_node->GetSuccessorOfOmnivorousTextNode(compiler) != this) {
- return eats_at_least;
- }
-
- // Really we should be creating a new trace when we execute this function,
- // but there is no need, because the code it generates cannot backtrack, and
- // we always arrive here with a trivial trace (since it's the entry to a
- // loop. That also implies that there are no preloaded characters, which is
- // good, because it means we won't be violating any assumptions by
- // overwriting those characters with new load instructions.
- DCHECK(trace->is_trivial());
-
- RegExpMacroAssembler* macro_assembler = compiler->macro_assembler();
- Isolate* isolate = macro_assembler->isolate();
- // At this point we know that we are at a non-greedy loop that will eat
- // any character one at a time. Any non-anchored regexp has such a
- // loop prepended to it in order to find where it starts. We look for
- // a pattern of the form ...abc... where we can look 6 characters ahead
- // and step forwards 3 if the character is not one of abc. Abc need
- // not be atoms, they can be any reasonably limited character class or
- // small alternation.
- BoyerMooreLookahead* bm = bm_info(false);
- if (bm == nullptr) {
- eats_at_least = Min(kMaxLookaheadForBoyerMoore, EatsAtLeast(false));
- if (eats_at_least >= 1) {
- bm = new (zone()) BoyerMooreLookahead(eats_at_least, compiler, zone());
- GuardedAlternative alt0 = alternatives_->at(0);
- alt0.node()->FillInBMInfo(isolate, 0, kRecursionBudget, bm, false);
- }
- }
- if (bm != nullptr) {
- bm->EmitSkipInstructions(macro_assembler);
- }
- return eats_at_least;
-}
-
-void ChoiceNode::EmitChoices(RegExpCompiler* compiler,
- AlternativeGenerationList* alt_gens,
- int first_choice, Trace* trace,
- PreloadState* preload) {
- RegExpMacroAssembler* macro_assembler = compiler->macro_assembler();
- SetUpPreLoad(compiler, trace, preload);
-
- // For now we just call all choices one after the other. The idea ultimately
- // is to use the Dispatch table to try only the relevant ones.
- int choice_count = alternatives_->length();
-
- int new_flush_budget = trace->flush_budget() / choice_count;
-
- for (int i = first_choice; i < choice_count; i++) {
- bool is_last = i == choice_count - 1;
- bool fall_through_on_failure = !is_last;
- GuardedAlternative alternative = alternatives_->at(i);
- AlternativeGeneration* alt_gen = alt_gens->at(i);
- alt_gen->quick_check_details.set_characters(preload->preload_characters_);
- ZoneList<Guard*>* guards = alternative.guards();
- int guard_count = (guards == nullptr) ? 0 : guards->length();
- Trace new_trace(*trace);
- new_trace.set_characters_preloaded(
- preload->preload_is_current_ ? preload->preload_characters_ : 0);
- if (preload->preload_has_checked_bounds_) {
- new_trace.set_bound_checked_up_to(preload->preload_characters_);
- }
- new_trace.quick_check_performed()->Clear();
- if (not_at_start_) new_trace.set_at_start(Trace::FALSE_VALUE);
- if (!is_last) {
- new_trace.set_backtrack(&alt_gen->after);
- }
- alt_gen->expects_preload = preload->preload_is_current_;
- bool generate_full_check_inline = false;
- if (compiler->optimize() &&
- try_to_emit_quick_check_for_alternative(i == 0) &&
- alternative.node()->EmitQuickCheck(
- compiler, trace, &new_trace, preload->preload_has_checked_bounds_,
- &alt_gen->possible_success, &alt_gen->quick_check_details,
- fall_through_on_failure, this)) {
- // Quick check was generated for this choice.
- preload->preload_is_current_ = true;
- preload->preload_has_checked_bounds_ = true;
- // If we generated the quick check to fall through on possible success,
- // we now need to generate the full check inline.
- if (!fall_through_on_failure) {
- macro_assembler->Bind(&alt_gen->possible_success);
- new_trace.set_quick_check_performed(&alt_gen->quick_check_details);
- new_trace.set_characters_preloaded(preload->preload_characters_);
- new_trace.set_bound_checked_up_to(preload->preload_characters_);
- generate_full_check_inline = true;
- }
- } else if (alt_gen->quick_check_details.cannot_match()) {
- if (!fall_through_on_failure) {
- macro_assembler->GoTo(trace->backtrack());
- }
- continue;
- } else {
- // No quick check was generated. Put the full code here.
- // If this is not the first choice then there could be slow checks from
- // previous cases that go here when they fail. There's no reason to
- // insist that they preload characters since the slow check we are about
- // to generate probably can't use it.
- if (i != first_choice) {
- alt_gen->expects_preload = false;
- new_trace.InvalidateCurrentCharacter();
- }
- generate_full_check_inline = true;
- }
- if (generate_full_check_inline) {
- if (new_trace.actions() != nullptr) {
- new_trace.set_flush_budget(new_flush_budget);
- }
- for (int j = 0; j < guard_count; j++) {
- GenerateGuard(macro_assembler, guards->at(j), &new_trace);
- }
- alternative.node()->Emit(compiler, &new_trace);
- preload->preload_is_current_ = false;
- }
- macro_assembler->Bind(&alt_gen->after);
- }
-}
-
-void ChoiceNode::EmitOutOfLineContinuation(RegExpCompiler* compiler,
- Trace* trace,
- GuardedAlternative alternative,
- AlternativeGeneration* alt_gen,
- int preload_characters,
- bool next_expects_preload) {
- if (!alt_gen->possible_success.is_linked()) return;
-
- RegExpMacroAssembler* macro_assembler = compiler->macro_assembler();
- macro_assembler->Bind(&alt_gen->possible_success);
- Trace out_of_line_trace(*trace);
- out_of_line_trace.set_characters_preloaded(preload_characters);
- out_of_line_trace.set_quick_check_performed(&alt_gen->quick_check_details);
- if (not_at_start_) out_of_line_trace.set_at_start(Trace::FALSE_VALUE);
- ZoneList<Guard*>* guards = alternative.guards();
- int guard_count = (guards == nullptr) ? 0 : guards->length();
- if (next_expects_preload) {
- Label reload_current_char;
- out_of_line_trace.set_backtrack(&reload_current_char);
- for (int j = 0; j < guard_count; j++) {
- GenerateGuard(macro_assembler, guards->at(j), &out_of_line_trace);
- }
- alternative.node()->Emit(compiler, &out_of_line_trace);
- macro_assembler->Bind(&reload_current_char);
- // Reload the current character, since the next quick check expects that.
- // We don't need to check bounds here because we only get into this
- // code through a quick check which already did the checked load.
- macro_assembler->LoadCurrentCharacter(trace->cp_offset(), nullptr, false,
- preload_characters);
- macro_assembler->GoTo(&(alt_gen->after));
- } else {
- out_of_line_trace.set_backtrack(&(alt_gen->after));
- for (int j = 0; j < guard_count; j++) {
- GenerateGuard(macro_assembler, guards->at(j), &out_of_line_trace);
- }
- alternative.node()->Emit(compiler, &out_of_line_trace);
- }
-}
-
-void ActionNode::Emit(RegExpCompiler* compiler, Trace* trace) {
- RegExpMacroAssembler* assembler = compiler->macro_assembler();
- LimitResult limit_result = LimitVersions(compiler, trace);
- if (limit_result == DONE) return;
- DCHECK(limit_result == CONTINUE);
-
- RecursionCheck rc(compiler);
-
- switch (action_type_) {
- case STORE_POSITION: {
- Trace::DeferredCapture new_capture(data_.u_position_register.reg,
- data_.u_position_register.is_capture,
- trace);
- Trace new_trace = *trace;
- new_trace.add_action(&new_capture);
- on_success()->Emit(compiler, &new_trace);
- break;
- }
- case INCREMENT_REGISTER: {
- Trace::DeferredIncrementRegister new_increment(
- data_.u_increment_register.reg);
- Trace new_trace = *trace;
- new_trace.add_action(&new_increment);
- on_success()->Emit(compiler, &new_trace);
- break;
- }
- case SET_REGISTER_FOR_LOOP: {
- Trace::DeferredSetRegisterForLoop new_set(data_.u_store_register.reg,
- data_.u_store_register.value);
- Trace new_trace = *trace;
- new_trace.add_action(&new_set);
- on_success()->Emit(compiler, &new_trace);
- break;
- }
- case CLEAR_CAPTURES: {
- Trace::DeferredClearCaptures new_capture(Interval(
- data_.u_clear_captures.range_from, data_.u_clear_captures.range_to));
- Trace new_trace = *trace;
- new_trace.add_action(&new_capture);
- on_success()->Emit(compiler, &new_trace);
- break;
- }
- case BEGIN_SUBMATCH:
- if (!trace->is_trivial()) {
- trace->Flush(compiler, this);
- } else {
- assembler->WriteCurrentPositionToRegister(
- data_.u_submatch.current_position_register, 0);
- assembler->WriteStackPointerToRegister(
- data_.u_submatch.stack_pointer_register);
- on_success()->Emit(compiler, trace);
- }
- break;
- case EMPTY_MATCH_CHECK: {
- int start_pos_reg = data_.u_empty_match_check.start_register;
- int stored_pos = 0;
- int rep_reg = data_.u_empty_match_check.repetition_register;
- bool has_minimum = (rep_reg != RegExpCompiler::kNoRegister);
- bool know_dist = trace->GetStoredPosition(start_pos_reg, &stored_pos);
- if (know_dist && !has_minimum && stored_pos == trace->cp_offset()) {
- // If we know we haven't advanced and there is no minimum we
- // can just backtrack immediately.
- assembler->GoTo(trace->backtrack());
- } else if (know_dist && stored_pos < trace->cp_offset()) {
- // If we know we've advanced we can generate the continuation
- // immediately.
- on_success()->Emit(compiler, trace);
- } else if (!trace->is_trivial()) {
- trace->Flush(compiler, this);
- } else {
- Label skip_empty_check;
- // If we have a minimum number of repetitions we check the current
- // number first and skip the empty check if it's not enough.
- if (has_minimum) {
- int limit = data_.u_empty_match_check.repetition_limit;
- assembler->IfRegisterLT(rep_reg, limit, &skip_empty_check);
- }
- // If the match is empty we bail out, otherwise we fall through
- // to the on-success continuation.
- assembler->IfRegisterEqPos(data_.u_empty_match_check.start_register,
- trace->backtrack());
- assembler->Bind(&skip_empty_check);
- on_success()->Emit(compiler, trace);
- }
- break;
- }
- case POSITIVE_SUBMATCH_SUCCESS: {
- if (!trace->is_trivial()) {
- trace->Flush(compiler, this);
- return;
- }
- assembler->ReadCurrentPositionFromRegister(
- data_.u_submatch.current_position_register);
- assembler->ReadStackPointerFromRegister(
- data_.u_submatch.stack_pointer_register);
- int clear_register_count = data_.u_submatch.clear_register_count;
- if (clear_register_count == 0) {
- on_success()->Emit(compiler, trace);
- return;
- }
- int clear_registers_from = data_.u_submatch.clear_register_from;
- Label clear_registers_backtrack;
- Trace new_trace = *trace;
- new_trace.set_backtrack(&clear_registers_backtrack);
- on_success()->Emit(compiler, &new_trace);
-
- assembler->Bind(&clear_registers_backtrack);
- int clear_registers_to = clear_registers_from + clear_register_count - 1;
- assembler->ClearRegisters(clear_registers_from, clear_registers_to);
-
- DCHECK(trace->backtrack() == nullptr);
- assembler->Backtrack();
- return;
- }
- default:
- UNREACHABLE();
- }
-}
-
-void BackReferenceNode::Emit(RegExpCompiler* compiler, Trace* trace) {
- RegExpMacroAssembler* assembler = compiler->macro_assembler();
- if (!trace->is_trivial()) {
- trace->Flush(compiler, this);
- return;
- }
-
- LimitResult limit_result = LimitVersions(compiler, trace);
- if (limit_result == DONE) return;
- DCHECK(limit_result == CONTINUE);
-
- RecursionCheck rc(compiler);
-
- DCHECK_EQ(start_reg_ + 1, end_reg_);
- if (IgnoreCase(flags_)) {
- assembler->CheckNotBackReferenceIgnoreCase(start_reg_, read_backward(),
- trace->backtrack());
- } else {
- assembler->CheckNotBackReference(start_reg_, read_backward(),
- trace->backtrack());
- }
- // We are going to advance backward, so we may end up at the start.
- if (read_backward()) trace->set_at_start(Trace::UNKNOWN);
-
- // Check that the back reference does not end inside a surrogate pair.
- if (IsUnicode(flags_) && !compiler->one_byte()) {
- assembler->CheckNotInSurrogatePair(trace->cp_offset(), trace->backtrack());
- }
- on_success()->Emit(compiler, trace);
-}
-
-void TextNode::CalculateOffsets() {
- int element_count = elements()->length();
- // Set up the offsets of the elements relative to the start. This is a fixed
- // quantity since a TextNode can only contain fixed-width things.
- int cp_offset = 0;
- for (int i = 0; i < element_count; i++) {
- TextElement& elm = elements()->at(i);
- elm.set_cp_offset(cp_offset);
- cp_offset += elm.length();
- }
-}
-
-namespace {
-
-// Assertion propagation moves information about assertions such as
-// \b to the affected nodes. For instance, in /.\b./ information must
-// be propagated to the first '.' that whatever follows needs to know
-// if it matched a word or a non-word, and to the second '.' that it
-// has to check if it succeeds a word or non-word. In this case the
-// result will be something like:
-//
-// +-------+ +------------+
-// | . | | . |
-// +-------+ ---> +------------+
-// | word? | | check word |
-// +-------+ +------------+
-class AssertionPropagator : public AllStatic {
- public:
- static void VisitText(TextNode* that) {}
-
- static void VisitAction(ActionNode* that) {
- // If the next node is interested in what it follows then this node
- // has to be interested too so it can pass the information on.
- that->info()->AddFromFollowing(that->on_success()->info());
- }
-
- static void VisitChoice(ChoiceNode* that, int i) {
- // Anything the following nodes need to know has to be known by
- // this node also, so it can pass it on.
- that->info()->AddFromFollowing(that->alternatives()->at(i).node()->info());
- }
-
- static void VisitLoopChoiceContinueNode(LoopChoiceNode* that) {
- that->info()->AddFromFollowing(that->continue_node()->info());
- }
-
- static void VisitLoopChoiceLoopNode(LoopChoiceNode* that) {
- that->info()->AddFromFollowing(that->loop_node()->info());
- }
-
- static void VisitNegativeLookaroundChoiceLookaroundNode(
- NegativeLookaroundChoiceNode* that) {
- VisitChoice(that, NegativeLookaroundChoiceNode::kLookaroundIndex);
- }
-
- static void VisitNegativeLookaroundChoiceContinueNode(
- NegativeLookaroundChoiceNode* that) {
- VisitChoice(that, NegativeLookaroundChoiceNode::kContinueIndex);
- }
-
- static void VisitBackReference(BackReferenceNode* that) {}
-
- static void VisitAssertion(AssertionNode* that) {}
-};
-
-// Propagates information about the minimum size of successful matches from
-// successor nodes to their predecessors. Note that all eats_at_least values
-// are initialized to zero before analysis.
-class EatsAtLeastPropagator : public AllStatic {
- public:
- static void VisitText(TextNode* that) {
- // The eats_at_least value is not used if reading backward.
- if (!that->read_backward()) {
- // We are not at the start after this node, and thus we can use the
- // successor's eats_at_least_from_not_start value.
- uint8_t eats_at_least = base::saturated_cast<uint8_t>(
- that->Length() + that->on_success()
- ->eats_at_least_info()
- ->eats_at_least_from_not_start);
- that->set_eats_at_least_info(EatsAtLeastInfo(eats_at_least));
- }
- }
-
- static void VisitAction(ActionNode* that) {
- // POSITIVE_SUBMATCH_SUCCESS rewinds input, so we must not consider
- // successor nodes for eats_at_least. SET_REGISTER_FOR_LOOP indicates a loop
- // entry point, which means the loop body will run at least the minimum
- // number of times before the continuation case can run. Otherwise the
- // current node eats at least as much as its successor.
- switch (that->action_type()) {
- case ActionNode::POSITIVE_SUBMATCH_SUCCESS:
- break; // Was already initialized to zero.
- case ActionNode::SET_REGISTER_FOR_LOOP:
- that->set_eats_at_least_info(
- that->on_success()->EatsAtLeastFromLoopEntry());
- break;
- default:
- that->set_eats_at_least_info(*that->on_success()->eats_at_least_info());
- break;
- }
- }
-
- static void VisitChoice(ChoiceNode* that, int i) {
- // The minimum possible match from a choice node is the minimum of its
- // successors.
- EatsAtLeastInfo eats_at_least =
- i == 0 ? EatsAtLeastInfo(UINT8_MAX) : *that->eats_at_least_info();
- eats_at_least.SetMin(
- *that->alternatives()->at(i).node()->eats_at_least_info());
- that->set_eats_at_least_info(eats_at_least);
- }
-
- static void VisitLoopChoiceContinueNode(LoopChoiceNode* that) {
- that->set_eats_at_least_info(*that->continue_node()->eats_at_least_info());
- }
-
- static void VisitLoopChoiceLoopNode(LoopChoiceNode* that) {}
-
- static void VisitNegativeLookaroundChoiceLookaroundNode(
- NegativeLookaroundChoiceNode* that) {}
-
- static void VisitNegativeLookaroundChoiceContinueNode(
- NegativeLookaroundChoiceNode* that) {
- that->set_eats_at_least_info(*that->continue_node()->eats_at_least_info());
- }
-
- static void VisitBackReference(BackReferenceNode* that) {
- if (!that->read_backward()) {
- that->set_eats_at_least_info(*that->on_success()->eats_at_least_info());
- }
- }
-
- static void VisitAssertion(AssertionNode* that) {
- EatsAtLeastInfo eats_at_least = *that->on_success()->eats_at_least_info();
- if (that->assertion_type() == AssertionNode::AT_START) {
- // If we know we are not at the start and we are asked "how many
- // characters will you match if you succeed?" then we can answer anything
- // since false implies false. So let's just set the max answer
- // (UINT8_MAX) since that won't prevent us from preloading a lot of
- // characters for the other branches in the node graph.
- eats_at_least.eats_at_least_from_not_start = UINT8_MAX;
- }
- that->set_eats_at_least_info(eats_at_least);
- }
-};
-
-} // namespace
-
-// -------------------------------------------------------------------
-// Analysis
-
-// Iterates the node graph and provides the opportunity for propagators to set
-// values that depend on successor nodes.
-template <typename... Propagators>
-class Analysis : public NodeVisitor {
- public:
- Analysis(Isolate* isolate, bool is_one_byte)
- : isolate_(isolate),
- is_one_byte_(is_one_byte),
- error_(RegExpError::kNone) {}
-
- void EnsureAnalyzed(RegExpNode* that) {
- StackLimitCheck check(isolate());
- if (check.HasOverflowed()) {
- if (FLAG_correctness_fuzzer_suppressions) {
- FATAL("Analysis: Aborting on stack overflow");
- }
- fail(RegExpError::kAnalysisStackOverflow);
- return;
- }
- if (that->info()->been_analyzed || that->info()->being_analyzed) return;
- that->info()->being_analyzed = true;
- that->Accept(this);
- that->info()->being_analyzed = false;
- that->info()->been_analyzed = true;
- }
-
- bool has_failed() { return error_ != RegExpError::kNone; }
- RegExpError error() {
- DCHECK(error_ != RegExpError::kNone);
- return error_;
- }
- void fail(RegExpError error) { error_ = error; }
-
- Isolate* isolate() const { return isolate_; }
-
- void VisitEnd(EndNode* that) override {
- // nothing to do
- }
-
-// Used to call the given static function on each propagator / variadic template
-// argument.
-#define STATIC_FOR_EACH(expr) \
- do { \
- int dummy[] = {((expr), 0)...}; \
- USE(dummy); \
- } while (false)
-
- void VisitText(TextNode* that) override {
- that->MakeCaseIndependent(isolate(), is_one_byte_);
- EnsureAnalyzed(that->on_success());
- if (has_failed()) return;
- that->CalculateOffsets();
- STATIC_FOR_EACH(Propagators::VisitText(that));
- }
-
- void VisitAction(ActionNode* that) override {
- EnsureAnalyzed(that->on_success());
- if (has_failed()) return;
- STATIC_FOR_EACH(Propagators::VisitAction(that));
- }
-
- void VisitChoice(ChoiceNode* that) override {
- for (int i = 0; i < that->alternatives()->length(); i++) {
- EnsureAnalyzed(that->alternatives()->at(i).node());
- if (has_failed()) return;
- STATIC_FOR_EACH(Propagators::VisitChoice(that, i));
- }
- }
-
- void VisitLoopChoice(LoopChoiceNode* that) override {
- DCHECK_EQ(that->alternatives()->length(), 2); // Just loop and continue.
-
- // First propagate all information from the continuation node.
- EnsureAnalyzed(that->continue_node());
- if (has_failed()) return;
- STATIC_FOR_EACH(Propagators::VisitLoopChoiceContinueNode(that));
-
- // Check the loop last since it may need the value of this node
- // to get a correct result.
- EnsureAnalyzed(that->loop_node());
- if (has_failed()) return;
- STATIC_FOR_EACH(Propagators::VisitLoopChoiceLoopNode(that));
- }
-
- void VisitNegativeLookaroundChoice(
- NegativeLookaroundChoiceNode* that) override {
- DCHECK_EQ(that->alternatives()->length(), 2); // Lookaround and continue.
-
- EnsureAnalyzed(that->lookaround_node());
- if (has_failed()) return;
- STATIC_FOR_EACH(
- Propagators::VisitNegativeLookaroundChoiceLookaroundNode(that));
-
- EnsureAnalyzed(that->continue_node());
- if (has_failed()) return;
- STATIC_FOR_EACH(
- Propagators::VisitNegativeLookaroundChoiceContinueNode(that));
- }
-
- void VisitBackReference(BackReferenceNode* that) override {
- EnsureAnalyzed(that->on_success());
- if (has_failed()) return;
- STATIC_FOR_EACH(Propagators::VisitBackReference(that));
- }
-
- void VisitAssertion(AssertionNode* that) override {
- EnsureAnalyzed(that->on_success());
- if (has_failed()) return;
- STATIC_FOR_EACH(Propagators::VisitAssertion(that));
- }
-
-#undef STATIC_FOR_EACH
-
- private:
- Isolate* isolate_;
- bool is_one_byte_;
- RegExpError error_;
-
- DISALLOW_IMPLICIT_CONSTRUCTORS(Analysis);
-};
-
-RegExpError AnalyzeRegExp(Isolate* isolate, bool is_one_byte,
- RegExpNode* node) {
- Analysis<AssertionPropagator, EatsAtLeastPropagator> analysis(isolate,
- is_one_byte);
- DCHECK_EQ(node->info()->been_analyzed, false);
- analysis.EnsureAnalyzed(node);
- DCHECK_IMPLIES(analysis.has_failed(), analysis.error() != RegExpError::kNone);
- return analysis.has_failed() ? analysis.error() : RegExpError::kNone;
-}
-
-void BackReferenceNode::FillInBMInfo(Isolate* isolate, int offset, int budget,
- BoyerMooreLookahead* bm,
- bool not_at_start) {
- // Working out the set of characters that a backreference can match is too
- // hard, so we just say that any character can match.
- bm->SetRest(offset);
- SaveBMInfo(bm, not_at_start, offset);
-}
-
-STATIC_ASSERT(BoyerMoorePositionInfo::kMapSize ==
- RegExpMacroAssembler::kTableSize);
-
-void ChoiceNode::FillInBMInfo(Isolate* isolate, int offset, int budget,
- BoyerMooreLookahead* bm, bool not_at_start) {
- ZoneList<GuardedAlternative>* alts = alternatives();
- budget = (budget - 1) / alts->length();
- for (int i = 0; i < alts->length(); i++) {
- GuardedAlternative& alt = alts->at(i);
- if (alt.guards() != nullptr && alt.guards()->length() != 0) {
- bm->SetRest(offset); // Give up trying to fill in info.
- SaveBMInfo(bm, not_at_start, offset);
- return;
- }
- alt.node()->FillInBMInfo(isolate, offset, budget, bm, not_at_start);
- }
- SaveBMInfo(bm, not_at_start, offset);
-}
-
-void TextNode::FillInBMInfo(Isolate* isolate, int initial_offset, int budget,
- BoyerMooreLookahead* bm, bool not_at_start) {
- if (initial_offset >= bm->length()) return;
- int offset = initial_offset;
- int max_char = bm->max_char();
- for (int i = 0; i < elements()->length(); i++) {
- if (offset >= bm->length()) {
- if (initial_offset == 0) set_bm_info(not_at_start, bm);
- return;
- }
- TextElement text = elements()->at(i);
- if (text.text_type() == TextElement::ATOM) {
- RegExpAtom* atom = text.atom();
- for (int j = 0; j < atom->length(); j++, offset++) {
- if (offset >= bm->length()) {
- if (initial_offset == 0) set_bm_info(not_at_start, bm);
- return;
- }
- uc16 character = atom->data()[j];
- if (IgnoreCase(atom->flags())) {
- unibrow::uchar chars[4];
- int length = GetCaseIndependentLetters(
- isolate, character, bm->max_char() == String::kMaxOneByteCharCode,
- chars, 4);
- for (int j = 0; j < length; j++) {
- bm->Set(offset, chars[j]);
- }
- } else {
- if (character <= max_char) bm->Set(offset, character);
- }
- }
- } else {
- DCHECK_EQ(TextElement::CHAR_CLASS, text.text_type());
- RegExpCharacterClass* char_class = text.char_class();
- ZoneList<CharacterRange>* ranges = char_class->ranges(zone());
- if (char_class->is_negated()) {
- bm->SetAll(offset);
- } else {
- for (int k = 0; k < ranges->length(); k++) {
- CharacterRange& range = ranges->at(k);
- if (range.from() > max_char) continue;
- int to = Min(max_char, static_cast<int>(range.to()));
- bm->SetInterval(offset, Interval(range.from(), to));
- }
- }
- offset++;
- }
- }
- if (offset >= bm->length()) {
- if (initial_offset == 0) set_bm_info(not_at_start, bm);
- return;
- }
- on_success()->FillInBMInfo(isolate, offset, budget - 1, bm,
- true); // Not at start after a text node.
- if (initial_offset == 0) set_bm_info(not_at_start, bm);
-}
-
-// static
-RegExpNode* RegExpCompiler::OptionallyStepBackToLeadSurrogate(
- RegExpCompiler* compiler, RegExpNode* on_success, JSRegExp::Flags flags) {
- DCHECK(!compiler->read_backward());
- Zone* zone = compiler->zone();
- ZoneList<CharacterRange>* lead_surrogates = CharacterRange::List(
- zone, CharacterRange::Range(kLeadSurrogateStart, kLeadSurrogateEnd));
- ZoneList<CharacterRange>* trail_surrogates = CharacterRange::List(
- zone, CharacterRange::Range(kTrailSurrogateStart, kTrailSurrogateEnd));
-
- ChoiceNode* optional_step_back = new (zone) ChoiceNode(2, zone);
-
- int stack_register = compiler->UnicodeLookaroundStackRegister();
- int position_register = compiler->UnicodeLookaroundPositionRegister();
- RegExpNode* step_back = TextNode::CreateForCharacterRanges(
- zone, lead_surrogates, true, on_success, flags);
- RegExpLookaround::Builder builder(true, step_back, stack_register,
- position_register);
- RegExpNode* match_trail = TextNode::CreateForCharacterRanges(
- zone, trail_surrogates, false, builder.on_match_success(), flags);
-
- optional_step_back->AddAlternative(
- GuardedAlternative(builder.ForMatch(match_trail)));
- optional_step_back->AddAlternative(GuardedAlternative(on_success));
-
- return optional_step_back;
-}
-
-} // namespace internal
-} // namespace v8